
Models of Computation, 2024 2

Gadgets

To construct register machines which perform complex operations, we intro-

duce gadgets which are components used to perform specific operations. A

gadget is defined informally as a partial register-machine graph that has a

designated initial label and one or more designated exit labels (which contain

no instructions). The gadget operates on registers specified in the gadget’s

name, and are used for input and output — we call these the input/output

registers. The gadget may use other registers for temporary storage — we

call these scratch registers. The gadget assumes the scratch registers are

initially set to 0, and must ensure that they are set back to 0 when the gadget

exits. Ensuring that the scratch registers are reset to 0 is important so that

the gadget may be safely used within loops.

Slide 1

Gadgets

A gadget is a partial register-machine graph.

It has one entry wire, and one or more exit wires.

The gadget operates on input and output registers specified in the

gadget’s name.

The gadget may use other registers, called scratch registers, for

temporary storage.

The gadget assumes the scratch registers are initially set to 0, and

must ensure that they are set back to 0 when the gadget exits.



Models of Computation, 2024 3

Slide 2

Gadget: “zero R0”

The gadget “zero R0” sets register R0 to be zero, whatever its initial

value:

entry

R−

0

exit

Slide 3

Gadget: “add R1 to R2”

The gadget “add R1 to R2” adds the initial value of R1 to register

R2, storing the result in R2 but restoring R1 to its initial value.
entry

R−

1

S+

R+

2

S− R+

1

exit



Models of Computation, 2024 5

We can compose gadgets, constructing bigger gadgets and eventually com-

plete register machines. To construct such bigger gadgets, we rename the

registers used by each gadget: all of its scratch registers are renamed to

things that do not occur in the rest of the machine, and its input/output regis-

ters are renamed to whichever registers the program requires. We then ‘wire

up’ the gadgets to make bigger gadgets, by joining (possibly many) exit wires

to the unique entry wire. For example, consider the gadget “copy R1 to R2”

defined on slide 10. We will use this gadget to construct the universal register

machine. The gadget “copy R1 to R2” copies the value of register R1 into

register R2, leaving R1 with its initial value. It does this by joining together

the “zero” and “add” gadgets: it first sets register R2 to zero, then adds the

value of R1 to R2 and leaves the value of R1 the same, using some scratch

register inside the “add” gadget.

Slide 4

Gadget: “copy R1 to R2”

The gadget “copy R1 to R2” copies the value of register R1 into

register R2, leaving R1 with its initial value:

entry

zero R2

add R1 to R2

exit

When we use gadgets to make other gadgets or register machines, we may

need to rename the registers. For example, to construct the gadget instance

“copy R1 to R3”, R1 (the original target in the definition of the gadget) gets

replaced by R3. Any scratch registers used in the gadget are renamed to be

different from any other registers used elsewhere.



Models of Computation, 2024 7

Slide 5

Gadget : “copy R1 to R2 and R3”

entry

copy R1 to R2

copy R1 to R3

exit

Slide 6

Gadget: “copy R1 to R2 and R3”

entry

zero R2

add R1 to R2

zero R3

add R1 to R3

exit



Models of Computation, 2024 8

Slide 7

Gadget: “copy R1 to R2 and R3”

entry

R−

2

R−

1S+

1

R+

2

S−

1 R+

1

R−

3

R−

1S+

2

R+

3

S−

2 R+

1

exit

Recall the register machine for multiplication given earlier in the course,

which multiplies R1 by R2 and stores the result in R0, possibly overwrit-

ing the initial values of R1 and R2. We can construct this register machine

using the “zero” and “add” gadgets.



Models of Computation, 2024 9

Slide 8

Gadgets: “multiply R1 by R2 to R0”

We can implement “multiply R1 by R2 to R0” by repeated addition:

entry

zero R0

R−

1
add R2 to R0

exit

As well as the “copy” gadget, we require two more gadgets to define the

universal register machine: “push X to L” and “pop L to X”. Given input

values X = x and L = l, the gadget “push X to L” returns the value

X = 0 and L = 2x(2ℓ+ 1). Given input value L = 〈〈x, ℓ〉〉 and X = y,

the gadget “pop L to X” returns X = x and L = l. Given input L = 0,

the gadget returns X = 0 and L = 0.



Models of Computation, 2024 9

Slide 9

Gadget: “push X to L”

The gadget “push X to L”:

entry Z+ L−

Z+

Z−

L+

X− exit

Given input values X = x, L = ℓ and Z = 0, it returns the output

values X = 0,L = 〈〈x, ℓ〉〉 = 2x(2ℓ+ 1) and Z = 0:

Analysing Register Machines

We could define a push gadget in terms of a simpler “multiply L by 2”

gadget. Instead, we defined one directly in Slide ??. How do we know that

the gadget does what we want? And in general, how can we tell what a

register machine does?

Unfortunately, there is no foolproof method to tell us what a register machine

does in the general case. In fact (spoiler alert!) we will see that there is no

algorithm that tells us if a register machine halts, in general. However, we

will only ever ask you to work out what reasonably simple register machines

do, so there are a some methods that can help, even if they won’t give you

an answer in the general case.

A first useful approach to determining what a register machine does is to

test it on various inputs. If you see a pattern emerging, that should help

you to guess what function is being computed. For instance, with the push

gadget we can compute the following resulting values for register L (X and

Z always end up at 0) for different inputs:



Models of Computation, 2024 9

ℓ
0 1 2 3

x
0 1 3 5 7

1 2 6 10 14

2 4 12 20 28

The values in the first row correspond to 2ℓ + 1, and each subsequent

row is double the previous one. This suggests that the gadget computes

2x(2ℓ + 1). However, it is not proof that this is the case: the above results

would also fit if it computed
1

2
(x2 + x+ 2)(2ℓ+ 1).

Another approach is to break up the execution of the register machine into

bits we understand. For instance, we could reason about push as follows:

Suppose we start with X = x, L = ℓ and Z = 0. When we first hit the

L− instruction, Z = 1. If L is not already 0, we will increment Z by two

and return to L−. This increment loop will happen ℓ times (since that is the

initial value of L) before L hits 0. At that point, we will have Z = 1 + 2ℓ.

Next L is incremented Z times — we move Z to L. When we hit the X−

instruction, therefore, L = 2ℓ + 1 and Z = 0. If X is not already 0, we

loop back and do it all again, except for the initial increment of Z . Each time

we loop from X− back to itself, the value of L is doubled. This loop happens

x times (the initial value of X), so when the loop exits the value of L will be

2x(2ℓ+ 1).

This is probably the most efficient way of convincing yourself of what a

register machine does, but we can be a bit more formal about it. One way of

doing this is with invariants: logical assertions that describe the state of the

machine whenever it reaches particular labels, in terms of the initial inputs.

The postcondition, which is the invariant at the halting instruction, will tell us

about the result of the computation.

For the invariants to be correct, every execution path (for which the precondi-

tion invariant held on the initial state) establishes each invariant whenever it

reaches the associated label. To check this, it is enough that, whenever one

invariant holds and we execute the machine until we reach another label with

an invariant, that invariant will hold. (To see this, suppose that we have an

execution that eventually breaks an invariant. The path from the last invariant

to hold to the invariant that doesn’t hold would give a counterexample to the



Models of Computation, 2024 10

proposed condition.)

If we want to analyse a register machine, we could label every instruction with

an invariant. Usually, however, it is enough to have one invariant for each

loop. Making sure each loop has an invariant guarantees that we will only

have to consider paths from one invariant to the next that have a bounded

length. For the push gadget, we want to find invariants at the points labelled

in Slide ??.

Slide 10

entry Z+ L−

Z+

Z−

L+

X− exit

P Q

I1

I2

I3

As our precondition, we choose P ≡ (X = x ∧ L = ℓ ∧ Z = 0). By

considering the paths between invariants, we construct a set of constraints

on our invariants (called verification conditions). For instance, on the path

from P to I1, Z is incremented, while every other register is unchanged.

Consequently, we must have that P [Z − 1/Z] =⇒ I1. (If P held for the

old value of Z then P [Z − 1/Z] will hold for the new value, because the

old value is one less than the new value.) The other verification conditions



Models of Computation, 2024 10

generated in this way are:

I1[L+ 1/L, Z − 2/Z] =⇒ I1 I1 ∧ L = 0 =⇒ I2

I2[Z + 1/Z, L− 1/L] =⇒ I2 I2 ∧ Z = 0 =⇒ I3

I3[X + 1/X] =⇒ I1 I3 ∧X = 0 =⇒ Q

We could just try to guess invariants that satisfy these properties, but we can

be a bit more methodical. We will start by guessing all of the invariants (ex-

cept P ) to be ⊥, and weaken them (make them more general) as necessary

to meet the constraints.

The first constraint tells us that (X = x∧L = ℓ∧Z = 1) =⇒ I1. This

doesn’t hold for ⊥, so let’s weaken the invariant to

I1 ≡ (X = x ∧ L = ℓ ∧ Z = 1)

Now the first constraint holds, but, for this I1 the second constraint requires

that (X = x ∧ L + 1 = ℓ ∧ Z − 2 = 1) =⇒ I1. We can weaken the

invariant:

I1 ≡ (X = x∧L = ℓ∧Z = 1)∨ (X = x∧L+1 = ℓ∧Z − 2 = 1)

But this still doesn’t satisfy the second constraint. If we continue this process,

we get:

I1 ≡ (X = x ∧ L = ℓ ∧ Z = 1)

∨ (X = x ∧ L+ 1 = ℓ ∧ Z − 2 = 1)

∨ (X = x ∧ L+ 2 = ℓ ∧ Z − 4 = 1)

Clearly, we could go on adding disjuncts forever without meeting the con-

straint. What we need to do is abstract : come up with a formula that de-

scribes all these disjuncts. Fortunately, we can spot a pattern to help us: L
goes down one and Z goes up two each time. We can therefore weaken to

the following abstracted invariant:

I1 ≡ (X = x ∧ Z + 2L = 2ℓ+ 1)

Now (X = x ∧ (Z − 2) + 2(L + 1) = 2ℓ + 1) =⇒ (X =
x ∧ Z + 2L = 2ℓ+ 1), so this really does satisfy the second condition.



Models of Computation, 2024 11

To satisfy the third constraint, we can now pick:

I2 ≡ (X = x ∧ Z = 2ℓ+ 1 ∧ L = 0)

However, for the fourth condition we want to abstract again:

I2 ≡ (X = x ∧ Z = 2ℓ+ 1 ∧ L = 0)

∨ (X = x ∧ Z + 1 = 2ℓ+ 1 ∧ L− 1 = 0)

∨ (X = x ∧ Z + 2 = 2ℓ+ 1 ∧ L− 2 = 0) ∨ . . .

Giving:

I2 ≡ (X = x ∧ Z + L = 2ℓ+ 1)

For the fifth condition we get:

I3 ≡ (X = x ∧ L = 2ℓ+ 1 ∧ Z = 0)

The sixth condition takes us back to I1:

I1 ≡ (X = x∧Z+2L = 2ℓ+1)∨(X+1 = x∧L = 2ℓ+1∧Z = 0)

It’s not very clear how to abstract this yet, so let’s apply the second condition

a few times.

I1 ≡ (X = x ∧ Z + 2L = 2ℓ+ 1)

∨ (X + 1 = x ∧ L = 2ℓ+ 1 ∧ Z = 0)

∨ (X + 1 = x ∧ L+ 1 = 2ℓ+ 1 ∧ Z − 2 = 0)

∨ (X + 1 = x ∧ L+ 2 = 2ℓ+ 1 ∧ Z − 4 = 0)

We can now see how to abstract everything but the first disjunct:

I1 ≡ (X = x∧Z+2L = 2ℓ+1)∨(X+1 = x∧Z+2L = 2(2ℓ+1))

This now meets the second condition, so we could continue round the big

loop until we have to abstract again. However, let’s use a bit of intuition and

guess that we’re going to double the Z +2L part each time round that loop:

I1 ≡ (Z + 2L = 2x−X(2ℓ+ 1))

This meets the second condition. Continuing, we get

I2 ≡ (Z + L = 2x−X(2ℓ+ 1))

I3 ≡ (L = 2x−X(2ℓ+ 1) ∧ Z = 0)

Q ≡ (X = 0 ∧ L = 2x(2ℓ+ 1) ∧ Z = 0)



Models of Computation, 2024 12

These meet all of the conditions, so we know that when the gadget exits

L = 2x(2ℓ+ 1), exactly as we want.

Slide 11 entry Z+ L−

Z+

Z−

L+

X− exit

X = x,

L = ℓ,

Z = 0

X = 0,

L = 2x(2ℓ+ 1),

Z = 0

Z + 2L = 2x−X(2ℓ+ 1)

Z + L = 2x−X(2ℓ+ 1)

L = 2x−X(2ℓ+ 1),

Z = 0

We haven’t actually shown that the gadget will eventually exit, however. It

could just run forever. To show that it does terminate, we should find some

variant that decreases each time an invariant is visited. For I1, we can use

(X,L) (with lexicographic ordering). Each time it is revisited, X will have

decreased, or X will have stayed the same but L decreased. For I2, we can

use (X,Z), and for I3 we can use X .



Models of Computation, 2024 14

Slide 12

Gadget: “pop L to X”

The gadget “pop L to X”:

entry X− L−

L+

empty

L−

Z+

Z− Z−

L+

X+

done

If L = 0 then return X = 0 and go to “empty”. If L = 〈〈x, ℓ〉〉 = n

then return X = x and L = ℓ, and go to “done”.

Slide 13

entry X− L−

L+

empty

L−

Z+

Z− Z−

L+

X+

done

L = n,

X = y,

Z = 0

n = 0 = L = X = Z
n = 2X(2L+ 1), Z = 0

n = 2X(L+ Z) n = 2X(2L+ Z)

n
=

2
X
(2
L
+

Z
+

1
)

n = 2X+1L, Z = 0



Models of Computation, 2024 15

Slide 14

Gadgets

R1 = x
copy R1

to R2

R1 = R2 = x

X = x, L = ℓ
push X

to L
X = 0, L = 〈〈x, ℓ〉〉

L = ℓ
pop L

to X

X = x′, L = ℓ′

where ℓ = 〈〈x′, ℓ′〉〉

X = L = ℓ = 0

done

empty

The Universal Register machine

A universal register machine (URM) is a register machine that can simulate

an arbitrary register machine on arbitrary input. It achieves this by reading

the code (unique description) of the machine to be simulated and the code

(unique description) of the input.



Models of Computation, 2024 17

Slide 15

The Universal Register Machine

The universal register machine carries out the following computation,

starting with R0 = 0, R1 = e (code of a program), R2 = a (code of

a list of arguments) and all other registers zeroed:

• decode e as a RM program P

• decode a as a list of register values a1, . . . , an

• carry out the computation of the RM program P starting with

R0 = 0,R1 = a1, . . . ,Rn = an (and any other registers

occurring in P set to 0).

Slide 16

Mnemonics for the registers of U and the role they play in its program:

R0 result of the simulated RM computation (if any).

R1 ≡ P Program code of the RM to be simulated

R2 ≡ A list of RM Arguments (or register contents) of the simulated machine

R3 ≡ PC Program Counter—label number of the current instruction

R4 ≡ N label number(s) of the Next instruction(s)—also used to hold code

of current instruction

R5 ≡ C code of the Current instruction body

R6 ≡ R value of the Register to be used by current instruction

R7 ≡ S and R8 ≡ T are auxiliary registers.

R9... other scratch registers.



Models of Computation, 2024 19

Slide 17

Overall structure of the URM

1 copy PC th item of list in P to N (halting if PC > length of list);

goto 2

2 if N = 0 then halt, else decode N as 〈〈y, z〉〉; C ::= y; N ::= z;

goto 3

{at this point either C = 2i is even and current instruction is R
+

i � Lz ,

or C = 2i+ 1 is odd and current instruction is R
−

i � Lj ,Lk where z = 〈j, k〉}

3 copy ith item of list in A to R; goto 4

4 execute current instruction on R; update PC to next label; restore

register values to A; goto 1

Slide 18

The Universal Register Machine

push R0

to A
START

copy P

to T

pop T

to N

pop A

to R0

HALT

PC
−

pop N

to C

pop A

to R
C

−

C
−

push R

to S

R
+

N
+

pop N

to PC
R

−

copy N

to PC

push R

to A

pop S

to R

empty

done

empty

doneempty

done

empty

done

empty

done

done

empty



Models of Computation, 2024 19

Slide 19

Universal Register Machines

Ivan Korec: Small Universal Register Machines. Theoretical

Computer Science, Volume 168 (1996), pp267–301.

O
rte

liu
s
:

T
y
p
v
s

O
rb

is
T
e
rra

rv
m

1
5
7
0
.

W
ik

im
e
d
ia

C
o
m

m
o
n
s


