
Models of Computation, 2024 2

Computable Functions

In this part of the course, we study several formal definitions of algorithm.

These definitions are equivalent, providing different ways of describing the

notion of computable function.

Slide 1

Algorithms, informally

People tried to find an algorithm to solve Hilbert’s

Entscheidungsproblem, without success.

A natural question was then to ask whether it was possible to prove

that such an algorithm did not exist. To ask this question properly, it

was necessary to provide a formal definition of algorithm.

Common features of the (historical) examples of algorithms:

• finite description of the procedure in terms of elementary

operations;

• deterministic, next step is uniquely determined if there is one;

• procedure may not terminate on some input data, but we can

recognise when it does terminate and what the result will be.

We will initially explore definitions of algorithm which are closer to how ma-

chines compute. We first give a formal definition of register machine, which

provides a simple description of a computing machine. We then give a defini-

tion of Turing machine, which is more complicated description of a computing

machine. Although more complicated, every computer scientist should know

about Turing machines! Finally, we give a definition of Church’s lambda-

calculus. This provides a completely different way of describing computa-

tion which is much nearer to the notion of function rather than the notion of

computing machine. What is amazing is that these different definitions are

actually equivalent.

Models of Computation, 2024 3

Slide 2

Algorithms as Special Functions

Turing and Church’s equivalent definitions of algorithm capture the

notion of computable function: an algorithm expects some input,

does some calculation and, if it terminates, returns a unique result.

We first study register machines, which provide a simple definition of

algorithm. We describe the universal register machine and

introduce the halting problem, which is probably the most famous

example of a problem that is not computable.

We then move to Turing machines and Church’s λ-calculus.

Register Machines

The register machine gets its name from its one or more uniquely addressed

registers, each of which holds a natural number. There are several versions

of register machines. We are using the Minski register machines. The work

on register machines occurred in the 1950s and 1960s. One motivation was

that people were trying to show that Hilbert’s 10th problem on Diophantine

equations was undecidable. This was finally cracked in 1970s using Turing

machines, and a simpler proof was given in the 1980s using register ma-

chines. Register machines are (apparently) particularly suited to constructing

Diophantine equations [Matiyasevich].

Models of Computation, 2024 5

Slide 3

Register Machines, informally

Register machines operate on natural numbers N = {0, 1, 2, . . .}

stored in (idealized) registers using the following “elementary

operations”:

• add 1 to the contents of a register

• test whether the contents of a register is 0

• subtract 1 from the contents of a register if it is non-zero

• jumps (“goto”)

• conditionals (“if then else ”)

Slide 4

Register Machines

Definition

A register machine (sometimes abbreviated to RM) is specified by:

• finitely many registers R0, R1, . . . , Rn, each capable of storing

a natural number;

• a program consisting of a finite list of instructions of the form

label : body where, for i = 0, 1, 2, . . ., the (i+ 1)th instruction

has label Li. The instruction body takes the form:

R+
� L′

add 1 to contents of register R and jump to instruction labelled L′

R−

� L′, L′′
if contents of R is > 0, then subtract 1 and jump to L′

, else jump to L′′

HALT stop executing instructions

Models of Computation, 2024 6

Slide 5

Example

Registers

R0 R1 R2

Program

L0 : R−

1 � L1,L2

L1 : R+

0 � L0

L2 : R−

2 � L3,L4

L3 : R+

0 � L2

L4 : HALT

Example Computation

Li R0 R1 R2

0 0 1 2

1 0 0 2

0 1 0 2

2 1 0 2

3 1 0 1

2 2 0 1

3 2 0 0

2 3 0 0

4 3 0 0

Exercise Consider the following program, acting on registers

R0,R1,R2,R3:

Program

L0 : R−

1 � L1,L6

L1 : R−

2 � L2,L4

L2 : R+

0 � L3

L3 : R+

3 � L1

L4 : R−

3 � L5,L0

L5 : R+

2 � L4

L6 : HALT

Give the example computation starting from initial configuration (0, 2, 3, 0).

Models of Computation, 2024 8

Slide 6

Register Machine Configuration

A register machine configuration has the form:

c = (ℓ, r0, . . . , rn)

where ℓ = current label and ri = current contents of Ri.

Notation “Ri = x [in configuration c]” means c = (ℓ, r0, . . . , rn)

with ri = x.

Initial configurations

c0 = (0, r0, . . . , rn)

where ri = initial contents of register Ri.

Slide 7

Register Machine Computation

A computation of a RM is a (finite or infinite) sequence of

configurations

c0, c1, c2, . . .

where

• c0 = (0, r0, . . . , rn) is an initial configuration;

• each c = (ℓ, r0, . . . , rn) in the sequence determines the next

configuration in the sequence (if any) by carrying out the program

instruction labelled Lℓ with registers containing r0,. . . ,rn.

Models of Computation, 2024 9

Slide 8

Halting Computations

For a finite computation c0, c1, . . . , cm, the last configuration

cm = (ℓ, r, . . .) is a halting configuration: that is, the instruction

labelled Lℓ is

either HALT (a ‘ proper halt’)

or R+
�L, or R−

�L,L′ with R > 0, or R−

�L′, L with R = 0

and there is no instruction labelled L in the program (an

‘erroneous halt’)

For example, the program
L0 : R+

1 � L2

L1 : HALT
halts erroneously.

Notice that it is always possible to modify programs (without affecting their

computations) to turn all erroneous halts into proper halts by adding extra

HALT instructions to the list with appropriate labels.

Models of Computation, 2024 11

Slide 9

Non-halting Computations

There are computations which never halt. For example, the program

L0 : R+

1 � L0

L1 : HALT
only has infinite computation sequences

(0, r), (0, r + 1), (0, r + 2), . . .

Slide 10

Graphical representation

• One node in the graph for each instruction label : body , with the node

labelled by the register of the instruction body; notation [L] denotes the

register of the body of label L

• Arcs represent jumps between instructions

• Initial instruction START .

Instruction Representation

R+
� L R+ // [L]

R−
� L,L′ [L]

R−

44✐✐✐✐✐✐
** **❯❯❯

❯❯❯

[L′]

HALT HALT

L0 START // [L0]

Models of Computation, 2024 12

Slide 11

Example

Registers

R0 R1 R2

Program

L0 : R−

1
� L1,L2

L1 : R+

0
� L0

L2 : R−

2
� L3,L4

L3 : R+

0
� L2

L4 : HALT

Graphical Representation

START

��
R−

1

**

����

R+

0jj

R−

2

**

����

R+

0jj

HALT

Claim: starting from initial configuration (0, 0, x, y), this machine’s

computation halts with configuration (4, x+ y, 0, 0).

The graphical representation is a bit confusing. There is one node in the

graph for each instruction label : body. However, the nodes are only la-

belled with the registers of the instruction bodies. For example, in slide 10,

we have two nodes labelled R+

0 . The top node corresponds to the instruc-

tion L1 : R+

0 � L0, and the bottom node to L3 : R+

0 � L2. The initial in-

struction START is essential, as the graphical representation looses the

sequential ordering of instructions.

Exercise Recall the following program acting on registers R0,R1,R2,R3:

Program

L0 : R−

1 � L1,L6

L1 : R−

2 � L2,L4

L2 : R+

0 � L3

L3 : R+

3 � L1

L4 : R−

3 � L5,L0

L5 : R+

2 � L4

L6 : HALT

What is the graphical representation of this program?

Models of Computation, 2024 14

Slide 12

Partial functions

Register machine computation is deterministic: in any non-halting

configuration, the next configuration is uniquely determined by the

program.

So the relation between initial and final register contents defined by a

register machine program is a partial function. . .

Definition A partial function from a set X to a set Y is specified by

any subset f ⊆ X × Y satisfying

(x, y) ∈ f and (x, y′) ∈ f implies y = y′.

Slide 13

Partial Functions

Notation

• “f(x) = y” means (x, y) ∈ f

• “f(x)↓” means ∃y ∈ Y (f(x) = y)

• “f(x)↑” means ¬∃y ∈ Y (f(x) = y)

• X⇀Y = set of all partial functions from X to Y

X�Y = set of all (total) functions from X to Y

Definition. A partial function from a set X to a set Y is total if it satisfies

f(x) ↓

for all x ∈ X .

Models of Computation, 2024 15

Slide 14

Computable functions

Definition. The partial function f ∈ N
n
⇀N is (register machine)

computable if there is a register machine M with at least n+ 1

registers R0, R1, . . . , Rn (and maybe more) such that for all

(x1, . . . , xn) ∈ N
n and all y ∈ N,

the computation of M starting with R0 = 0, R1 = x1, . . . ,

Rn = xn and all other registers set to 0, halts with R0 = y

if and only if f(x1, . . . , xn) = y.

The I/O convention is somewhat arbitrary: in the initial configuration, reg-

isters R1, . . . , Rn store the function’s arguments (with all others zeroed);

in the halting configuration, register R0 stores it’s value (if any). Notice that

there may be many different register machines that compute the same partial

functionf .

Models of Computation, 2024 16

Slide 15

Example

Registers

R0 R1 R2

Program

L0 : R−

1
� L1,L2

L1 : R+

0
� L0

L2 : R−

2
� L3,L4

L3 : R+

0
� L2

L4 : HALT

Graphical Representation

START

��
R−

1

**

����

R+

0jj

R−

2

**

����

R+

0jj

HALT

If the machine starts with registers (R0,R1,R2) = (0, x, y), then it

halts with registers (R0,R1,R2) = (x+ y, 0, 0).

The notation is a little confusing. The slide states that, if the machine

starts with registers (R0,R1,R2) = (0, x, y), then it halts with regis-

ters (R0,R1,R2) = (x + y, 0, 0). This description focusses on regis-

ters, and demonstrates that f(x, y) , x + y is computable. (The no-

tation f(x, y) , x + y means that f(x, y) ‘is defined to be equal to’

x+ y.) Compare this description with the description using configurations in

slide 11: starting from initial configuration (0, 0, x, y), this machine’s com-

putation halts with configuration (4, x+ y, 0, 0). This description also gives

information about the initial and final labels. The configuration (0, 0, x, y)
means that the first component is the initial label 0, the second component is

initially set to zero and will eventually give the final answer when the compu-

tation halts, and the third and fourth components provide the two input values

of the function. From configuration (0, 0, x, y), this machine’s computation

halts with configuration (4, x+ y, 0, 0).

Models of Computation, 2024 16

Slide 16

Multiplication f(x, y) , xy is computable

START

��

R+

3

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

R−

1
//

����

R−

2
//

����

R+

0

``❆❆❆❆❆❆❆❆

HALT R−

3

cccc●●●●●●●●●
,,
R+

2ll

If the machine starts with registers (R0,R1,R2,R3) = (0, x, y, 0),

then it halts with registers (R0,R1,R2,R3) = (xy, 0, y, 0).

Exercise Construct a register machine that computes the function

f(x, y) , x+ y.

The following arithmetic functions are all computable. The proofs are left as

exercises.

1. Projection: p(x, y) , x

2. Constant: c(x) , n

3. Truncated subtraction: x ·− y ,

{

x− y if y ≤ x

0 if y > x

4. Integer division: x div y ,

{

integer part of x/y if y > 0

0 if y = 0

5. Integer remainder: xmod y , x ·− y(x div y)

6. Exponentiation base 2: e(x) , 2x

7. Logarithm base 2: log2(x) ,

{

greatest y such that 2y ≤ x if x > 0

0 if x = 0

Models of Computation, 2024 18

Coding Programs as Numbers

So far, we have only seen how to write simple arithmetical operations as

register-machine programs. The Turing/Church solution of the Entschei-

dungsproblem and the Halting problem uses the fundamentally important

idea that (formal descriptions of) algorithms can be the data on which al-

gorithms act. Recall the following slide from lecture 1.

Slide 17

The Halting Problem

The Halting Problem is the decision problem with

• the set S of all pairs (A,D), where A is an algorithm and D is

some input datum on which the algorithm is designed to operate;

• the property A(D) ↓ holds for (A,D) ∈ S if algorithm A when

applied to D eventually produces a result: that is, eventually halts.

Turing and Church’s work shows that the Halting Problem is

unsolvable (undecidable): that is, there is no algorithm H such that,

for all (A,D) ∈ S,

H(A,D) = 1 A(D) ↓

= 0 otherwise

To realise this idea of algorithms being used as input data in the context of

Register Machines, we have to be able to code register-machine programs

as numbers. (In general, such codings are often called Gödel numberings.)

To do this, first we have to code pairs of numbers and lists of numbers as

numbers. There are many ways to do this. We fix upon one way.

Models of Computation, 2024 19

Slide 18

Numerical Coding of Pairs

Definition

For x, y ∈ N, define







〈〈x, y〉〉 , 2x(2y + 1)

〈x, y〉 , 2x(2y + 1)− 1

Example 27 = 0b11011 = 〈〈0, 13〉〉 = 〈2, 3〉

Result

〈〈−,−〉〉 gives a bijection between N× N and

N
+ = {n ∈ N | n 6= 0}.

〈−,−〉 gives a bijection between N× N and N.

Recall the definition of bijection from discrete maths.

The notation 0b11011 is sometimes used to emphasise that the number, in

this case 11011, is in binary. We will also use the notation 0bx for x ∈ N to

denote the binary number of x. We investigate a few examples of 〈〈x, y〉〉 for

small examples of x and y:

〈〈0, 0〉〉 = 1 〈〈1, 0〉〉 = 2 〈〈2, 0〉〉 = 4 〈〈3, 0〉〉 = 8
〈〈0, 1〉〉 = 3 〈〈1, 1〉〉 = 6 〈〈2, 1〉〉 = 12 . . .
〈〈0, 2〉〉 = 5 〈〈1, 2〉〉 = 10 〈〈2, 2〉〉 = 20 . . .
〈〈0, 3〉〉 = 7 . . .

Models of Computation, 2024 19

Slide 19

Numerical Coding of Pairs

Definition

For x, y ∈ N, define







〈〈x, y〉〉 , 2x(2y + 1)

〈x, y〉 , 2x(2y + 1)− 1

Sketch Proof of Result

It is enough to observe that

0b〈〈x, y〉〉 = 0by 1 0 · · · 0 x number of 0s

0b〈x, y〉 = 0by 0 1 · · · 1 x number of 1s

where 0bx , x in binary. , means ‘is defined to be’.

To show that

0b〈〈x, y〉〉 =
0by 1 0 · · · 0

︸ ︷︷ ︸

x 0s

observe that 〈〈x, y〉〉 , 2x(2y + 1) = 2x+1y + 2x.

To show 〈〈−,−〉〉 : N × N → N
+ is one-to-one, assume that 〈〈x1, y1〉〉 =

〈〈x2, y2〉〉, and either x1 6= x2 or y1 6= y2 or both. Since 〈〈x1, y1〉〉 =
〈〈x2, y2〉〉, we have 0b〈〈x1, y1〉〉 = 0b〈〈x2, y2〉〉 and hence

0by1 1 0 · · · 0
︸ ︷︷ ︸

x1 0s
=

0by2 1 0 · · · 0
︸ ︷︷ ︸

x2 0s

which cannot hold as either x1 6= x2 or y1 6= y2 or both.

To show 〈〈−,−〉〉 : N × N → N
+ is onto, assume not. We know that

〈〈0, 0〉〉 = 1. Hence, there must be a smallest n ∈ N
+ such that n =

〈〈u, v〉〉 for some u, v ∈ N and n + 1 6= 〈〈x, y〉〉 for all x, y ∈ N. So,

n = 0bv 1 0 · · · 0
︸ ︷︷ ︸

u 0s

and 0b(n + 1) = 0b(n) + 1 = 0bv 1 0 · · · 0
︸ ︷︷ ︸

u 0s

+1.

If u 6= 0, then n + 1 = 〈〈0, w〉〉 where 0bw = 0bv 1 0 · · · 0
︸ ︷︷ ︸

u−1 0s

. If u = 0,

Models of Computation, 2024 21

then n + 1 = 〈〈x, y〉〉 where x is one plus the number of zeros before the

first one in 0b(v + 1) and y is the natural number obtained from the binary

number after the first one.

Here’s another proof! To prove 〈〈−,−〉〉 is one-to-one, assume 〈〈x1, y1〉〉 =
〈〈x2, y2〉〉: that is,

2x1(2y1 + 1) = 2x2(2y2 + 1)

If x1 > x2, then 2x1−x2(2y1 + 1) = 2y2 + 1 which is impossible. A

similar argument shows that x1 < x2 is impossible. Hence, x1 = x2 and

2y1+1 = 2y2+1, which implies that y1 = y2 and 〈〈−,−〉〉 is one-to-one.

To prove 〈〈−,−〉〉 is onto, assume for contradiction that there is a smallest

n ∈ N such that there is no x, y ∈ N with 〈〈x, y〉〉 = n. If n is even, then

n = 2m with m < n. Hence, m = 2x1(2y1 + 1) for some x1, y1 ∈ N.

Then n = 2x1+1(2y1 + 1). If n is odd, then n = 2m+ 1 = 〈〈0,m〉〉.

Slide 20

Numerical Coding of Lists

Let List N be the set of all finite lists of natural numbers, defined by:

• empty list: []

• list cons: x :: ℓ ∈ List N if x ∈ N and ℓ ∈ List N

Notation: [x1, x2, . . . , xn] , x1 :: (x2 :: (· · ·xn :: [] · · ·))

Models of Computation, 2024 23

Slide 21

Numerical Coding of Lists

Let List N be the set of all finite lists of natural numbers.

For ℓ ∈ List N, define pℓq ∈ N by induction on the length of the list

ℓ:







p[]q , 0

px :: ℓq , 〈〈x, pℓq〉〉 = 2x(2 · pℓq+ 1)

Thus, p[x1, x2, . . . , xn]q = 〈〈x1, 〈〈x2, · · · 〈〈xn, 0〉〉 · · ·〉〉〉〉

Slide 22

Numerical Coding of Lists

Let List N be the set of all finite lists of natural numbers.

For ℓ ∈ List N, define pℓq ∈ N by induction on the length of the list

ℓ:







p[]q , 0

px :: ℓq , 〈〈x, pℓq〉〉 = 2x(2 · pℓq+ 1)

Examples

p[3]q = p3 :: []q = 〈〈3, 0〉〉 = 23(2 · 0 + 1) = 8

p[1, 3]q = 〈〈1, p[3]q〉〉 = 〈〈1, 8〉〉 = 34

p[2, 1, 3]q = 〈〈2, p[1, 3]q〉〉 = 〈〈2, 34〉〉 = 276

Models of Computation, 2024 24

Slide 23

Numerical Coding of Lists

Let List N be the set of all finite lists of natural numbers.

For ℓ ∈ List N, define pℓq ∈ N by induction on the length of the list

ℓ:







p[]q , 0

px :: ℓq , 〈〈x, pℓq〉〉 = 2x(2 · pℓq+ 1)

Result The function ℓ 7→ pℓq gives a bijection from List N to N.

Slide 24

Numerical Coding of Lists

Let List N be the set of all finite lists of natural numbers.

For ℓ ∈ List N, define pℓq ∈ N by induction on the length of the list

ℓ:







p[]q , 0

px :: ℓq , 〈〈x, pℓq〉〉 = 2x(2 · pℓq+ 1)

Result The function ℓ 7→ pℓq gives a bijection from List N to N.

Sketch Proof

The proof follows by observing that

0bp[x1, x2, . . . , xn]q = 1 0· · ·0
︸ ︷︷ ︸

xn0s

1 0· · ·0
︸ ︷︷ ︸

x
n−10s

···

1 0· · ·0
︸ ︷︷ ︸

x10s

Models of Computation, 2024 26

To prove 0bp[x1, x2, . . . , xn]q = 1 0· · ·0 1 0· · ·0 ··· 1 0· · ·0 , we

use induction on the structure of L = [x1, . . . , xn].

Base Case This is trivial as 0bp[]q = 0.

Inductive step Assume

0bp[x1, x2, . . . , xk]q = 1 0· · ·0 1 0· · ·0 ··· 1 0· · ·0

By the definitions, we have

0bp[x, x1, x2, . . . , xk]q = 0b〈〈x, p[x1, . . . , xk]q〉〉 = 0bp[x1, . . . , xn]q1 0 . . . 0
︸ ︷︷ ︸

x 0s

.

The induction hypothesis now gives the result. Using this result, pLq is

clearly one-to-one and onto. To convince yourself of this, choose a few binary

numbers n and give the corresponding list Ln such that 0bpLnq = n.

Slide 25

Recall Register Machines

Definition

A register machine (sometimes abbreviated to RM) is specified by:

• finitely many registers R0, R1, . . . , Rn, each capable of storing

a natural number;

• a program consisting of a finite list of instructions of the form

label : body where, for i = 0, 1, 2, . . ., the (i+ 1)th instruction

has label Li. The instruction body takes the form:

R+
� L′

add 1 to contents of register R and jump to instruction labelled L′

R−

� L′, L′′
if contents of R is > 0, then subtract 1 and jump to L′

, else jump to L′′

HALT stop executing instructions

Models of Computation, 2024 27

Slide 26

Numerical Coding of Programs

If P is the RM program

L0 : body0

L1 : body1

.

.

.

Ln : bodyn

then its numerical code is

pPq , p[pbody0q, . . . , pbodynq]q

where the numerical code pbodyq of an instruction body is defined

by:







pR+

i � Ljq , 〈〈2i, j〉〉

pR−

i � Lj ,Lkq , 〈〈2i+ 1, 〈j, k〉〉〉

pHALTq , 0

Since 〈〈−,−〉〉 : N × N → N
+, 〈−,−〉 : N × N → N and

p−q : List N → N are bijections, the functions p−q from bodies to

natural numbers and p−q from RM programs to N are bijections.

Models of Computation, 2024 28

Slide 27

Recall Addition f(x, y) , x+ y is Computable

Registers

R0 R1 R2

Program

L0 : R−

1
� L1,L2

L1 : R+

0
� L0

L2 : R−

2
� L3,L4

L3 : R+

0
� L2

L4 : HALT

Graphical Representation

START

��
R−

1

**

����

R+

0jj

R−

2

**

����

R+

0jj

HALT
If the machine starts with registers (R0,R1,R2) = (0, x, y), it halts

with registers (R0,R1,R2) = (x+ y, 0, 0).

Slide 28

Coding of the RM for Addition

pPq , p[pB0q, . . . , pB4q]q where

pB0q = pR−

1 � L1,L2q = 〈〈(2× 1) + 1, 〈1, 2〉〉〉

= 〈〈3, 9〉〉 = 8× (18 + 1) = 152

pB1q = pR+

0 � L0q = 〈〈2× 0, 0〉〉 = 1

pB2q = pR−

2 � L3,L4q = 〈〈(2× 2) + 1, 〈3, 4〉〉〉

= 〈〈5, (8× 9)− 1〉〉 = 〈〈5, 71〉〉

= 25 × ((2× 71) + 1) = 32× 143 = 4576

pB3q = pR+

0 � L2q = 〈〈2× 0, 2〉〉 = 5

pB4q = pHALTq = 0

Models of Computation, 2024 30

In the next section, we will introduce the Universal Register Machine. The

Universal Register Machine carries out the following computation:

starting with R0 = 0, R1 = e (the code of the program),

R2 = a (code of the list of arguments), and all other registers

zeroed:

• decode e as a RM program P

• decode a as a list of register values a1, . . . , an

• carry out the computation of the RM program P starting

with R0 = 0, R1 = a1, . . . , Rn = an (and any other

registers occurring in P set to 0).

It is therefore important for you to understand what it means for a number

x ∈ N to decode to a unique instruction body(x), and for a number e ∈ N

to decode to a unique program prog(e).

Slide 29

Decoding Numbers as Bodies and Programs

Any x ∈ N decodes to a unique instruction body(x):

if x = 0 then body(x) is HALT ,

else (x > 0 and) let x = 〈〈y, z〉〉 in

if y = 2i is even, then body(x) is R+

i � Lz ,

else y = 2i+ 1 is odd, let z = 〈j, k〉 in

body(x) is R−

i � Lj ,Lk

So any e ∈ N decodes to a unique program prog(e), called the

register machine program with index e:

prog(e) ,

L0 : body(x0)

.

.

.

Ln : body(xn)

where e = p[x0, . . . , xn]q

Models of Computation, 2024 30

Slide 30

Example of prog(e)

• 786432 = 219 + 218 = 0b110 . . . 0
︸ ︷︷ ︸

18 ”0”s

= p[18, 0]q

• 18 = 0b10010 = 〈〈1, 4〉〉 = 〈〈1, 〈0, 2〉〉〉 = pR−

0
� L0,L2q

• 0 = pHALTq

So prog(786432) =
L0 :R

−

0 � L0,L2

L1 :HALT

Notice that, when e = 0, we have 0 = p[]q so prog(0) is the program with

an empty list of instructions, which by convention we regard as a RM that

does nothing (i.e. that halts immediately). Also, notice in slide 26 the jump to

a label with no body (an erroneous halt). Again, choose some numbers and

see what the register-machine programs they correspond to.

