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Approximation and Correctness

Data-flow analyses can be re-formulated in a different scenario
where correctness is guaranteed by construction.

Classically, the theory of Abstract Interpretation allows us to

construct simplified (computable) abstract semantics
construct approximate solutions
obtain the correctness of the approximate solution by
construction.
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Notions of Approximation

In order theoretic structures we are looking for
Safe Approximations

s∗ v s or s v s∗

In quantitative, vector space structures we want
Close Approximations

‖s − s∗‖ = min
x
‖s − x‖
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Example: Function Approximation

Concrete and abstract domain are step-functions on [a,b].
The set of (real-valued) step-function Tn is based on the
sub-division of the interval into n sub-intervals.
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Close Approximations
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Close vs Correct Approximations
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Abstract Interpretation

Some problems may be have too costly solutions or be
uncomputable on a concrete space (complete lattice).
Find abstract descriptions on which computations are easier;
then relate the concrete and abstract solutions.

Definition
Let C = (C,≤) and D = (D,v) be two partially ordered set. If
there are two functions α : C → D and γ : D → C such that for
all c ∈ C and all d ∈ D:

c ≤C γ(d) iff α(c) v d ,

then (C, α, γ,D) form a Galois connection.
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Galois Connections

Definition
Let C = (C,≤C) and D = (D,≤D) be two partially ordered sets
with two order-preserving functions α : C 7→ D and γ : D 7→ C.
Then (C, α, γ,D) form a Galois connection iff

(i) α ◦ γ is reductive i.e. ∀d ∈ D, α ◦ γ(d) ≤D d ,
(ii) γ ◦ α is extensive i.e. ∀c ∈ C, c ≤C γ ◦ α(c).

Proposition

Let (C, α, γ,D) be a Galois connection. Then α and γ are
quasi-inverse, i.e.

(i) α ◦ γ ◦ α = α

(ii) γ ◦ α ◦ γ = γ
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General Construction

A
α //

f
��

A#

γ
oo

f#
��

B
α′

// B#
γ′

oo

Correct approximation:

α′ ◦ f ≤# f# ◦ α.

Induced semantics:

f# = α ◦ f ◦ γ.
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Probabilistic Abstraction Domains

A probabilistic domain is essentially a vector space which
represents the distributions Dist(S) on the state space S of a
probabilistic transition system, i.e. for finite state spaces

V(S) = { (vs)s∈S | vs ∈ R}.

In the finite setting we can identify V(S) with the Hilbert space
`2(S).
The notion of norm is essential for our treatment; we will
consider normed vector spaces.
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Norm and Operator Norm

A norm on a vector space V is a map ‖.‖ : V 7→ R such that for
all v ,w ∈ V and c ∈ C:

‖v‖ ≥ 0 ,
‖v‖ = 0⇔ v = o,
‖cv‖ = |c|‖v‖,
‖v + w‖ ≤ ‖v‖+ ‖w‖,

with o ∈ V the zero vector.

We can always use a norm to define a metric topology on a
vector space via the distance function d(v ,w) = ‖v − w‖.

‖M‖ = sup
v∈V

‖M(v)‖
‖v‖

= sup
‖v‖=1

‖M(v)‖.
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Generalised Inverse

Definition
Let C and D be two finite-dimensional vector spaces and
A : C → D a linear map. Then the linear map A† = G : D → C is
the Moore-Penrose pseudo-inverse of A iff

(i) A ◦G = PA,
(ii) G ◦ A = PG,

where PA and PG denote orthogonal projections onto the
ranges of A and G.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 12 of 1



Least Squares Solutions

Definition
Let A ∈ Rm×n and b ∈ Rm. Then u ∈ Rn is called a least
squares solution to Ax = b if

‖Au− b‖ ≤ ‖Av− b‖, for all v ∈ Rn.

Theorem

Let A ∈ Rm×n and b ∈ Rm. Then A†b is the minimal least
squares solution to Ax = b.
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Orthogonal Projections

Corollary
Let P be a orthogonal projection on a finite dimensional vector
space V. Then for any x ∈ V, Px is the unique closest vector in
V to x wrt the Euclidean norm.
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Extraction Functions

An extraction function η : C 7→ D is a mapping from a set of
values to their descriptions in D.
It is easy to show that

Proposition
Given an extraction function η : C 7→ D, the quadruple
(P(C), αη, γη,P(D)) is a Galois connection with αη and γη
defined by:

αη(C′) = {η(c) | c ∈ C′} and γη(D′) = {v | η(v) ∈ D′}
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Vector Space Lifting

Free vector space construction on a set S:

V(S) = {
∑

xss | xs ∈ R, s ∈ S}

An obvious way to lift an extraction function to a linear map
between vector spaces is to construct the free vector spaces on
C and D and define:

Vector Space lifting: ~α : V(C)→ V(D)

~α(p1 · ~c1 + p2 · ~c2 + . . .) = pi · η(c1) + p2 · η(c2) . . .

Support Set: supp : V(C)→ P(C)

supp(~x) =
{

ci | 〈ci ,pi〉 ∈ ~x and pi 6= 0
}
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Relation with Classical Abstractions

Lemma
Let ~α be a probabilistic abstraction function and let ~γ be its
Moore-Penrose pseudo-inverse.

Then ~γ ◦ ~α is extensive with respect to the inclusion on the
support sets of vectors in V(C), i.e. ∀~x ∈ V(C),

supp(~x) ⊆ supp(~γ ◦ ~α(~x)).

Analogously we can show that ~α ◦ ~γ is reductive. Therefore,

Proposition

(~α,~γ) form a Galois connection wrt the support sets of V(C)
and V(D), ordered by inclusion.
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Examples of Lifted Abstractions

Parity Abstraction operator on V({1, . . . ,n}) (with n even):

Ap =



1 0
0 1
1 0
0 1
...

...
0 1


A†p =

( 2
n 0 2

n 0 . . . 0
0 2

n 0 2
n . . . 2

n

)
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Examples of Lifted Abstractions

Sign Abstraction operator on V({−n, . . . ,0, . . . ,n}):

As =



1 0 0
...

...
...

1 0 0
0 1 0
0 0 1
...

...
...

0 0 1


A†s =

 1
n . . . 1

n 0 0 . . . 0
0 . . . 0 1 0 . . . 0
0 . . . 0 0 1

n . . . 1
n


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Example: Function Approximation (ctd.)

Concrete and abstract domain are step-functions on [a,b].
The set of (real-valued) step-function Tn is based on the
sub-division of the interval into n sub-intervals.

Each step function in Tn corresponds to a vector in Rn, e.g.(
5 5 6 7 8 4 3 2 8 6 6 7 9 8 8 7

)
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Example: Abstraction Matrices

A8 =



1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1


Compute the abstractions of f as fAj .

In a similar way we can also compute the over- and
under-approximation of f in Ti based on the pointwise ordering
and its reverse.
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Example: Abstraction Matrices

G8 =



1
2

1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1
2

1
2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1
2

1
2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1
2

1
2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
2

1
2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1
2

1
2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
2

1
2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2

1
2


Compute the abstractions of f as fAj .

In a similar way we can also compute the over- and
under-approximation of f in Ti based on the pointwise ordering
and its reverse.
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Approximation Estimates

Compute the least square error as

‖f − fAG‖.

‖f − fA8G8‖ = 3.5355
‖f − fA4G4‖ = 5.3151
‖f − fA2G2‖ = 5.9896
‖f − fA1G1‖ = 7.6444
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Concrete Semantics (LOS)

T(P) =
∑

〈i,pij ,j〉∈flow(P)

pij · T(`i , `j),

where

T(`i , `j) = N⊗ E(`i , `j),

with N an operator representing a state update while the
second factor realises the transfer of control from label `i to
label `j .
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Abstract Semantics

Moore-Penrose Pseudo-Inverse of a Tensor Product is:

(A1 ⊗ A2 ⊗ . . .⊗ An)
† = A†1 ⊗ A†2 ⊗ . . .⊗ A†n

Via linearity we can construct T# in the same way as T, i.e

T#(P) =
∑

〈i,pij ,j〉∈F(P)

pij · T#(`i , `j)

with local abstraction of individual variables:

T#(`i , `j) = (A†1Ni1A1)⊗ (A†2Ni2A2)⊗ . . .⊗ (A†v Niv Av )⊗Mij
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Argument

T# = A†TA
= A†(

∑
i,j

T(i , j))A

=
∑
i,j

A†T(i , j)A

=
∑
i,j

(
⊗

k

Ak )
†T(i , j)(

⊗
k

Ak )

=
∑
i,j

(
⊗

k

Ak )
†(
⊗

k

Nik )(
⊗

k

Ak )

=
∑
i,j

⊗
k

(A†kNikAk )
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Parity Analysis

Determine at each program point whether a variable is even or
odd.
Parity Abstraction operator on V({0, . . . ,n}) (with n even):

Ap =



1 0
0 1
1 0
0 1
...

...
0 1


A† =

( 2
n 0 2

n 0 . . . 0
0 2

n 0 2
n . . . 2

n

)
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Example

1: [m← i]1;
2: while [n > 1]2 do
3: [m← m × n]3;
4: [n← n − 1]4

5: od
6: [stop]5
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Example

1: [m← i]1;
2: while [n > 1]2 do
3: [m← m × n]3;
4: [n← n − 1]4

5: od
6: [stop]5

T = U(m← i)⊗ E(1,2)
+ P(n > 1)⊗ E(2,3)
+ P(n ≤ 1)⊗ E(2,5)
+ U(m← m × n)⊗ E(3,4)
+ U(n← n − 1)⊗ E(4,2)
+ I⊗ E(5,5)
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Abstract Semantics

Abstraction: A = Ap ⊗ I, i.e. m abstract (parity) but n concrete.

T# = U#(m← 1)⊗ E(1,2)
+ P#(n > 1)⊗ E(2,3)
+ P#(n ≤ 1)⊗ E(2,5)
+ U#(m← m × n)⊗ E(3,4)
+ U#(n← n − 1)⊗ E(4,2)
+ I# ⊗ E(5,5)
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Abstract Semantics

U#(m← 1) =

=

(
0 1
0 1

)
⊗



1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 . . . 1


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Abstract Semantics

U#(n← n − 1) =

=

(
1 0
0 1

)
⊗



0 0 0 0 . . . 0
1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 0


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Abstract Semantics

P#(n > 1) =

=

(
1 0
0 1

)
⊗



0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1


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Abstract Semantics

P#(n ≤ 1) =

=

(
1 0
0 1

)
⊗



1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 0


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Abstract Semantics

U#(m← m × n) =
(

1 0
0 0

)
⊗



1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1


+

+

(
0 0
1 0

)
⊗



1 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 0 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . .
. . .


+

(
0 0
0 1

)
⊗



0 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . .
. . .


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Implementation

Implementation of concrete and abstract semantics of Factorial
using octave. Ranges: n ∈ {1, . . . ,d} and m ∈ {1, . . . ,d !}.

d dim(T(F )) dim(T#(F ))

2 45 30
3 140 40
4 625 50
5 3630 60
6 25235 70
7 201640 80
8 1814445 90
9 18144050 100

Using uniform initial distributions d0 for n and m.
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Scalablity

The abstract probabilities for m being even or odd when we
execute the abstract program for various d values are:

d even odd
10 0.81818 0.18182

100 0.98019 0.019802
1000 0.99800 0.0019980

10000 0.99980 0.00019998
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Live Variable Analysis

1: [skip]1

2: if [odd(y)]2 then
3: [x ← x + 1]3

4: else
5: [y ← y + 1]4

6: fi
7: [y ← y + 1]5

Classical Analysis: LVentry(2) = {x , y}

Probabilistic Analysis:
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Live Variable Analysis

1: [skip]1

2: if [odd(y)]2 then
3: [x ← x + 1]3

4: else
5: [y ← y + 1]4

6: fi
7: [y ← y + 1]5

Classical Analysis: LVentry(2) = {x , y}

Probabilistic Analysis: LVentry(2) = {〈x , 1
2〉, 〈y ,1〉}
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Live Variable Analysis

1: [y ← 2× x ]1

2: if [odd(y)]2 then
3: [x ← x + 1]3

4: else
5: [y ← y + 1]4

6: fi
7: [y ← y + 1]5

Classical Analysis: LVentry(2) = {x , y}

Probabilistic Analysis: LVentry(2) =
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Live Variable Analysis

1: [y ← 2× x ]1

2: if [odd(y)]2 then
3: [x ← x + 1]3

4: else
5: [y ← y + 1]4

6: fi
7: [y ← y + 1]5

Classical Analysis: LVentry(2) = {x , y}

Probabilistic Analysis: LVentry(2) = {〈y ,1〉}
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Program “Transformation”

1: [y ← 2× x ]1

2: if [odd(y)]2 then
3: [x ← x + 1]3

4: else
5: [y ← y + 1]4

6: fi
7: [y ← y + 1]5

1: [y ← 2× x ]1

2: [choose]2

3: p> : [x ← x +1]3

4: or
5: p⊥ : [y ← y +1]4

6: [y ← y + 1]5

Determine branching probabilities in a first-phase analysis and
utilise this information to perform the actual analysis:

p> = A† · P(b = true) · A and p⊥ = A† · P(b = false) · A
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2: [choose]2

3: p> : [x ← x +1]3

4: or
5: p⊥ : [y ← y +1]4

6: [y ← y + 1]5

Determine branching probabilities in a first-phase analysis and
utilise this information to perform the actual analysis:

p> = A† · P(b = true) · A and p⊥ = A† · P(b = false) · A
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Syntax of pWhile with Pointers

S ::= [skip]`

| [stop]`

| [p ← e]`

| S1; S2
| [choose]` p1 : S1 or p2 : S2
| if [b]` then S1 else S2
| while [b]` do S

p ::= ∗rx with x ∈ Var e ::= a | b | l

a ::= n | p | a1 � a2 l ::= NIL | p | &p

b ::= true | false | p | ¬b | b1 ∨∧b2 | a1 <> a2
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Example

if [(z0 mod 2 = 0)]1 then
[x← &z1]

2; [y← &z2]
3

else
[x← &z2]

4; [y← &z1]
5

fi
[stop]6

[choose]1
1
2 : ([x← &z1]

2; [y← &z2]
3)

or
1
2 : ([x← &z2]

4; [y← &z1]
5)

[stop]6
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Test Operators and Filters

Select a certain value c ∈ Value:

(P(c))ij =

{
1 if i = c = j
0 otherwise.
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Test Operators and Filters

Select a certain value c ∈ Value:

(P(c))ij =

{
1 if i = c = j
0 otherwise.

P(2) =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


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Test Operators and Filters

Select a certain value c ∈ Value:

(P(c))ij =

{
1 if i = c = j
0 otherwise.

Select a certain classical state σ ∈ State:

P(σ) =
v⊗

i=1

P(σ(xi))
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Test Operators and Filters

Select a certain value c ∈ Value:

(P(c))ij =

{
1 if i = c = j
0 otherwise.

Select a certain classical state σ ∈ State:

P(σ) =
v⊗

i=1

P(σ(xi))

P(σ(x1 7→ 2,x2 7→ 4)) =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⊗


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


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Test Operators and Filters

Select a certain value c ∈ Value:

(P(c))ij =

{
1 if i = c = j
0 otherwise.

Select a certain classical state σ ∈ State:

P(σ) =
v⊗

i=1

P(σ(xi))

Select states where expression e = a | b | l evaluates to c:

P(e = c) =
∑
E(e)σ=c

P(σ)
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Selection via Projections

Filtering out relevant configurations, i.e. only those which fulfill
a certain condition. Use diagonal matrix P:

(P)ii =

{
1 if condition holds for ci ∈ Value
0 otherwise.



d1
d2
d3
d4
d5
d6



t

·



0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

 =



0
d2
d3
0
d5
0



t
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Example

if [(z0 mod 2 = 0)]1 then
[x← &z1]

2; [y← &z2]
3

else
[x← &z2]

4; [y← &z1]
5

fi
[stop]6

Var = {x,y,z0,z1,z2}

P(z0 mod 2 6= 0) = I⊗ I⊗


1 0 0 0 . . .
0 0 0 0 . . .
0 0 1 0 . . .
0 0 0 0 . . .
...

...
...

...
. . .

⊗ I⊗ I
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...

...
...

...
. . .
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Update Operators

For all initial values change to constant c ∈ Value:

(U(c))ij =

{
1 if j = c
0 otherwise.

Set value of variable xk ∈ Var to constant c ∈ Value:

U(xk ← c) =

(
k−1⊗
i=1

I

)
⊗ U(c)⊗

(
v⊗

i=k+1

I

)

Set variable xk ∈ Var to value given by expression e = a | b | l :

U(xk ← e) =
∑

c

P(e = c)U(xk ← c)
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Update Operators

For all initial values change to constant c ∈ Value:

(U(c))ij =

{
1 if j = c
0 otherwise.

U(3) =



0 0 1 0 0 . . .
0 0 1 0 0 . . .
0 0 1 0 0 . . .
0 0 1 0 0 . . .
0 0 1 0 0 . . .
...

...
...

...
...

. . .


Set value of variable xk ∈ Var to constant c ∈ Value:

U(xk ← c) =

(
k−1⊗
i=1

I

)
⊗ U(c)⊗

(
v⊗

i=k+1

I

)

Set variable xk ∈ Var to value given by expression e = a | b | l :

U(xk ← e) =
∑

c
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Update for Pointers

For an assignment with a pointer on the l.h.s. we need to
determine recursevly the actual variable p is pointing to:

U(∗rxk ← e) =
∑
xi

P(xk = &xi)U(∗r−1xi ← e)
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Update for Pointers

For an assignment with a pointer on the l.h.s. we need to
determine recursevly the actual variable p is pointing to:

U(∗rxk ← e) =
∑
xi

P(xk = &xi)U(∗r−1xi ← e)

Note that we always get eventually to the base case, i.e. where
p refers to a concrete variable xk and thus the update operator
U(xk ← e) from before.
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Update for Pointers

For an assignment with a pointer on the l.h.s. we need to
determine recursevly the actual variable p is pointing to:

U(∗rxk ← e) =
∑
xi

P(xk = &xi)U(∗r−1xi ← e)

For a pointer of second order with x2 → x1 → x0 we get:

U(∗ ∗ x2 ← 4) =
∑
xi

P(x2 = &xi)U(∗xi ← 4)

U(∗x1 ← 4) =
∑
xi

P(x1 = &xi)U(xi ← 4)

U(x0 ← 4)
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Example

if [(z0 mod 2 = 0)]1 then
[x← &z1]

2; [y← &z2]
3

else
[x← &z2]

4; [y← &z1]
5

fi
[stop]6

P(even(z0))⊗ E(1,2)+
P(odd(z0))⊗ E(1,4)+
U(x← &z1)⊗ E(2,3)+
U(y← &z2)⊗ E(3,6)+
U(x← &z2)⊗ E(4,5)+
U(y← &z1)⊗ E(5,6)+
I⊗ E(6,6)
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Example

[choose]1
1
2 : ([x← &z1]

2; [y← &z2]
3)

or
1
2 : ([x← &z2]

4; [y← &z1]
5)

[stop]6

1
2 · (I⊗ E(1,2))+
1
2 · (I⊗ E(1,4))+
U(x← &z1)⊗ E(2,3)+
U(y← &z2)⊗ E(3,6)+
U(x← &z2)⊗ E(4,5)+
U(y← &z1)⊗ E(5,6)+
I⊗ E(6,6)
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Abstract Branching Probabilities

The abstract tests P# describe the branching probabilities
depending on abstract values.

For example, consider P(n) testing if a variable with values
1, . . . ,n is a prime number.
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Abstract Branching Probabilities

The abstract tests P# describe the branching probabilities
depending on abstract values.

For example, consider P(n) testing if a variable with values
1, . . . ,n is a prime number.

P(8) =



0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0


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Abstract Branching Probabilities

The abstract tests P# describe the branching probabilities
depending on abstract values.

For example, consider P(n) testing if a variable with values
1, . . . ,n is a prime number.

I− P(8) =



1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1


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Abstract Branching Probabilities

The abstract tests P# describe the branching probabilities
depending on abstract values.

For example, consider P(n) testing if a variable with values
1, . . . ,n is a prime number.

Abstraction used could be parity testing for even/odd-ness.

A†pP(5)Ap =

(
0.50000 0.00000
0.00000 0.66667

)

A†p(I− P(5))Ap =

(
0.50000 0.00000
0.00000 0.33333

)
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Abstract Branching Probabilities

The abstract tests P# describe the branching probabilities
depending on abstract values.

For example, consider P(n) testing if a variable with values
1, . . . ,n is a prime number.

Abstraction used could be parity testing for even/odd-ness.

A†pP(10)Ap =

(
0.20000 0.00000
0.00000 0.60000

)
A†p(I− P(10))Ap =

(
0.80000 0.00000
0.00000 0.40000

)
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Abstract Branching Probabilities

The abstract tests P# describe the branching probabilities
depending on abstract values.

For example, consider P(n) testing if a variable with values
1, . . . ,n is a prime number.

Abstraction used could be parity testing for even/odd-ness.

A†pP(100)Ap =

(
0.02000 0.00000
0.00000 0.48000

)
A†p(I− P(100))Ap =

(
0.98000 0.00000
0.00000 0.52000

)
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Abstract Branching Probabilities

The abstract tests P# describe the branching probabilities
depending on abstract values.

For example, consider P(n) testing if a variable with values
1, . . . ,n is a prime number.

Abstraction used could be parity testing for even/odd-ness.

A†pP(1000)Ap =

(
0.00200 0.00000
0.00000 0.33400

)
A†p(I− P(1000))Ap =

(
0.99800 0.00000
0.00000 0.66600

)
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Abstract Branching Probabilities

The abstract tests P# describe the branching probabilities
depending on abstract values.

For example, consider P(n) testing if a variable with values
1, . . . ,n is a prime number.

Abstraction used could be parity testing for even/odd-ness.

A†pP(10000)Ap =

(
0.00020 0.00000
0.00000 0.24560

)
A†p(I− P(10000))Ap =

(
0.99980 0.00000
0.00000 0.75440

)
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Transforming if into choose

Based on the abstract branching probabilities we can replace
tests, e.g. in if’s, by probabilistic choices. In a a first phase, we
need to determine the probabilities of abstract values.

If we have the probabilities of z0 being even or odd we can
compute the probabilities of the then and else branch using
P#. For z0 being even and odd with the same probability:

[choose]1
1
2 : ([x← &z1]

2; [y← &z2]
3)

or
1
2 : ([x← &z2]

4; [y← &z1]
5)

[stop]6
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Transforming if into choose

Based on the abstract branching probabilities we can replace
tests, e.g. in if’s, by probabilistic choices. In a a first phase, we
need to determine the probabilities of abstract values.

If we have the probabilities of z0 being even or odd we can
compute the probabilities of the then and else branch using
P#. For z0 being even and odd with the same probability:

if [(z0 mod 2 = 0)]1 then
[x← &z1]

2; [y← &z2]
3

else
[x← &z2]

4; [y← &z1]
5

fi
[stop]6
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Probabilistic Pointer Analysis

The typical result of a probabilistic pointer analysis is a
so-called points-to matrix: records for every program point the
probability that a pointer refers to particular (other) variable.

Consider again our standard example.

if [(z0 mod 2 = 0)]1 then
[x← &z1]

2; [y← &z2]
3

else
[x← &z2]

4; [y← &z1]
5

fi
[stop]6

Where do x and y point to with what probabilities?
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[x← &z2]

4; [y← &z1]
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Probabilistic Pointer Analysis

The typical result of a probabilistic pointer analysis is a
so-called points-to matrix: records for every program point the
probability that a pointer refers to particular (other) variable.

Consider again our standard example.

if [(z0 mod 2 = 0)]1 then
[x← &z1]

2; [y← &z2]
3

else
[x← &z2]

4; [y← &z1]
5

fi
[stop]6

Where do x and y point to with what probabilities?
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Points-To Matrix vs Points-To Tensor

if [(z0 mod 2 = 0)]1 then
[x← &z1]

2; [y← &z2]
3

else
[x← &z2]

4; [y← &z1]
5

fi
[stop]6

Points-To Matrix

&x &y &z0 &z1 &z2

x 0 0 0 1
2

1
2

y 0 0 0 1
2

1
2
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Points-To Matrix vs Points-To Tensor

if [(z0 mod 2 = 0)]1 then
[x← &z1]

2; [y← &z2]
3

else
[x← &z2]

4; [y← &z1]
5

fi
[stop]6

Points-To Matrix

(0,0,0,
1
2
,
1
2
) — (0,0,0,

1
2
,
1
2
).
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Points-To Matrix vs Points-To Tensor

if [(z0 mod 2 = 0)]1 then
[x← &z1]

2; [y← &z2]
3

else
[x← &z2]

4; [y← &z1]
5

fi
[stop]6

Points-To Matrix

(0,0,0,
1
2
,
1
2
) — (0,0,0,

1
2
,
1
2
).

Points-To Tensor

1
2
· (0,0,0,1,0)⊗ (0,0,0,0,1) +

1
2
· (0,0,0,0,1)⊗ (0,0,0,1,0)
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