Non-Existence of Entities (Sci.American 1980s)

There are objects/entities which one can describe but which can't exist (maybe because their description is "faulty"), one example:

Describe really large numbers, using n symbols, e.g. n = 3. Maybe this could be 999, better 9^{9^9} , or (hexadecimal) F^{F^F} , ...

LARGEST $n \in \mathbf{N}$ DESCRIBED BY AT MOST 43 SYMBOLS

7 + 3 + 9 + 2 + 2 + 4 + 2 + 7 = 36 + 7 spaces \Rightarrow 43 symbols

Thus, we can't have the largest number described with 45 symbols:

LARGEST $n \in \mathbf{N}$ DESCRIBED BY AT MOST 45 SYMBOL S+1

Halting Problem for Register Machines

Definition. A register machine H decides the Halting Problem if for all $e, a_1, \ldots, a_n \in \mathbb{N}$, starting H with

$$R_0 = 0 \qquad R_1 = e \qquad R_2 = \lceil a_1, \dots, a_n \rceil^{\neg}$$

Slide 2

and all other registers zeroed, the computation of H always halts with R_0 containing 0 or 1; moreover when the computation halts, $R_0 = 1$ if and only if

the register machine program with index e eventually halts when started with $R_0 = 0, R_1 = a_1, \ldots, R_n = a_n$ and all other registers zeroed.

Theorem No such register machine H can exist.

Slide 1

Notice that the collection of all computable partial functions from \mathbb{N} to \mathbb{N} is countable. So $\mathbb{N} \rightarrow \mathbb{N}$ (uncountable, by Cantor) contains uncomputable functions.

Slide 6

Claim: $S_0 \triangleq \{e \mid \varphi_e(0)\downarrow\}$ is undecidable.

Proof (sketch): Suppose M_0 is a RM computing χ_{S_0} . From M_0 's program (using the same techniques as for constructing a universal RM) we can construct a RM H to carry out:

Slide 9

let
$$e = R_1$$
 and $\lceil [a_1, ..., a_n] \rceil = R_2$ in
 $R_1 ::= \lceil (R_1 ::= a_1); \cdots; (R_n ::= a_n); prog(e) \rceil;$
 $R_2 ::= 0;$
run M_0

Then by assumption on M_0 , H decides the Halting Problem. Contradiction. So no such M_0 exists, i.e. χ_{S_0} is uncomputable, i.e. S_0 is undecidable. Claim: $S_1 \triangleq \{e \mid \varphi_e \text{ total function}\}$ is undecidable.

Proof (sketch): Suppose M_1 is a RM computing χ_{S_1} . From M_1 's program we can construct a RM M_0 to carry out: blue

let
$$e = R_1$$
 in $R_1 ::= \ulcorner R_1 ::= 0$; $prog(e) \urcorner$;
run M_1

Then by assumption on M_1 , M_0 decides membership of S_0 from previous example (i.e. computes χ_{S_0}). Contradiction. So no such M_1 exists, i.e. χ_{S_1} is uncomputable, i.e. S_1 is undecidable.

Slide 10