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Moore-Penrose Pseudo-Inverse

Definition
Let C and D be two Hilbert spaces and A : C — D a bounded
linear map. A bounded linear map AT = G : D — Cis the
Moore-Penrose pseudo-inverse of A iff

(i) AoG =Py,

(i) Go A =Pg,
where P4 and Pg denote orthogonal projections onto the
ranges of A and G.
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(Orthogonal) Projections — Idempotents

On finite dimensional vector (Hilbert) spaces we have an inner
product (.,.). This allows us to define an adjoint via:

(A(x), y) = (x, A*(y))
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(Orthogonal) Projections — Idempotents

On finite dimensional vector (Hilbert) spaces we have an inner
product (.,.). This allows us to define an adjoint via:

(A(x), y) = (x, A*(y))

@ An operator A is self-adjoint if A = A*.
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(Orthogonal) Projections — Idempotents

On finite dimensional vector (Hilbert) spaces we have an inner
product (.,.). This allows us to define an adjoint via:

(A(x), y) = (x, A*(y))

@ An operator A is self-adjoint if A = A*.

@ An operator A is positive, i.e. A J 0, if there exists an
operator B such that A = B*B.
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(Orthogonal) Projections — Idempotents

On finite dimensional vector (Hilbert) spaces we have an inner
product (.,.). This allows us to define an adjoint via:

(A(x), y) = (x, A*(y))

@ An operator A is self-adjoint if A = A*.

@ An operator A is positive, i.e. A J 0, if there exists an
operator B such that A = B*B.

@ An (orthogonal) projection is a self-adjoint E with EE = E.
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(Orthogonal) Projections — Idempotents

On finite dimensional vector (Hilbert) spaces we have an inner
product (.,.). This allows us to define an adjoint via:

(A(x), y) = (x, A*(y))

@ An operator A is self-adjoint if A = A*.

@ An operator A is positive, i.e. A J 0, if there exists an
operator B such that A = B*B.

@ An (orthogonal) projection is a self-adjoint E with EE = E.

Projections identify (closed) sub-spaces Yg = {Ex | x € V}.
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Example: Sign Domain
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Example: Sign Domain
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Enumeration: Sign = {,0,> 0,<0,Z}
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Example: Sign Domain
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Enumeration: Sign = {,0,> 0,<0,Z}

Free Vector Space: V(Sign) ={ > xs-s|x € R}

seSign
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Example: Sign Domain

<0e >0
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o0
Enumeration: Sign = {,0,> 0,<0,Z}

Free Vector Space: V(Sign) ={ > xs-s|x € R}

seSign

Francesca Scozzari: Domain theory in abstract interpretation: equations,
completeness and logic. PhD Thesis, Siena 1999.
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Example: Classical Abstractions (Domains via uco)

Consider the upward closed sub-domains of {(),0,> 0,< 0,Z}:

P
P2
P3
P4
P5
Pe
p7

{z}

{z,= 0}
{z,0}
{z,0}
{z,< 0}
{2,>0,0}
{,> 0,0}

P8

P9
P10
P11
P12
P13
P14

{Z,0,0}

{7,< 0,0}

{Z,< 0,0}
{Z,>0,0,0}
{2,<0,>0,0,0}
{2,<0,0,0}
{z,<0,>0,0,0}

Identify abstract domains via upward closed operators (ucu)
p = a o~ (vs downward closed operators (dco) v o «).
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Example: Probabilistic Abstractions R,
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Example: Probabilistic Abstractions R,
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Example: Probabilistic Abstractions R,
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Computing Intersections/Unions

Associate to every PAIl (A, G) a projection (similar to uco):

E=AG=AA"
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Computing Intersections/Unions

Associate to every PAIl (A, G) a projection (similar to uco):
E=AG=AA'
A general way to construct EMF and (by exploiting de Morgan’s

law) also E U F = (E+ 1 F+)= is via an infinite approximation
sequence and has been suggested by Halmos:

ENF = lim (EFE)".

n—oo
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Commutative Case

The concrete construction of E LU F and EMF is in general not
trivial. Only for commuting projections we have:

EUF=E+F-EFand ENF =EF.
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Commutative Case

The concrete construction of E LU F and EMF is in general not
trivial. Only for commuting projections we have:

EUF=E+F-EFand ENF =EF.

Example

Consider a finite set Q2 with a probability structure. For any
(measurable) subset A of Q2 define the characteristic function
xA With xa(x) = 1if x € Aand 0 otherwise.
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Commutative Case

The concrete construction of E LU F and EMF is in general not
trivial. Only for commuting projections we have:

EUF=E+F-EFand ENF =EF.

Example

Consider a finite set Q2 with a probability structure. For any
(measurable) subset A of Q2 define the characteristic function
xa With xa(x) = 1if x € Aand 0 otherwise. The characteristic
functions are (commutative) projections on random variables
using pointwise multiplication, i.e. Xxaxa = Xxa. We have
XAnB = XaXB and xaus = XA + XB — XAXB-
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Non-Commutative Case

The Moore-Penrose pseudo-inverse is also useful for
computing the EM F and E U F of general, non-commuting
projections via the parallel sum

A:B=A(A+B)B
The intersection of projections is given by:
ENF=2(E:F)=EE+F)'F+FE+F)E

Israel, Greville: Gereralized Inverses, Theory and Applications, Springer 03
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Projection Operators

Define a partial order on self-adjoint operators and projections
as follows: H C K iff K — H is positive, i.e. there exists a B such
that K — H = B*B.
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Projection Operators

Define a partial order on self-adjoint operators and projections
as follows: H C K iff K — H is positive, i.e. there exists a B such

that K — H = B*B.

Alternatively, order projections by inclusion of their image
spaces, i.e. EC Fiff YE C Y.
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Projection Operators

Define a partial order on self-adjoint operators and projections
as follows: H C K iff K — H is positive, i.e. there exists a B such
that K — H = B*B.

Alternatively, order projections by inclusion of their image
spaces, i.e. EC Fiff YE C Y.

The orthogonal projections form a complete lattice.

The range of the intersection E M F is to the closure of the
intersection of the image spaces of E and F.

The union E U F corresponds to the union of the images.
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Ortholattices |

Non-distributive analogs of Boolean algebras.

Definition (Ortholattice 1)

An ortholattice (L,C,.+,0,1) is a lattice (L, C) with universal
bounds 0 and 1, i.e.
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Ortholattices |

Non-distributive analogs of Boolean algebras.

Definition (Ortholattice 1)
An ortholattice (L,C,.+,0,1) is a lattice (L, C) with universal
bounds 0 and 1, i.e.

@ (L,C) is a partial order (i.e. C is reflexive, antisymmetric,
and transitive),
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Ortholattices |

Non-distributive analogs of Boolean algebras.

Definition (Ortholattice I)
An ortholattice (L,C,.+,0,1) is a lattice (L, C) with universal
bounds 0 and 1, i.e.

@ (L,C) is a partial order (i.e. C is reflexive, antisymmetric,
and transitive),

@ all pairs of elements a, b € L have a least upper bound
(sup) denoted by all b, and a greatest lower bound (inf)
denoted by am b,
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Ortholattices |

Non-distributive analogs of Boolean algebras.

Definition (Ortholattice I)
An ortholattice (L,C,.+,0,1) is a lattice (L, C) with universal
bounds 0 and 1, i.e.

@ (L,C) is a partial order (i.e. C is reflexive, antisymmetric,
and transitive),

@ all pairs of elements a, b € L have a least upper bound
(sup) denoted by all b, and a greatest lower bound (inf)
denoted by am b,

©@ 0CaandaC 1forallac L.
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Ortholattices |l

Definition (Ortholattice II)
...and a unary complementation operation a — a' satisfying:
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Ortholattices |l

Definition (Ortholattice II)

...and a unary complementation operation a — a' satisfying:
Q@ anat=0andaua-=1forallaclL,
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Ortholattices |l

Definition (Ortholattice II)

...and a unary complementation operation a — a' satisfying:
Q@ anat=0andaua-=1forallaclL,
Q@ (anb)t=atubtand(aub)t =atnblforallabecl,
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Ortholattices |l

Definition (Ortholattice II)

...and a unary complementation operation a — a' satisfying:
Q@ anat=0andaua-=1forallaclL,
Q@ (anb)t=atubtand(aub)t =atnblforallabecl,
Q (at)t =aforallac L.

The set P(#) of closed-range projections on a Hilbert space H
is a non-distributive ortholattice

(P(),C,0,1,.4,1,0)
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Commutativity and Distributivity
In general, M and U in an ortholattice are not distributive, ie.

(amb)U(amc)Can(blc)

au(bnc)C (aub)r(auc)
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Commutativity and Distributivity

In general, M and U in an ortholattice are not distributive, ie.
(amb)U(amc)Can(blc)
au(bnc)C (aub)r(auc)

Two elements a and b in an ortholattice commute, denoted by

(2. b] = 0, iff
a=(anb)u(anbt)
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Commutativity and Distributivity

In general, M and U in an ortholattice are not distributive, ie.
(amb)U(amc)Can(blc)
au(bnc)C (aub)r(auc)

Two elements a and b in an ortholattice commute, denoted by

(2. b] = 0, iff
a=(anb)u(anbt)

An ortholattice is called an orthomodular lattice if [a, b] = 0
implies [b, a] = 0.
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Example: Projections P, = Fl,,Fl}L7
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Example: Projections P, = Fl,,Fl}L7
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Example: Projections P, = Fl,,Fl}L7
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Example: The Lattice uco(Sign)

p2 ‘4 ) \4\\ p5
PGWMO
\Pf1><mz><ﬂf3 /

T~

P14
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Example: The Lattice P(V(Sign))

Bolzano, 22-26 August 2016 ESSLLI'16 Probabilistic Program Analysis Slide 20 of 54



Example: Combining Projections

3 3 000 100 00
1 1 000 01 0 00
P,MPg = 00 f o0 ! fnfoo i I 3 |=
0 0010 oo 1 1 1
o0} o0} oozgi
I I
— 10060 1 |=p
00??? ¢
$ 3 3
00 3 3 3

In particular, we have P7 M Pg = P7Pg as P7 and Pg commute,
i.e. [P7,Pg] = P;Pg — PgP7 = 0.
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Example: Combining Projections

1.0 0 0 0 5 2 0 0 0
o 1 1 1 1 11 9090 0 0
4 4 4 4 2 2
P,MP; = 0 1 7 5 x|l oo f o0 1 |=

0 7 2 1 1 0 00 1 0
0 & 2 2 3 003 03
1 1 11
A S
T T B

= | 1 1T 11 _p
SR U O ‘
5 5 5 5 5
r1i 1 1 1
5 5 5 5 b

Using the expression P4 1 P7 = 2P4(P4 + P7)'P; as P4 and P;
do not commute.

Bolzano, 22-26 August 2016 ESSLLI'16 Probabilistic Program Analysis Slide 22 of 54



Example: Combining Projections

Note that the simple multiplication P4P7 is different from
P, M P7:

10 00 0 1 2 00 0
NE T O I O B
P,P; = 0 & 1 1 1 00 5 0 1 |=
0 7 1 5 3 0 00 10
0 s i/ \oo0 0y
10 00
Y oo1
SO S A N
= |5 8 7 3 3 [#PanP7
1 1 1 1
S A A A
8 8 4 4 4
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Precision Measures

Definition

Given two vector (Hilbert) spaces C and D and a bounded
linear map F : C — D, then we say that a pair of projections
P:C—CandR: D — Dis complete for F iff

FP = RFP.
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Precision Measures

Definition

Given two vector (Hilbert) spaces C and D and a bounded
linear map F : C — D, then we say that a pair of projections
P:C—CandR:D — Dis complete for F iff

FP = RFP.

Given a pair of projections (P, R) for a function F, we estimate
the precision of the abstraction via the “difference” between FP
and its optimal version RFP.

Prece(P,R) = |[FP — RFP||.
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Order and Precision

Proposition

LetF : Hq — Ho be a bounded linear operator between two
Hilbert spaces H4 and Hp, and let Py, P, € P(H>) and
ReP (7‘[1 )

Then we have: if Py C P, then Prece(P+,R) < Precg(P2, R).
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Example: (Relative) Precisions

Py P, P3 Py Ps Pg P; Pg Py Pig Piy P2 P13 Py
P 0 0 O 0 0O 0 0 0 O 0O 0O 0O 0 O
P, 0 0 O 0 0O 0 0 0O O O O O O O
Ps 1 75 0 79 7565 0 0 0 65 0 O O O
P, 1 919799 0 91 0 79 0 .79 0 0 .79 0 O
Ps 1 75 0 79 7565 0 0 0 65 0 O O O
Ps |[1.10 1 87 O 1 0 87 0 8 0 0 8 0 O
P; {134 1 0 106 1 87 0 0 O 8 0 O 0 O
Ps 1 1 1 1 1 8 1 0 1 82 0 1 0 O
P, {110 82 0 87 82 .71 0 0 O .71 0 O O O
Py |1.07 91 87 87 91 71 87 0 87 71 0 87 0 O
Py [1.34 1 1 122 1 1 1 0 1 1 0o 1 0 O
P»>|{134 1 0 106 1 87 0 0 O 8 0 O 0 O
Pz |[1.10 1 1 106 1 8 1 0 1 .87 0 1 0 O
Py (1.34 1 1 122 1 1 1 0 1 1 0o 1 0 O
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Linear Operator Semantics (LOS)

The collecting semantics of a program P is given by:

T(P) = pj- T 4)
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Linear Operator Semantics (LOS)

The collecting semantics of a program P is given by:
T(P) =Y pj-T(ti4)

Local effects T(¢;, ¢;): Data Update + Control Step

T(f,‘,f/) =(Nji®Np®...®Nj)® M,‘j
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Kronecker Products

Given a n x m matrix A and a k x [ matrix B:

A= - B= . oo
aim ... @anm b1/ bk/
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Kronecker Products

Given a n x m matrix A and a k x [ matrix B:

A= - B= . oo
aim ... @anm b1/ bk/

The tensor product A ® B is then a nk x ml matrix:

311B amB
AxB= S
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Abstract Tensor Product

The (algebraic) tensor product of vector spaces Vy, Vo, ..., Vj
is given by a vector space ®/_, V; and a map

p=®", €LV, Va,...,Vn QiL; Vi) such that if W is any
vector space and f € L(V1, Vs, ..., Vs W) then there exists a
unique map h: @, V; — W satisfying f = ho p.

V(X x Y) = V(X) 2 V(Y)
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Abstract Tensor Product

The (algebraic) tensor product of vector spaces Vy, Vo, ..., Vj
is given by a vector space ®/_, V; and a map

p=®", €LV, Va,...,Vn QiL; Vi) such that if W is any
vector space and f € L(V1, Vs, ..., Vs W) then there exists a
unique map h: @, V; — W satisfying f = ho p.

f

V1><V2><...><Vn W

VIi’dVe®...0Vy

V(X x Y) = V(X) 2 V(Y)

Bolzano, 22-26 August 2016 ESSLLI'16 Probabilistic Program Analysis Slide 29 of 54



Tensor Product Properties

The tensor product of n linear operators Ay, Ao, ..., Anis
associative (but in general not commutative) and has e.g. the
following properties:
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Tensor Product Properties

The tensor product of n linear operators Ay, Ao, ..., Anis
associative (but in general not commutative) and has e.g. the
following properties:

Q A®..9A) Bi®...9B,) =
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Tensor Product Properties

The tensor product of n linear operators Ay, Ao, ..., Anis
associative (but in general not commutative) and has e.g. the
following properties:

Q A®..9A) Bi®...9B,) =

QAR.00A)R.. A=
=a(A®...0A®...0A))
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Tensor Product Properties

The tensor product of n linear operators Ay, Ao, ..., Anis
associative (but in general not commutative) and has e.g. the
following properties:

QAR.0A)®...0A,=
=a(A1®..0A®...QA))

QA ®R..9(A+B)®...QA, =
=(A1®..0AR.. AN+ (A1®...0B;®...®@ Ap)
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Tensor Product Properties

The tensor product of n linear operators Ay, Ao, ..., Anis
associative (but in general not commutative) and has e.g. the
following properties:

QAR.0A)®...0A,=
=a(A1®..0A®...QA))

QA ®R..9(A+B)®...QA, =
=(A1®..0AR.. AN+ (A1®...0B;®...®@ Ap)

Q A®...0A®...0A) =
=Al®...0Al®...0A]
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Relational Dependency

1: [m« 1]

2: while [n > 1]? do
3 [m«mxn)?;
4 [nen-1]*
5. end while

6: [stop]®
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Relational Dependency

1: [m« 1]

2: while [n > 1]? do
3 [m«mxn)?;
4 [nen-1]*
5. end while

6: [stop]®

Input/output behaviour: Parity of m for different values of n.
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Relational Dependency

1: [m« 1]

2: while [n > 1]? do
3 [m«mxn)?;
4 [nen-1]*
5. end while

6: [stop]®

Input/output behaviour: Parity of m for different values of n.
@ Probability that m = even/odd and n=1,2, 3.

e Probability that m is even/odd, and
e Probability that nis 1,2, 3.
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Relational Dependency

1: [m« 1]

2: while [n > 1]? do
3 [m«mxn)?;
4 [nen-1]*
5. end while

6: [stop]®

Input/output behaviour: Parity of m for different values of n.

@ Probability that m = even/odd and n=1,2, 3.

e Probability that m is even/odd, and
e Probability that nis 1,2, 3.

@ Probability that m is even/odd for n = 1,2, 3.
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Dependency and Correlations

Some joint probability distributions can be expressed as tensor
product of two (independent) probability distributions e and f:

(111)-

©|—=©0IN
©|—=©0IN
©O|—=©0IN
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Dependency and Correlations

Some joint probability distributions can be expressed as tensor
product of two (independent) probability distributions e and f:

(

11 2 1,

©|—=©0IN
©|—=©0IN
©O|—=©0IN
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Dependency and Correlations

Some joint probability distributions can be expressed as tensor
product of two (independent) probability distributions e and f:
111 2 1

< )-GaaeGy

But there are no two vectors e and f such that for example

( ) et

©[—=0IN
©[—=©0IN
©[=©0IN

w—= O
O wi—=
O wi=
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Dependency and Correlations

Some joint probability distributions can be expressed as tensor
product of two (independent) probability distributions e and f:

(F1D)-d3hecy

However, in general we can express any joint probability
distribution as a linear combination of distributions.

©|—=©0IN
©|—=©0IN
©O|—=©0IN

0 3 3 ) _ e ot + Lepoh) + es o h)
% 0 0 _3 1 2 3 2 1 3 3 1

with e; € R3 and f; € R? (row and column) basis vectors

Bolzano, 22-26 August 2016 ESSLLI'16 Probabilistic Program Analysis Slide 32 of 54



Fully, Weakly and Non-Relational Analysis

Consider compositional (probabilistic) abstractions of the form:

v i—1
S=Psx) with S(x)=(XR)S-/)®S® ® S.)
i=1 k=1 k=i+1
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Fully, Weakly and Non-Relational Analysis

Consider compositional (probabilistic) abstractions of the form:

v i—1
S =Ps(x) with S(x)=(X)S-) @S ® S.)
i=1 k=1 k=i+1

Fully Relational: S, is SwithS; = A;and S_; = A_;

With A; forgetful and A; and A_; nontrivial abstractions.
For S, all factors in & are the same; we can take S, = S(x1).

Bolzano, 22-26 August 2016 ESSLLI'16 Probabilistic Program Analysis Slide 33 of 54



Fully, Weakly and Non-Relational Analysis

Consider compositional (probabilistic) abstractions of the form:

v i—1
S =Ps(x) with S(x)=(X)S-) @S ® S.)
i=1 k=1 k=i+1

Fully Relational: S, is SwithS; = A;and S_; = A_;

Weakly Relational: Sy, is Swith S; = A;and S_; = A_; or A

With A; forgetful and A; and A_; nontrivial abstractions.
For S, all factors in & are the same; we can take S, = S(x1).
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Fully, Weakly and Non-Relational Analysis

Consider compositional (probabilistic) abstractions of the form:

i—1

SZQVBS(X,-) with S(x) = (X)S-)®S;® ® S.)

=1 k=1 k=i+1

Fully Relational: S, is SwithS; = A;and S_; = A_;
Weakly Relational: Sy, is Swith S; = A;and S_; = A_; or A
Non-Relational: S, is Swith S; = A and S_; = As

With A; forgetful and A; and A_; nontrivial abstractions.
For S, all factors in & are the same; we can take S, = S(x1).
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Examples

P\R| 0 |S, S, S/|id
] 00 0 0]O0
S, [158]0 0 0|0
S, |158/0 0 0]0
S, |158/0 0 0]0
id 25501 1 10

Using cast d abstraction : A, lifted a(x) = x mod d

S,is S with S,‘ = S4, S_\,' = A
SW isS with S,‘ = S4,S_.,' = Ag
S,;is S with S,‘ = S_,,' =Ay
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Examples

var x:[0..10]; y:[0..10]; begin x:=y; stop

PR| 0 | S, S S |id
00 0 0|0
S, |173] 0 0 o0 |0
S, |224]| 1 0|0
S [224| 1 1 0 |0
id |3.61|3.61 3.61 3.61|0

Using cast d abstraction : A, lifted a(x) = x mod d

S,is S with S,‘ = S4, S_\,' = A
SW isS with S,‘ = S4,S_.,' = Ag
S,;is S with S,‘ = S_,,' =Ay

Bolzano, 22-26 August 2016 ESSLLI'16 Probabilistic Program Analysis Slide 34 of 54



Examples
var x:[0..10]; y:[0..3]; begin x:=2xy; stop

PR| 0 | S, S S |id
o 0] 0 0 0
S, | 1.88/0.89 0.89 0.89
S, |214|152 129 1.29
S, [224(1.64 1.50 1.41
id |3.61|3.60 359 3.58

O OO OO0

Using cast d abstraction : A, lifted a(x) = x mod d

S,is S with S,‘ = S4, S_\,' = A
SW isS with S,‘ = S4,S_.,' = A2
S,;is S with S,‘ = S_,,' =Ay
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Examples
var x:[0..10]; y:[0..3]; begin x:=3xy; stop

PR| 0 | S, S S |id
o 0] 0 0 0
S, | 1.77/0.89 0.89 0.89
S, |224|152 129 1.29
S, [224(1.64 1.50 1.41
id |3.61|3.60 359 3.58

O OO OO0

Using cast d abstraction : A, lifted a(x) = x mod d

S,is S with S,‘ = S4, S_\,' = A
SW isS with S,‘ = S4,S_.,' = A2
S,;is S with S,‘ = S_,,' =Ay
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Further Work
Conclusions

Bolzano, 22-26 August 2016 ESSLLI'16 Probabilistic Program Analysis Slide 35 of 54



Conclusions

Some applications of PAI:
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Conclusions

Some applications of PAI:

@ Approximate Process Equivalences: The semantics of
concurrent processes can be defined via approximate
equivalences (e.g. e-bisimulation).
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Conclusions

Some applications of PAI:

@ Approximate Process Equivalences: The semantics of
concurrent processes can be defined via approximate
equivalences (e.g. e-bisimulation).

@ Approximate Confinement: Static analysis of security
properties can be sometimes more effective if the security

is guaranteed only up to some acceptable percentage
treshold.
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Conclusions

Some applications of PAI:

@ Approximate Process Equivalences: The semantics of
concurrent processes can be defined via approximate
equivalences (e.g. e-bisimulation).

@ Approximate Confinement: Static analysis of security
properties can be sometimes more effective if the security
is guaranteed only up to some acceptable percentage
treshold.

@ Probabilistic Program Transformation: Transforming out
timing leaks... probabilistically.
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Conclusions

Some applications of PAI:

@ Approximate Process Equivalences: The semantics of
concurrent processes can be defined via approximate
equivalences (e.g. e-bisimulation).

@ Approximate Confinement: Static analysis of security
properties can be sometimes more effective if the security
is guaranteed only up to some acceptable percentage
treshold.

@ Probabilistic Program Transformation: Transforming out
timing leaks... probabilistically.

° ..
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LOS for Variable Probabilities

In every choice construct one must make a choice and the
probabilities of all choices must sum up to one (certainty).

Bolzano, 22-26 August 2016 ESSLLI'16 Probabilistic Program Analysis Slide 37 of 54



LOS for Variable Probabilities

In every choice construct one must make a choice and the
probabilities of all choices must sum up to one (certainty).
One can’t assume (that the programmer used) normalised

probabilities.
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LOS for Variable Probabilities

In every choice construct one must make a choice and the
probabilities of all choices must sum up to one (certainty).
One can’t assume (that the programmer used) normalised

probabilities.

We therefore need to normalise probabilities with respect to a
context of "competing" probabilities:

p

f) = p[p1.<.Pn] - m
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LOS for Variable Probabilities

In every choice construct one must make a choice and the
probabilities of all choices must sum up to one (certainty).
One can’t assume (that the programmer used) normalised
probabilities.

We therefore need to normalise probabilities with respect to a
context of "competing" probabilities:

p

f) = p[p1.<.Pn] - m

This can be done at compile-time if all probabilities are
constants, but also at runtime in the operational semantics.
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LOS for Variable Probabilities

In every choice construct one must make a choice and the
probabilities of all choices must sum up to one (certainty).
One can’t assume (that the programmer used) normalised
probabilities.

We therefore need to normalise probabilities with respect to a
context of "competing" probabilities:

p

f) = p[p1.<.Pn] - m

This can be done at compile-time if all probabilities are
constants, but also at runtime in the operational semantics.

Typically one would assume p; € R or p; € Q. However, we can
also use discrete probabilities, i.e. p; € Z.
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Duel at High Noon

Consider a "duel" between two cowboys:
@ Cowboy A — hitting probability a
@ Cowboy B — hitting probability b
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Duel at High Noon

Consider a "duel" between two cowboys:
@ Cowboy A — hitting probability a
@ Cowboy B — hitting probability b

@ Choose (non-deterministically) whether A or B starts.
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Duel at High Noon

Consider a "duel" between two cowboys:
@ Cowboy A — hitting probability a
@ Cowboy B — hitting probability b

@ Choose (non-deterministically) whether A or B starts.

© Repeat until winner is known:
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Duel at High Noon

Consider a "duel" between two cowboys:
@ Cowboy A — hitting probability a
@ Cowboy B — hitting probability b

@ Choose (non-deterministically) whether A or B starts.
© Repeat until winner is known:
e Ifitis A’'s turn he will hit/shoot B with probability a;

If B is shot then A is the winner, otherwise it's B’s turn.
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Duel at High Noon

Consider a "duel" between two cowboys:
@ Cowboy A — hitting probability a
@ Cowboy B — hitting probability b

@ Choose (non-deterministically) whether A or B starts.
© Repeat until winner is known:
o Ifitis A's turn he will hit/shoot B with probability a;

If B is shot then A is the winner, otherwise it's B’s turn.

e Ifitis B’s turn he will hit/shoot A with probability b;

If Ais shot then B is the winner, otherwise it's A’s turn.
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Duel at High Noon

Consider a "duel" between two cowboys:
@ Cowboy A — hitting probability a
@ Cowboy B — hitting probability b

@ Choose (non-deterministically) whether A or B starts.
© Repeat until winner is known:
e Ifitis A’'s turn he will hit/shoot B with probability a;

If B is shot then A is the winner, otherwise it's B’s turn.

e Ifitis B’s turn he will hit/shoot A with probability b;

If Ais shot then B is the winner, otherwise it's A’s turn.

Question: What is the life expectancy of A or B?

Introduced by Mclver and Morgan (2005).
Discussed in detail by Gretz, Katoen, Mclver (2012)
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Duel at High Noon

Consider a "duel" between two cowboys:
@ Cowboy A — hitting probability a
@ Cowboy B — hitting probability b

@ Choose (non-deterministically) whether A or B starts.
© Repeat until winner is known:

e Ifitis A’'s turn he will hit/shoot B with probability a;

If B is shot then A is the winner, otherwise it's B’s turn.
e Ifitis B’s turn he will hit/shoot A with probability b;

If Ais shot then B is the winner, otherwise it's A’s turn.

Question: What is the life expectancy of A or B?
Question: What happens if A is learning to shoot better during
the duel? How can we model dynamic probabilities?

Introduced by Mclver and Morgan (2005).
Discussed in detail by Gretz, Katoen, Mclver (2012)
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Example: Duelling Cowboys

begin

# who’s first turn

choose 1:{t:=0} or 1:{t:=1} ro;
# continue until

c = 1;
while ¢ == 1 do
if (t==0) then
choose ak:{c:=0} or am:{t:=1} ro
else
choose bk:{c:=0} or bm:{t:=0} ro
fi;
od;
stop; # terminal loop
end
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Example: Duelling Cowboys

The survival chances, i.e. winning probability, for A.

N
BRBSEITT e
- N
TOERRTS
08 — SO —
06 — —
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Contexts: Advance Normalisation

For all possible values of the variable probabilities p; compute
their normalisation, compute the possible contexts.

0 ifn=0
c ) Al if n=1 and p; const
[t o] = {[c] | ¢ € Value(p;)} if n=1and p; var

Uecip {11 - Clp2s - - .. P} otherwise, i.e. n> 1.

Variable x with Value(x) = {0, 1} and a parameter p = 0 or
p = 1 then contexts are given by:

C[x,1,p] = {[0,1,0],[1,1,0]} and C[x,1,p] = {[0,1,1],[1,1,1]}
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Dynamic Probabilities

For all possible values of the variable probabilities test if the
current state. With ¢; € Value(p;) and d; < Value(p;) use:

POt =P(pi =) ( 11 Ppkdk)>

k=1,..,n
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Dynamic Probabilities

For all possible values of the variable probabilities test if the
current state. With ¢; € Value(p;) and d; < Value(p;) use:

k=1,..,n

POt =P(pi =) ( 11 Ppkdk)>

This gives the LOS Semantics for variable probabilities:

{[choose]”*>' ...or pp: Sporl}os = {Si}iosU

n
U { > > Cigay Poio o ©E( ’”i’(sf))}

i=1 \ cj€Vvalue(p;) [d;...dn]€C[p1 ...Pn]
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Learning how to shoot straight

begin
# initialise skills of A
akl := ak; aml := am;

# who’s first
choose 1:{t:=0} or 1:{t:=1} ro;
# continue until
c :=1;
while ¢ == 1 do
if (t==0) then
choose akl:{c:=0} or aml:{t:=1} ro

else
choose bk:{c:=0} or bm:{t:=0} ro
fi;
akl := @inc(akl); aml := @dec(aml);
od;
stop; # terminal loop
end
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Back to the two Cowboys

Learning rate O.
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Back to the two Cowboys

Learning rate 1.
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Back to the two Cowboys

Learning rate 2.
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Back to the two Cowboys

Learning rate 4.

Bolzano, 22-26 August 2016 ESSLLI'16 Probabilistic Program Analysis Slide 47 of 54



LOS for Program Synthesis

Finding the minimum length path

-
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LOS for Program Synthesis

Finding the minimum length path vs minimum value of functions

Iy jJ_
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LOS for Program Synthesis

Finding the minimum length path vs minimum value of functions

_jJ_
.

As usual (for now): Take the best non-linear optimisation tool
money can’t buy (leave it to "them" to make it work).
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A General Approach

@ Consider parameterised program P(py, po, ..., pn) With

...[choose]’pi : Sjor ... or pp: Sy ro; ...
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A General Approach

@ Consider parameterised program P(\q, Ao, ..., Ap) with

...[choose]* \{ : Sy or ... or A\p: Spro; ...
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A General Approach

@ Consider parameterised program P(\q, Ao, ..., Ap) with

... [opt]* Sj or ... or Sptop; ...
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A General Approach

@ Consider parameterised program P(\q, Ao, ..., Ap) with
...[choose]* \{ : Sy or ... or A\p: Spro; ...
@ Construct the parametric LOS semantics/operator, i.e.

[P(M, Ao, s An)] = T(M, Aoy ooy )
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A General Approach

@ Consider parameterised program P(\q, Ao, ..., Ap) with
...[choose]* \{ : Sy or ... or A\y: Sy ro; ...
@ Construct the parametric LOS semantics/operator, i.e.
[P\, Aoy s A =T, Ao, .o, An)
@ Establish constraints on functional behaviour, e.g.

IATT(A1, X2, .., An)A = [S]]| = O
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A General Approach

@ Consider parameterised program P(\q, Ao, ..., Ap) with
...[choose]* \{ : Sy or ... or A\y: Sy ro; ...
@ Construct the parametric LOS semantics/operator, i.e.
[P\, Aoy s A =T, Ao, .o, An)
@ Establish constraints on functional behaviour, e.g.

ATT()\1 ’ )‘27 R )‘FI)A = IIS]]
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A General Approach

@ Consider parameterised program P(\q, Ao, ..., Ap) with
...[choose]* \{ : Sy or ... or A\p: Spro; ...
@ Construct the parametric LOS semantics/operator, i.e.
[P\, Aoy s A =T, Ao, .o, An)
@ Establish constraints on functional behaviour, e.g.
AT\, s, An)A = S]] = 0
@ Additional non-functional (performance) objectives
min  ®(T(A\{, Ao, ..., \p))

A15A2,05An
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Swapping: The XOR Trick

Consider the (probabilistic) sketch for swapping x and y:
[choose] AM1:Stor ... or Ay Spro;

[choose]? Ao :8tor ... or Ay Spro;
[choose]® A31:S8t1or ... orAg,: Spro;
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Swapping: The XOR Trick

Consider the (probabilistic) sketch for swapping x and y:

[choose]' AM1:S81or ... or Ay Spro;
[choose]? A1 :8tor ... or Ay Spyro;
[choose]® A3 1:Syor ... or A3 p: Sy ro;

with S; one of i = 1,..., 13 different elementary blocks:

[skip]'
[x :=y]? [x:=2]°
[y :=x* [y :=2°
[z:=x]® [z:=y]
[x :=(x+y)mod2]® [x :=(x+z)mod 2]°
[y :=(y +x)mod 2] [y :=(y + z) mod 2]’
[z :=(z+x)mod 2]'? [z :=(z+ y) mod 2]"®
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Swapping: Parameterised LOS and Objective
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Swapping: Parameterised LOS and Objective

Using 13 transfer functions F; ... Fq3 to define

3

TOy) =[] Ti0y) with Ti())) Z/\,/

i=1

For one-bit variables x, y the intended behaviour (on R? @ R?):

1000 XxX—0 y—0
S_ 0 010 X—0 y—1
0100 Xx—1 y—20
0 0 01 x—1 y—1
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Swapping: Parameterised LOS and Objective

Using 13 transfer functions F; ... Fq3 to define

3

TOy) =[] Ti0y) with Ti())) Z/\,/

i=1

For one-bit variables x, y the intended behaviour (on R? @ R?):

1000 XxX—0 y—0
S_ 0 010 X—0 y—1
0100 Xx—1 y—20
0 0 01 x—1 y—1

Objective: min dgo(Nj) = [|ATT(A\;)A — S||2 or min ®,,()j)
which also penalises for reading or writing to z; using the
abstraction A = 14y ® Agp) = diag(1,1,1,1) ® (1,1)".
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Swapping: Test Runs

Using octave: if we start with a swap which uses z, like

[z :=x]5 [x :=y% [y :=2°
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Swapping: Test Runs
Using octave: if we start with a swap which uses z, like

[z :=x]% [x :=y]% [y :=2]°

represented by )\ given as:
0 000O0O1O0OO0OOOOODO
01 00O0O0OO0OOOOOOO
0000O1O0O0OO0OO0OOOOODO
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Swapping: Test Runs
Using octave: if we start with a swap which uses z, like
[z :=x% [x :=yP% [y :=2°
represented by )\ given as:
( 0 00 O0O 1

o O O
o O O
o O O
o O O
o O O

o O O
v

0
01 00O0O0O
000O01TO00O

For min @y, we get no change;
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Swapping: Test Runs
Using octave: if we start with a swap which uses z, like
[z :=x% [x :=yP% [y :=2°
represented by )\ given as:
000O0O0OT1TO0OOOOO0OO0ODO
01 00O0OO0OOOOOOO0ODPW
000O010O0OO0OOO0OO0OO0ODO

For min &gy we get no change; but with min &, (after 12
iterations) we get with octave the optimal \;’s:

000O0O0OO0OOOOOT1TOOO
0 00O
10 0O

000O0O0OO0OOT1TO
000O0O0OOOODO
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Swapping: Test Runs
Using octave: if we start with a swap which uses z, like
[z := X% [x :=yP% [y = 2°
represented by )\ given as:
000O0O0OT1TO0OOOOO0OO0ODO
01 00O0OO0OOOOOOO0ODPW
000O010O0OO0OOO0OO0OO0ODO

For min &gy we get no change; but with min &, (after 12
iterations) we get with octave the optimal \;’s:

0 000O0OO0OO0OOOOT1TOODO
0 00O0O0OO0OO0OT1TOOOODO

0 000O0OO0OO0O0OOOT1TO0OODO
This corresponds to the program:

[y == (y+x) mod 2]"°; [x : = (x+y) mod 2% [y : = (y+x) mod 2]'°
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Swapping: Test Runs

For randomly chosen initial values for A;:

74 22 37 .70 .67 .13 93 .69 .30 .88 .08 .52 .80

70 30 .72 84 51 70 .76 47 63 .63 .93 .55 .68
59 49 01 69 22 23 10 .01 .10 22 .03 .55 .11
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Swapping: Test Runs

For randomly chosen initial values for A;:

74 22 37 .70 .67 .13 93 .69 .30 .88 .08 .52 .80

70 30 .72 84 51 70 .76 47 63 .63 .93 .55 .68
59 49 01 69 22 23 10 .01 .10 22 .03 .55 .11

For min &4 (after 9 iterations) we

(

et the optimal \;’s:

0
0
0

o O O
o O O
o O O
o O O
o O O
o O o
o O O
o = O «Q

010
0 0O
010

o O O
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Swapping: Test Runs

For randomly chosen initial values for A;:

74 22 37 .70 .67 .13 93 .69 .30 .88 .08 .52 .80

70 30 .72 84 51 70 .76 47 63 .63 .93 .55 .68
59 49 01 69 22 23 10 .01 .10 22 .03 .55 .11

For min &4 (after 9 iterations) we
0 00O0OD O
0 00O0O0OTD O

0 00O

This corresponds to the program:

et the optimal \;’s:
0
0
0

[y :=(y+x) mod 2]'°; [x :=(x+y) mod 2]8; [y : = (y+x) mod 2]'°

o O O
o = O ©

010
0 0O
010

o O O
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Swapping: Test Runs

For randomly chosen initial values for A;:

74 22 37 .70 .67 .13 93 .69 .30 .88 .08 .52 .80

70 30 .72 84 51 70 .76 47 63 .63 .93 .55 .68
59 49 01 69 22 23 10 .01 .10 22 .03 .55 .11

For min &4 (after 9 iterations) we
0 00O0OD O
0 00O0O0OTD O

0 00O

This corresponds to the program:

et the optimal \;’s:
0
0
0

[y :=(y+x) mod 2]'°; [x :=(x+y) mod 2]8; [y : = (y+x) mod 2]'°

o O O
o = O ©

010
0 0O
010

o O O

For oo we may also get: [z :=x]%; [x :=y]% [y := 2]°.
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