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Classical Dataflow Analysis

The problem could be to identify at any program point the
variables which are live, i.e. which may later be used in an
assignment or test.

There are two phases of a classical LV analysis:
(i) formulation of data-flow equations as set

equations (or more generally over a property
lattice L),

(ii) finding or constructing solutions to these
equations, for example, via a fixed-point
construction.
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Example

Consider a program like:

[x := 1]1;
[y := 2]2;
[x := x + y mod 4]3;
if [x > 2]4 then [z := x ]5 else [z := y ]6 fi

Extract statically the control flow relation – i.e. is it possible to
go from lable ` to label `′?

flow = {(1,2), (2,3), (3,4), (4,5), (4,6)}

Nielson, Nielson, Hankin: Principles of Program Analysis. Springer, 99/05.
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(Local) Transfer Functions

genLV([x := a]`) = FV(a)
genLV([skip]

`) = ∅
genLV([b]

`) = FV(b)

killLV([x := a]`) = {x}
killLV([skip]

`) = ∅
killLV([b]

`) = ∅

f LV
` : P(Var?)→ P(Var?)

f LV
` (X ) = X \ killLV([B]`) ∪ genLV([B]`)
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(Global) Control Flow

Formulate equations based on the control flow (relations):

LVentry(`) = f LV
` (LVexit(`))

LVexit(`) =
⋃

(`,`′)∈flow
LVentry(`

′)

Monotone Framework: Generalise this setting to lattice
equations by using a general property lattice L instead of P(X ).

This also gives ways to effectively construct solutions via
various lattice theoretic concepts (fixed points, worklist, etc.)
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Example

[x := 1]1; [y := 2]2; [x := x + y mod 4]3;
if [x > 2]4 then [z := x ]5 else [z := y ]6 fi

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 6 of 45



Example

[x := 1]1; [y := 2]2; [x := x + y mod 4]3;
if [x > 2]4 then [z := x ]5 else [z := y ]6 fi

Control Flow:

flow = {(1,2), (2,3), (3,4), (4,5), (4,6)}
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Example

[x := 1]1; [y := 2]2; [x := x + y mod 4]3;
if [x > 2]4 then [z := x ]5 else [z := y ]6 fi

Auxiliary Functions:

genLV(`) killLV(`)

1 ∅ {x}
2 ∅ {y}
3 {x , y} {x}
4 {x} ∅
5 {x} {z}
6 {y} {z}
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Example

[x := 1]1; [y := 2]2; [x := x + y mod 4]3;
if [x > 2]4 then [z := x ]5 else [z := y ]6 fi

Equations (over L = P(Var))

LVentry(1) = LVexit(1) \ {x}
LVentry(2) = LVexit(2) \ {y}
LVentry(3) = LVexit(3) \ {x} ∪ {x , y}
LVentry(4) = LVexit(4) ∪ {x}
LVentry(5) = LVexit(5) \ {z} ∪ {x}
LVentry(6) = LVexit(6) \ {z} ∪ {y}
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Example

[x := 1]1; [y := 2]2; [x := x + y mod 4]3;
if [x > 2]4 then [z := x ]5 else [z := y ]6 fi

Equations (over L = P(Var))

LVexit(1) = LVentry(2)
LVexit(2) = LVentry(3)
LVexit(3) = LVentry(4)
LVexit(4) = LVentry(5) ∪ LVentry(6)
LVexit(5) = ∅
LVexit(6) = ∅
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Example

[x := 1]1; [y := 2]2; [x := x + y mod 4]3;
if [x > 2]4 then [z := x ]5 else [z := y ]6 fi

Solutions (e.g. by fixed point iteration)

LVentry(1) = ∅
LVentry(2) = {x}
LVentry(3) = {x , y}
LVentry(4) = {x , y}
LVentry(5) = {x}
LVentry(6) = {y}

LVexit(1) = {x}
LVexit(2) = {x , y}
LVexit(3) = {x , y}
LVexit(4) = {x , y}
LVexit(5) = ∅
LVexit(6) = ∅.
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A Probabilistic Language (Variation)

We consider a simple language with a random assignment
ρ = {〈r1,p1〉, . . . 〈rn,pn〉} (rather than a probabilistic choice).

S ::= skip
| x := e(x1, . . . , xn)
| x ?= ρ
| S1; S2
| if b then S1 else S2 fi
| while b do S od
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Probabilistic Semantics

SOS:
R0 〈stop, s〉⇒1〈stop, s〉

R1 〈skip, s〉⇒1〈stop, s〉

R2 〈v := e, s〉⇒1〈stop, s[v 7→ E(e)s]〉

R3 〈v ?= ρ, s〉⇒ρ(r)〈stop, s[v 7→ r ]〉

. . .

LOS:
. . .

T(〈`1,p, `2〉) = U(x← a)⊗ E(`1, `2) for [x := a]`1

T(〈`1,p, `2〉) = (
∑

i ρ(ri) · U(x← ri))⊗ E(`1, `2) for [x ?= ρ]`1

. . .
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(Local) Transfer Functions (extended)

genLV([x := a]`) = FV(a)
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f LV
` : P(Var?)→ P(Var?)

f LV
` (X ) = X \ killLV([B]`) ∪ genLV([B]`)
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Probabilistic Analysis

In the classical analysis the undecidability of predicates in tests
leads us to consider a conservative approach: Everything is
possible, i.e. tests are treated as non-deterministic choices in
the control flow.

In a probabilistic analysis we aim instead in providing good
(optimal) estimates for branch(ing) probabilities when we
construct the probabilistic control flow.
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Example

Consider, for example, instead of

[x := 1]1;
[y := 2]2;
[x := x + y mod 4]3;
if [x > 2]4 then [z := x ]5 else [z := y ]6 fi

a probabilistic program like:

[x ?= {0,1}]1;
[y ?= {0,1,2,3}]2;
[x := x + y mod 4]3;
if [x > 2]4 then [z := x ]5 else [z := y ]6 fi
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Probabilistic Control Flow and Equations

We can also use the classical control flow relation (as long as
we do not consider a randomised choose statement).

However, we can’t use the same equations, because:
(i) We want to express probabilities of properties not

just (safe approximations) of properties.
(ii) We also need to consider relational aspects, i.e.

correlations e.g. between the sign of variables.
(iii) We would like/need to estimate the branching

probabilities when tests are evaluated.
(iv) We often also need probabilistic versions of the

transfer functions.
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Local Transfer

When we look at the local transfer functions f` then we now
need some probabilistic version of these. For example: given
probability distributions describing the values of x and y , what
is the probability distribution describing possible values of
x + y mod 4.

Possible ways to obtain probabilistic and abstract versions f#`
Construction of a corresponding operator.
Abstraction of the concrete semantics.
Testing and Profiling also give us estimates.
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Probabilistic Abstract Interpretation

For an abstraction A : V(State)→ V(L) we get for a concrete
transfer operator F an abstract, (least-square) optimal estimate
via F# = A†FA in analogy to Abstract Interpretation.

Definition
Let C and D be two Hilbert spaces and A : C → D a bounded
linear map. A bounded linear map A† = G : D → C is the
Moore-Penrose pseudo-inverse of A iff

(i) A ◦G = PA,
(ii) G ◦ A = PG,

where PA and PG denote orthogonal projections onto the
ranges of A and G.
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Branch Probabilities

Definition
Given a program S` with init(S`) = ` and a probability
distribution ρ on State, the probability p`,`′(ρ) that the control is
flowing from ` to `′ is defined as:

p`,`′(ρ) =
∑

s

{
p · ρ(s) | ∃s′ s.t. 〈S`, s〉 ⇒p

〈
S`′ , s′

〉}
.

The branch probabilities thus also depend on an initial
distribution, even for deterministic programs.

One can implement the test b as projections P(b) which filter
out states which do not pass the test.
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Tests and Branch Probabilities (Concrete)

Consider the simple program with x ∈ {0,1,2}

if [x >= 1]1 then [x := x − 1]2 else [skip]3 fi

Then the test b = (x >= 1) is represented by the projection:

P(x >= 1) =

 0 0 0
0 1 0
0 0 1

 and P(x >= 1)⊥ =

 1 0 0
0 0 0
0 0 0


For ρ = {〈0,p0〉 , 〈1,p1〉 , 〈2,p2〉} = (p0,p1,p2) we can compute
the branch(ing) probabilities as ρP(x >= 1) = (0,p1,p2) and

p1,2(ρ) = ‖ρ · P(x >= 1)‖1 = p1 + p2,

for the else branch, with P⊥ = I− P:

p1,3(ρ) = ‖ρ · P⊥(x >= 1)‖1 = p0.
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Abstract Branch Probabilities

If we consider abstract states ρ# ∈ V(L) we need abstract
versions P(b)# of P(b) to compute the branch probabilities.
In doing so we must guarantee that for ρ# = ρA:

ρP(b)A !
= ρ#P#(b)

ρP(b)A !
= ρAP#(b)

P(b)A !
= AP#(b)

Ideally, to get P# if we multiply the last equation from the left
with A−1. However, A is in general not not invertible.
The optimal (least-square) estimate can be obtained via

A†P(b)A = A†AP#(b)
A†P(b)A = P#(b)

We get estimates for the abstract branch probabilities.
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An Example: Prime Numbers are Odd

Consider the following program that counts the prime numbers.

[i := 2]1;
while [i < 100]2 do
if [prime(i)]3 then [p := p + 1]4

else [skip]5 fi;
[i := i + 1]6

od

Essential is the abstract branch probability for [.]3:

P(prime(i))# = A†eP(prime(i))Ae,
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An Example: Abstraction

Test operators:

Pe = (P(even(n)))ii =

{
1 if i = 2k
0 otherwise

Pp = (P(prime(n)))ii =

{
1 if prime(i)
0 otherwise

Abstraction Operators:

(Ae)ij =


1 if i = 2k + 1 ∧ j = 2
1 if i = 2k ∧ j = 1
0 otherwise

(Ap)ij =


1 if prime(i) ∧ j = 2
1 if ¬prime(i) ∧ j = 1
0 otherwise
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An Example: Abstract Branch Probability

For ranges [0, . . . ,n] we get:

A†
e PpAe A†

e P⊥
p Ae A†

p PeAp A†
p P⊥

e Ap

n = 10
(

0.20 0.00
0.00 0.60

) (
0.80 0.00
0.00 0.40

) (
0.25 0.00
0.00 0.67

) (
0.75 0.00
0.00 0.33

)
n = 100

(
0.02 0.00
0.00 0.48

) (
0.98 0.00
0.00 0.52

) (
0.04 0.00
0.00 0.65

) (
0.96 0.00
0.00 0.35

)
n = 1000

(
0.00 0.00
0.00 0.33

) (
1.00 0.00
0.00 0.67

) (
0.01 0.00
0.00 0.60

) (
0.99 0.00
0.00 0.40

)
n = 10000

(
0.00 0.00
0.00 0.25

) (
1.00 0.00
0.00 0.75

) (
0.00 0.00
0.00 0.57

) (
1.00 0.00
0.00 0.43

)

The entries in the upper left corner of A†ePpAe give us the
chances that an even number is also a prime number, etc.

Note that the positive and negative matrices always add up to I.
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Probabilistic Dataflow Equations

Similar to classical DFA we formulate linear equations:

Analysis•(`) = Analysis◦(`) · F
#
`

Analysis◦(`) =

{
ι, if ` ∈ E∑
{Analysis•(`

′) · P(`′, `)# | (`′, `) ∈ F},else

A simpler version can be obtained by static branch prediction:

Analysis◦(`) =
∑
{p`′,` · Analysis•(`

′) | (`′, `) ∈ F}

Abstract branch probabilities, i.e. estimates for the test
operators P(`′, `)#, can be estimated also via a different
analysis Prob, in a first phase before the actual Analysis.
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Live Variable Analysis: Example

Coming back to our previous example and its LV analysis:

[x ?= {0,1}]1; [y ?= {0,1,2,3}]2; [x := x + y mod 4]3;
if [x > 2]4 then [z := x ]5 else [z := y ]6 fi

Consider two properties d for ‘dead’, and l for ‘live’ and the
space V({0,1}) = V({d , l}) = R2 as the property space.

L =

(
0 1
0 1

)
and K =

(
1 0
1 0

)
.

We define the abstract transfers for our four blocks a

F` = FLV
` : V({0,1})⊗|Var| → V({0,1})⊗|Var|
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Transfer Functions for Live Variables

For [x := a]` (with I the identity matrix)

F` =
⊗

xi∈Var
Xi with Xi =


L if xi ∈ FV(a)
K if xi = x ∧ xi 6∈ FV(a)
I otherwise.

and for tests [b]`

F` =
⊗

xi∈Var
Xi with Xi =

{
L if xi ∈ FV(b)
I otherwise.

For [skip]` and [x ?= ρ]` have F` =
⊗

xi∈Var I.
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Preprocessing

We present a LV analysis based essentially on concrete branch
probabilities. That means that in the first phase of the analysis
we will not abstract the values of x and y , we just ignore z all
together.

If the concrete state of each variable is a value in {0,1,2,3},
then the probabilistic state is in V({0,1,2,3})⊗3 = R43

= R64.

The abstraction we use when we compute the concrete branch
probabilities is A = I⊗ I⊗ Af , with Af = (1,1,1,1)t the forgetful
abstraction, i.e. z is ignored. This allows us to reduce the
dimensions of the probabilistic state space from 64 to just 16.
Note that also F#

5 = F#
6 = I.
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(Abstract) Transfer Operators

F#
1 =



1
2 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0
0 1

2 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0

0 0 1
2 0 0 0 1

2 0 0 0 0 0 0 0 0 0
0 0 0 1

2 0 0 0 1
2 0 0 0 0 0 0 0 0

1
2 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0
0 1

2 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0

0 0 1
2 0 0 0 1

2 0 0 0 0 0 0 0 0 0
0 0 0 1

2 0 0 0 1
2 0 0 0 0 0 0 0 0

1
2 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0
0 1

2 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0

0 0 1
2 0 0 0 1

2 0 0 0 0 0 0 0 0 0
0 0 0 1

2 0 0 0 1
2 0 0 0 0 0 0 0 0

1
2 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0
0 1

2 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0

0 0 1
2 0 0 0 1

2 0 0 0 0 0 0 0 0 0
0 0 0 1

2 0 0 0 1
2 0 0 0 0 0 0 0 0


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(Abstract) Transfer Operators

F#
2 =



1
4

1
4

1
4

1
4 0 0 0 0 0 0 0 0 0 0 0 0

1
4

1
4

1
4

1
4 0 0 0 0 0 0 0 0 0 0 0 0

1
4

1
4

1
4

1
4 0 0 0 0 0 0 0 0 0 0 0 0

1
4

1
4

1
4

1
4 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1
4

1
4

1
4

1
4 0 0 0 0 0 0 0 0

0 0 0 0 1
4

1
4

1
4

1
4 0 0 0 0 0 0 0 0

0 0 0 0 1
4

1
4

1
4

1
4 0 0 0 0 0 0 0 0

0 0 0 0 1
4

1
4

1
4

1
4 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
4

1
4

1
4

1
4 0 0 0 0

0 0 0 0 0 0 0 0 1
4

1
4

1
4

1
4 0 0 0 0

0 0 0 0 0 0 0 0 1
4

1
4

1
4

1
4 0 0 0 0

0 0 0 0 0 0 0 0 1
4

1
4

1
4

1
4 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
4

1
4

1
4

1
4

0 0 0 0 0 0 0 0 0 0 0 0 1
4

1
4

1
4

1
4

0 0 0 0 0 0 0 0 0 0 0 0 1
4

1
4

1
4

1
4

0 0 0 0 0 0 0 0 0 0 0 0 1
4

1
4

1
4

1
4



Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 25 of 45



(Abstract) Transfer Operators

F#
3 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0


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(Abstract) Transfer Operators

P#
4 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Probability Equations

The pre-processing probability analysis via equations:

Probentry(1) = ρ

Probentry(2) = Probexit(1)
Probentry(3) = Probexit(2)
Probentry(4) = Probexit(3)

Probentry(5) = Probexit(4) · P#
4

Probentry(6) = Probexit(4) · (I− P#
4 )
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#
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1 · F
#
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#
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#
4

Probentry(6) = ρ · F#
1 · F

#
2 · F

#
3 · P

#
4

We thus have for any ρ that p4,5(ρ) = ‖Probentry(5)‖1 = 1
4 and

p4,6(ρ) = ‖Probentry(6)‖1 = 3
4 .

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 26 of 45



Data Flow Equations

With this information we can formulate the actual LV equations:

LVentry(1) = LVexit(1) · (K⊗ I⊗ I)
LVentry(2) = LVexit(2) · (I⊗ K⊗ I)
LVentry(3) = LVexit(3) · (L⊗ L⊗ I)
LVentry(4) = LVexit(4) · (L⊗ I⊗ I)
LVentry(5) = LVexit(5) · (L⊗ I⊗ K)

LVentry(6) = LVexit(6) · (I⊗ L⊗ K)
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Data Flow Equations

With this information we can formulate the actual LV equations:

LVexit(1) = LVentry(2)
LVexit(2) = LVentry(3)
LVexit(3) = LVentry(4)
LVexit(4) = p4,5LVentry(5) + p4,6LVentry(6)
LVexit(5) = (1,0)⊗ (1,0)⊗ (1,0)
LVexit(6) = (1,0)⊗ (1,0)⊗ (1,0)
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Example: Solution

The solution to the LV equations is then given by:

LVentry(1) = (1,0)⊗ (1,0)⊗ (1,0)
LVentry(2) = (0,1)⊗ (1,0)⊗ (1,0)
LVentry(3) = 0.25 · (0,1)⊗ (0,1)⊗ (1,0) +

+ 0.75 · (0,1)⊗ (0,1)⊗ (1,0)
= (0,1)⊗ (0,1)⊗ (1,0)

LVentry(4) = 0.25 · (0,1)⊗ (1,0)⊗ (1,0) +
+ 0.75 · (0,1)⊗ (0,1)⊗ (1,0)

LVentry(5) = (0,1)⊗ (1,0)⊗ (1,0)
LVentry(6) = (1,0)⊗ (0,1)⊗ (1,0)
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The Moore-Penrose Pseudo-Inverse

Definition
Let C and D be two finite-dimensional vector spaces and
A : C → D a linear map. Then the linear map A† = G : D → C is
the Moore-Penrose pseudo-inverse of A iff A ◦G = PA and
G ◦ A = PG, where PA and PG denote orthogonal projections
onto the ranges of A and G.

Definition
Let A ∈ Rm×n and b ∈ Rm. Then u ∈ Rn is called a least
squares solution to Ax = b if

‖Au− b‖ ≤ ‖Av− b‖, for all v ∈ Rn.

Theorem

Let A ∈ Rm×n and b ∈ Rm. Then A†b is the minimal least
squares solution to Ax = b.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 29 of 45



The Moore-Penrose Pseudo-Inverse

Definition
Let C and D be two finite-dimensional vector spaces and
A : C → D a linear map. Then the linear map A† = G : D → C is
the Moore-Penrose pseudo-inverse of A iff A ◦G = PA and
G ◦ A = PG, where PA and PG denote orthogonal projections
onto the ranges of A and G.

Definition
Let A ∈ Rm×n and b ∈ Rm. Then u ∈ Rn is called a least
squares solution to Ax = b if

‖Au− b‖ ≤ ‖Av− b‖, for all v ∈ Rn.

Theorem

Let A ∈ Rm×n and b ∈ Rm. Then A†b is the minimal least
squares solution to Ax = b.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 29 of 45



The Moore-Penrose Pseudo-Inverse

Definition
Let C and D be two finite-dimensional vector spaces and
A : C → D a linear map. Then the linear map A† = G : D → C is
the Moore-Penrose pseudo-inverse of A iff A ◦G = PA and
G ◦ A = PG, where PA and PG denote orthogonal projections
onto the ranges of A and G.

Definition
Let A ∈ Rm×n and b ∈ Rm. Then u ∈ Rn is called a least
squares solution to Ax = b if

‖Au− b‖ ≤ ‖Av− b‖, for all v ∈ Rn.

Theorem

Let A ∈ Rm×n and b ∈ Rm. Then A†b is the minimal least
squares solution to Ax = b.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 29 of 45



Probabilistic Abstract Interpretation

Probabilistic Abstract Interpretation is based on:
Concrete and abstract domains are linear spaces C, D. . .
Concrete and abstract semantics are linear operators T. . .

The Moore-Penrose pseudo-inverse allows us to construct the
closest (i.e. least square) approximation

T# : D → D of a concrete semantics T : C → C

which we define via the Moore-Penrose pseudo-inverse:

T# = G · T · A = A† · T · A = A ◦ T ◦G.

This gives a “smaller” DTMC via the abstracted generator T#.
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Probabilistic Program Analysis vs Statistics

Probabilistic Program Analysis
Probabilities are given (as values or
parameters):
Calculate properties according to these input
data using the program semantics,
i.e. deduce probabilities of properties from
semantics.

Statistical Analysis
Probabilities and initial states are not known:
Estimate these parameters using
observations of the program behaviour,
i.e. infer execution probabilities by observing
some sample runs.
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Using Statistics

Infer execution probabilities by observing some sample runs.

Identify a random vector y with some measurement results
Identify a model by a vector of parameters β
Construct a matrix X mapping models to the runs
Use X† and y to find a best estimator of the model.

Theorem (Gauss-Markov)
Consider the linear model y = βX + ε with X of full column rank
and ε (fulfilling some conditions) Then the Best Linear
Unbiased Estimator (BLUE) is given by

β̂ = yX†.
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Modular Exponentiation

s := 1;
i := 0;
while i<=w do
if k[i]==1 then

x := (s*x) mod n;
else

r := s;
fi;
s := r*r;
i := i+1;

od;

P.C. Kocher: Cryptanalysis of Diffie-Hellman, RSA, DSS, and
other cryptosystems using timing attacks, CRYPTO ’95.
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Paths and Fronts
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Observing Traces: The DTMC

Consider the following simple DTMC with parameters p and q
in the real interval [0,1]:

0 1p

1− p

1− q

q
Tpq =

(
p 1− p

1− q q

)

This behaviour is essentially the one of the following program:

while (true) do
if (x == 1)

then x ?= {〈0,p〉, 〈1,1− p〉}
else x ?= {〈0,1− q〉, 〈1,q〉}

fi
od
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Observing Traces: Possible Parameters

Instantiating the parameters:

0 1
1

1 T0,1 =

(
0 1
0 1

)

0 11
2

1
2

1 T 1
2 ,1

=

( 1
2

1
2

0 1

)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 36 of 45



Observing Traces: Possible Parameters

Instantiating the parameters:

0 1
1

1 T0,1 =

(
0 1
0 1

)

0 11
2

1
2

1 T 1
2 ,1

=

( 1
2

1
2

0 1

)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 36 of 45



Observing Traces: Possible Parameters

Instantiating the parameters:

0 1
1

1 T0,1 =

(
0 1
0 1

)

0 11
2

1
2

1 T 1
2 ,1

=

( 1
2

1
2

0 1

)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 36 of 45



Observing Traces: Possible Parameters

Instantiating the parameters:

0 1

1

1
2

1
2 T0, 1

2
=

(
0 1
1
2

1
2

)

0 1

1
2

1
2

1
2

1
2 T 1

2 ,
1
2
=

( 1
2

1
2

1
2

1
2

)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 37 of 45



Observing Traces: Possible Parameters

Instantiating the parameters:

0 1

1

1
2

1
2 T0, 1

2
=

(
0 1
1
2

1
2

)

0 1

1
2

1
2

1
2

1
2 T 1

2 ,
1
2
=

( 1
2

1
2

1
2

1
2

)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 37 of 45



Observing Traces: Possible Parameters

Instantiating the parameters:

0 1

1

1
2

1
2 T0, 1

2
=

(
0 1
1
2

1
2

)

0 1

1
2

1
2

1
2

1
2 T 1

2 ,
1
2
=

( 1
2

1
2

1
2

1
2

)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 37 of 45



Identifying the Concrete Model

PAI can be used to this purpose as follows:

Abstract domain: D = V(M), with
M = {〈s,p,q〉 | s ∈ {0,1},p,q ∈ [0,1]}
Concrete domain: C = V(T ) with
T = {0,1}+∞ (execution traces)
Design matrix: G : D → C associates to each instance
model the corresponding distribution on traces
Compute the Moore-Penrose pseudo-inverse G† of G to
calculate the best estimators of the parameters p and q.
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Numerical Experiments

In order to be able to compute an analysis of the system we
considered p,q ∈ {0, 1

2 ,1}, i.e. 9 possible semantics, with
possible initial states either 0 or 1.

D = V({0,1})⊗V({0, 1
2
,1})⊗V({0, 1

2
,1}) = R2⊗R3⊗R3 = R18

Observe traces of a certain length, e.g. traces of length t = 3:

C3 = V({0,1}3) = V({0,1})⊗3 = (R2)⊗8 = R8

Actually, we simulated 10000 executions (with errors) of the
system and observed traces of length t = 10.

C10 = V({0,1}10) = V({0,1})⊗10 = (R2)⊗10 = R1024
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Numerical Experiments: Parameter Space D = R9

s p q
0 0 0
1 0 0
0 1

2 0
1 1

2 0
0 1 0
1 1 0
0 0 1

2
1 0 1

2
0 1

2
1
2

s p q
1 1

2
1
2

0 1 1
2

1 1 1
2

0 0 1
1 0 1
0 1

2 1
1 1

2 1
0 1 1
1 1 1
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Experiments: Trace Space C3 = R8 and C10 = R1024

trace C3
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

trace C10
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 1 1
...

...
...

...
...

...
...

...
...

...
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Experiments: Concretisation G3

G3 =



0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
1
4

1
4

1
2 0 0 0 0 0

0 0 0 0 1
2

1
2 0 0

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1

2
1
2 0 0 0 0

0 0 0 0 0 1
2

1
4

1
4

1
4

1
4

1
4

1
4 0 0 0 0

0 0 0 0 1
4

1
4

1
4

1
4

1 0 0 0 0 0 0 0
0 0 0 0 1

2 0 1
4

1
4

0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
1
4

1
4 0 1

2 0 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1


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Experiments: Regression G†3 (Abstraction)

G†t
3 =



0 − 2
3

11
15 − 1

15 0 0 0 0
0 0 0 0 − 1

15
11
15 − 2

3 0
0 4

3
1
5 − 1

5 0 0 0 0
0 0 0 0 1

3
1
3 − 2

3 0
1
3 − 1

3 0 0 0 0 0 0
0 0 0 0 11

15 − 1
15 − 2

3 0
0 − 2

3
1
3

1
3 0 0 0 0

0 0 0 0 − 1
5

1
5

4
3 0

0 4
3 0 0 0 0 0 0

0 0 0 0 0 0 4
3 0

1
3 − 1

3 0 0 0 0 0 0
0 0 0 0 1

5 − 1
5

4
3 0

0 − 2
3 − 1

15
11
15 0 0 0 0

0 0 0 0 0 0 − 1
3

1
3

0 4
3 − 1

5
1
5 0 0 0 0

0 0 0 0 0 0 − 1
3

1
3

1
3 − 1

3 0 0 0 0 0 0
0 0 0 0 0 0 − 1

3
1
3


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Numerical Experiments for C10

For the model p = 0,q = 1
2 we obtained (for different noise

distortions ε) by observation of the possible traces in 10000 test
runs their (experimental) probability distributions y , y ′ etc. in
R1024 (where yi is the observed frequency of trace i) and from
these estimate the (unknown) parameters via:

yG†
10 = (0, 0, 0, 0, 0, 0, 0.50, 0.49, 0, 0.01, 0, 0, 0, 0, 0, 0, 0, 0)

y ′G†
10 = (0, 0, 0, 0, 0, 0, 0.49, 0.50, 0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0)

y ′′G†
10 = (0, 0, 0, 0, 0, 0, 0.43, 0.43, 0.07, 0.06, 0, 0, 0, 0, 0, 0, 0, 0)

y ′′′G†
10 = (0, 0, 0.01, 0, 0, 0, 0.33, 0.35, 0.16, 0.16, 0, 0, 0, 0, 0, 0, 0, 0)

The distribution y denotes the undistorted case, y ′ the case
with ε = 0.01, y ′′ the case ε = 0.1, and y ′′′ the case ε = 0.25.

The initial state was always chosen with probability 1
2 as the

state 0 or the state 1.
Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 44 of 45



Numerical Experiments for C10

For the model p = 0,q = 1
2 we obtained (for different noise

distortions ε) by observation of the possible traces in 10000 test
runs their (experimental) probability distributions y , y ′ etc. in
R1024 (where yi is the observed frequency of trace i) and from
these estimate the (unknown) parameters via:

yG†
10 = (0, 0, 0, 0, 0, 0, 0.50, 0.49, 0, 0.01, 0, 0, 0, 0, 0, 0, 0, 0)

y ′G†
10 = (0, 0, 0, 0, 0, 0, 0.49, 0.50, 0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0)

y ′′G†
10 = (0, 0, 0, 0, 0, 0, 0.43, 0.43, 0.07, 0.06, 0, 0, 0, 0, 0, 0, 0, 0)

y ′′′G†
10 = (0, 0, 0.01, 0, 0, 0, 0.33, 0.35, 0.16, 0.16, 0, 0, 0, 0, 0, 0, 0, 0)

The distribution y denotes the undistorted case, y ′ the case
with ε = 0.01, y ′′ the case ε = 0.1, and y ′′′ the case ε = 0.25.

The initial state was always chosen with probability 1
2 as the

state 0 or the state 1.
Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 44 of 45



Numerical Experiments for C10

For the model p = 0,q = 1
2 we obtained (for different noise

distortions ε) by observation of the possible traces in 10000 test
runs their (experimental) probability distributions y , y ′ etc. in
R1024 (where yi is the observed frequency of trace i) and from
these estimate the (unknown) parameters via:

yG†
10 = (0, 0, 0, 0, 0, 0, 0.50, 0.49, 0, 0.01, 0, 0, 0, 0, 0, 0, 0, 0)

y ′G†
10 = (0, 0, 0, 0, 0, 0, 0.49, 0.50, 0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0)

y ′′G†
10 = (0, 0, 0, 0, 0, 0, 0.43, 0.43, 0.07, 0.06, 0, 0, 0, 0, 0, 0, 0, 0)

y ′′′G†
10 = (0, 0, 0.01, 0, 0, 0, 0.33, 0.35, 0.16, 0.16, 0, 0, 0, 0, 0, 0, 0, 0)

The distribution y denotes the undistorted case, y ′ the case
with ε = 0.01, y ′′ the case ε = 0.1, and y ′′′ the case ε = 0.25.

The initial state was always chosen with probability 1
2 as the

state 0 or the state 1.
Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 44 of 45



Some References

Di Pierro, Wiklicky: Probabilistic data flow analysis: A
linear equational approach. Proceedings of GandALF’13,
EPTCS, Volume 119, 2013.
Di Pierro, Hankin, Wiklicky: Probabilistic semantics and
analysis. in Formal Methods for Quantitative Aspects of
Programming Languages, LNCS 6155, Springer, 2010.
Di Pierro, Wiklicky: Probabilistic Abstract Intepretation:
From Trace Semantics to DTMC’s via Linear Regression.
LNCS 9560, Springer, 2016.
Nielson, Nielson, Hankin: Principles of Program Analysis.
Springer, 1999/2005.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 45 of 45



Some References

Di Pierro, Wiklicky: Probabilistic data flow analysis: A
linear equational approach. Proceedings of GandALF’13,
EPTCS, Volume 119, 2013.
Di Pierro, Hankin, Wiklicky: Probabilistic semantics and
analysis. in Formal Methods for Quantitative Aspects of
Programming Languages, LNCS 6155, Springer, 2010.
Di Pierro, Wiklicky: Probabilistic Abstract Intepretation:
From Trace Semantics to DTMC’s via Linear Regression.
LNCS 9560, Springer, 2016.
Nielson, Nielson, Hankin: Principles of Program Analysis.
Springer, 1999/2005.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 45 of 45



Some References

Di Pierro, Wiklicky: Probabilistic data flow analysis: A
linear equational approach. Proceedings of GandALF’13,
EPTCS, Volume 119, 2013.
Di Pierro, Hankin, Wiklicky: Probabilistic semantics and
analysis. in Formal Methods for Quantitative Aspects of
Programming Languages, LNCS 6155, Springer, 2010.
Di Pierro, Wiklicky: Probabilistic Abstract Intepretation:
From Trace Semantics to DTMC’s via Linear Regression.
LNCS 9560, Springer, 2016.
Nielson, Nielson, Hankin: Principles of Program Analysis.
Springer, 1999/2005.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 45 of 45



Some References

Di Pierro, Wiklicky: Probabilistic data flow analysis: A
linear equational approach. Proceedings of GandALF’13,
EPTCS, Volume 119, 2013.
Di Pierro, Hankin, Wiklicky: Probabilistic semantics and
analysis. in Formal Methods for Quantitative Aspects of
Programming Languages, LNCS 6155, Springer, 2010.
Di Pierro, Wiklicky: Probabilistic Abstract Intepretation:
From Trace Semantics to DTMC’s via Linear Regression.
LNCS 9560, Springer, 2016.
Nielson, Nielson, Hankin: Principles of Program Analysis.
Springer, 1999/2005.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 45 of 45


