
Probabilistic Program Analysis
Probablistic Abstract Interpretation

Alessandra Di Pierro
University of Verona, Italy

alessandra.dipierro@univr.it

Herbert Wiklicky
Imperial College London, UK

herbert@doc.ic.uk

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 1 of 1

mailto:alessandra.dipierro@univr.it
mailto:herbert@doc.ic.uk

Approximation and Correctness

Data-flow analyses can be re-formulated in a different scenario
where correctness is guaranteed by construction.

Classically, the theory of Abstract Interpretation allows us to

construct simplified (computable) abstract semantics
construct approximate solutions
obtain the correctness of the approximate solution by
construction.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 2 of 1

Approximation and Correctness

Data-flow analyses can be re-formulated in a different scenario
where correctness is guaranteed by construction.

Classically, the theory of Abstract Interpretation allows us to

construct simplified (computable) abstract semantics
construct approximate solutions
obtain the correctness of the approximate solution by
construction.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 2 of 1

Approximation and Correctness

Data-flow analyses can be re-formulated in a different scenario
where correctness is guaranteed by construction.

Classically, the theory of Abstract Interpretation allows us to

construct simplified (computable) abstract semantics
construct approximate solutions
obtain the correctness of the approximate solution by
construction.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 2 of 1

Approximation and Correctness

Data-flow analyses can be re-formulated in a different scenario
where correctness is guaranteed by construction.

Classically, the theory of Abstract Interpretation allows us to

construct simplified (computable) abstract semantics
construct approximate solutions
obtain the correctness of the approximate solution by
construction.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 2 of 1

Approximation and Correctness

Data-flow analyses can be re-formulated in a different scenario
where correctness is guaranteed by construction.

Classically, the theory of Abstract Interpretation allows us to

construct simplified (computable) abstract semantics
construct approximate solutions
obtain the correctness of the approximate solution by
construction.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 2 of 1

Notions of Approximation

In order theoretic structures we are looking for
Safe Approximations

s∗ v s or s v s∗

In quantitative, vector space structures we want
Close Approximations

‖s − s∗‖ = min
x
‖s − x‖

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 3 of 1

Notions of Approximation

In order theoretic structures we are looking for
Safe Approximations

s∗ v s or s v s∗

In quantitative, vector space structures we want
Close Approximations

‖s − s∗‖ = min
x
‖s − x‖

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 3 of 1

Example: Function Approximation

Concrete and abstract domain are step-functions on [a,b].
The set of (real-valued) step-function Tn is based on the
sub-division of the interval into n sub-intervals.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 4 of 1

Example: Function Approximation

Concrete and abstract domain are step-functions on [a,b].
The set of (real-valued) step-function Tn is based on the
sub-division of the interval into n sub-intervals.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 4 of 1

Example: Function Approximation

Concrete and abstract domain are step-functions on [a,b].
The set of (real-valued) step-function Tn is based on the
sub-division of the interval into n sub-intervals.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 4 of 1

Close Approximations

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 5 of 1

Close Approximations

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 5 of 1

Close Approximations

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 5 of 1

Close Approximations

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 5 of 1

Close Approximations

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 5 of 1

Close vs Correct Approximations

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 6 of 1

Close vs Correct Approximations

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 6 of 1

Close vs Correct Approximations

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 6 of 1

Close vs Correct Approximations

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 6 of 1

Close vs Correct Approximations

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 6 of 1

Abstract Interpretation

Some problems may be have too costly solutions or be
uncomputable on a concrete space (complete lattice).
Find abstract descriptions on which computations are easier;
then relate the concrete and abstract solutions.

Definition
Let C = (C,≤) and D = (D,v) be two partially ordered set. If
there are two functions α : C → D and γ : D → C such that for
all c ∈ C and all d ∈ D:

c ≤C γ(d) iff α(c) v d ,

then (C, α, γ,D) form a Galois connection.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 7 of 1

Abstract Interpretation

Some problems may be have too costly solutions or be
uncomputable on a concrete space (complete lattice).
Find abstract descriptions on which computations are easier;
then relate the concrete and abstract solutions.

Definition
Let C = (C,≤) and D = (D,v) be two partially ordered set. If
there are two functions α : C → D and γ : D → C such that for
all c ∈ C and all d ∈ D:

c ≤C γ(d) iff α(c) v d ,

then (C, α, γ,D) form a Galois connection.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 7 of 1

Abstract Interpretation

Some problems may be have too costly solutions or be
uncomputable on a concrete space (complete lattice).
Find abstract descriptions on which computations are easier;
then relate the concrete and abstract solutions.

Definition
Let C = (C,≤) and D = (D,v) be two partially ordered set. If
there are two functions α : C → D and γ : D → C such that for
all c ∈ C and all d ∈ D:

c ≤C γ(d) iff α(c) v d ,

then (C, α, γ,D) form a Galois connection.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 7 of 1

Galois Connections

Definition
Let C = (C,≤C) and D = (D,≤D) be two partially ordered sets
with two order-preserving functions α : C 7→ D and γ : D 7→ C.
Then (C, α, γ,D) form a Galois connection iff

(i) α ◦ γ is reductive i.e. ∀d ∈ D, α ◦ γ(d) ≤D d ,
(ii) γ ◦ α is extensive i.e. ∀c ∈ C, c ≤C γ ◦ α(c).

Proposition

Let (C, α, γ,D) be a Galois connection. Then α and γ are
quasi-inverse, i.e.

(i) α ◦ γ ◦ α = α

(ii) γ ◦ α ◦ γ = γ

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 8 of 1

Galois Connections

Definition
Let C = (C,≤C) and D = (D,≤D) be two partially ordered sets
with two order-preserving functions α : C 7→ D and γ : D 7→ C.
Then (C, α, γ,D) form a Galois connection iff

(i) α ◦ γ is reductive i.e. ∀d ∈ D, α ◦ γ(d) ≤D d ,
(ii) γ ◦ α is extensive i.e. ∀c ∈ C, c ≤C γ ◦ α(c).

Proposition

Let (C, α, γ,D) be a Galois connection. Then α and γ are
quasi-inverse, i.e.

(i) α ◦ γ ◦ α = α

(ii) γ ◦ α ◦ γ = γ

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 8 of 1

General Construction

A
α //

f
��

A#

γ
oo

f#
��

B
α′

// B#
γ′

oo

Correct approximation:

α′ ◦ f ≤# f# ◦ α.

Induced semantics:

f# = α ◦ f ◦ γ.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 9 of 1

General Construction

A
α //

f
��

A#

γ
oo

f#
��

B
α′

// B#
γ′

oo

Correct approximation:

α′ ◦ f ≤# f# ◦ α.

Induced semantics:

f# = α ◦ f ◦ γ.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 9 of 1

General Construction

A
α //

f
��

A#

γ
oo

f#
��

B
α′

// B#
γ′

oo

Correct approximation:

α′ ◦ f ≤# f# ◦ α.

Induced semantics:

f# = α ◦ f ◦ γ.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 9 of 1

General Construction

A
α //

f
��

A#

γ
oo

f#
��

B
α′

// B#
γ′

oo

Correct approximation:

α′ ◦ f ≤# f# ◦ α.

Induced semantics:

f# = α ◦ f ◦ γ.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 9 of 1

General Construction

A
α //

f
��

A#

γ
oo

f#
��

B
α′

// B#
γ′

oo

Correct approximation:

α′ ◦ f ≤# f# ◦ α.

Induced semantics:

f# = α ◦ f ◦ γ.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 9 of 1

Probabilistic Abstraction Domains

A probabilistic domain is essentially a vector space which
represents the distributions Dist(S) on the state space S of a
probabilistic transition system, i.e. for finite state spaces

V(S) = { (vs)s∈S | vs ∈ R}.

In the finite setting we can identify V(S) with the Hilbert space
`2(S).
The notion of norm is essential for our treatment; we will
consider normed vector spaces.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 10 of 1

Probabilistic Abstraction Domains

A probabilistic domain is essentially a vector space which
represents the distributions Dist(S) on the state space S of a
probabilistic transition system, i.e. for finite state spaces

V(S) = { (vs)s∈S | vs ∈ R}.

In the finite setting we can identify V(S) with the Hilbert space
`2(S).
The notion of norm is essential for our treatment; we will
consider normed vector spaces.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 10 of 1

Probabilistic Abstraction Domains

A probabilistic domain is essentially a vector space which
represents the distributions Dist(S) on the state space S of a
probabilistic transition system, i.e. for finite state spaces

V(S) = { (vs)s∈S | vs ∈ R}.

In the finite setting we can identify V(S) with the Hilbert space
`2(S).
The notion of norm is essential for our treatment; we will
consider normed vector spaces.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 10 of 1

Probabilistic Abstraction Domains

A probabilistic domain is essentially a vector space which
represents the distributions Dist(S) on the state space S of a
probabilistic transition system, i.e. for finite state spaces

V(S) = { (vs)s∈S | vs ∈ R}.

In the finite setting we can identify V(S) with the Hilbert space
`2(S).
The notion of norm is essential for our treatment; we will
consider normed vector spaces.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 10 of 1

Norm and Operator Norm

A norm on a vector space V is a map ‖.‖ : V 7→ R such that for
all v ,w ∈ V and c ∈ C:

‖v‖ ≥ 0 ,
‖v‖ = 0⇔ v = o,
‖cv‖ = |c|‖v‖,
‖v + w‖ ≤ ‖v‖+ ‖w‖,

with o ∈ V the zero vector.

We can always use a norm to define a metric topology on a
vector space via the distance function d(v ,w) = ‖v − w‖.

‖M‖ = sup
v∈V

‖M(v)‖
‖v‖

= sup
‖v‖=1

‖M(v)‖.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 11 of 1

Norm and Operator Norm

A norm on a vector space V is a map ‖.‖ : V 7→ R such that for
all v ,w ∈ V and c ∈ C:

‖v‖ ≥ 0 ,
‖v‖ = 0⇔ v = o,
‖cv‖ = |c|‖v‖,
‖v + w‖ ≤ ‖v‖+ ‖w‖,

with o ∈ V the zero vector.

We can always use a norm to define a metric topology on a
vector space via the distance function d(v ,w) = ‖v − w‖.

‖M‖ = sup
v∈V

‖M(v)‖
‖v‖

= sup
‖v‖=1

‖M(v)‖.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 11 of 1

Norm and Operator Norm

A norm on a vector space V is a map ‖.‖ : V 7→ R such that for
all v ,w ∈ V and c ∈ C:

‖v‖ ≥ 0 ,
‖v‖ = 0⇔ v = o,
‖cv‖ = |c|‖v‖,
‖v + w‖ ≤ ‖v‖+ ‖w‖,

with o ∈ V the zero vector.

We can always use a norm to define a metric topology on a
vector space via the distance function d(v ,w) = ‖v − w‖.

‖M‖ = sup
v∈V

‖M(v)‖
‖v‖

= sup
‖v‖=1

‖M(v)‖.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 11 of 1

Norm and Operator Norm

A norm on a vector space V is a map ‖.‖ : V 7→ R such that for
all v ,w ∈ V and c ∈ C:

‖v‖ ≥ 0 ,
‖v‖ = 0⇔ v = o,
‖cv‖ = |c|‖v‖,
‖v + w‖ ≤ ‖v‖+ ‖w‖,

with o ∈ V the zero vector.

We can always use a norm to define a metric topology on a
vector space via the distance function d(v ,w) = ‖v − w‖.

‖M‖ = sup
v∈V

‖M(v)‖
‖v‖

= sup
‖v‖=1

‖M(v)‖.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 11 of 1

Norm and Operator Norm

A norm on a vector space V is a map ‖.‖ : V 7→ R such that for
all v ,w ∈ V and c ∈ C:

‖v‖ ≥ 0 ,
‖v‖ = 0⇔ v = o,
‖cv‖ = |c|‖v‖,
‖v + w‖ ≤ ‖v‖+ ‖w‖,

with o ∈ V the zero vector.

We can always use a norm to define a metric topology on a
vector space via the distance function d(v ,w) = ‖v − w‖.

‖M‖ = sup
v∈V

‖M(v)‖
‖v‖

= sup
‖v‖=1

‖M(v)‖.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 11 of 1

Norm and Operator Norm

A norm on a vector space V is a map ‖.‖ : V 7→ R such that for
all v ,w ∈ V and c ∈ C:

‖v‖ ≥ 0 ,
‖v‖ = 0⇔ v = o,
‖cv‖ = |c|‖v‖,
‖v + w‖ ≤ ‖v‖+ ‖w‖,

with o ∈ V the zero vector.

We can always use a norm to define a metric topology on a
vector space via the distance function d(v ,w) = ‖v − w‖.

‖M‖ = sup
v∈V

‖M(v)‖
‖v‖

= sup
‖v‖=1

‖M(v)‖.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 11 of 1

Norm and Operator Norm

A norm on a vector space V is a map ‖.‖ : V 7→ R such that for
all v ,w ∈ V and c ∈ C:

‖v‖ ≥ 0 ,
‖v‖ = 0⇔ v = o,
‖cv‖ = |c|‖v‖,
‖v + w‖ ≤ ‖v‖+ ‖w‖,

with o ∈ V the zero vector.

We can always use a norm to define a metric topology on a
vector space via the distance function d(v ,w) = ‖v − w‖.

‖M‖ = sup
v∈V

‖M(v)‖
‖v‖

= sup
‖v‖=1

‖M(v)‖.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 11 of 1

Norm and Operator Norm

A norm on a vector space V is a map ‖.‖ : V 7→ R such that for
all v ,w ∈ V and c ∈ C:

‖v‖ ≥ 0 ,
‖v‖ = 0⇔ v = o,
‖cv‖ = |c|‖v‖,
‖v + w‖ ≤ ‖v‖+ ‖w‖,

with o ∈ V the zero vector.

We can always use a norm to define a metric topology on a
vector space via the distance function d(v ,w) = ‖v − w‖.

‖M‖ = sup
v∈V

‖M(v)‖
‖v‖

= sup
‖v‖=1

‖M(v)‖.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 11 of 1

Generalised Inverse

Definition
Let C and D be two finite-dimensional vector spaces and
A : C → D a linear map. Then the linear map A† = G : D → C is
the Moore-Penrose pseudo-inverse of A iff

(i) A ◦G = PA,
(ii) G ◦ A = PG,

where PA and PG denote orthogonal projections onto the
ranges of A and G.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 12 of 1

Least Squares Solutions

Definition
Let A ∈ Rm×n and b ∈ Rm. Then u ∈ Rn is called a least
squares solution to Ax = b if

‖Au− b‖ ≤ ‖Av− b‖, for all v ∈ Rn.

Theorem

Let A ∈ Rm×n and b ∈ Rm. Then A†b is the minimal least
squares solution to Ax = b.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 13 of 1

Orthogonal Projections

Corollary
Let P be a orthogonal projection on a finite dimensional vector
space V. Then for any x ∈ V, Px is the unique closest vector in
V to x wrt the Euclidean norm.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 14 of 1

Extraction Functions

An extraction function η : C 7→ D is a mapping from a set of
values to their descriptions in D.
It is easy to show that

Proposition
Given an extraction function η : C 7→ D, the quadruple
(P(C), αη, γη,P(D)) is a Galois connection with αη and γη
defined by:

αη(C′) = {η(c) | c ∈ C′} and γη(D′) = {v | η(v) ∈ D′}

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 15 of 1

Extraction Functions

An extraction function η : C 7→ D is a mapping from a set of
values to their descriptions in D.
It is easy to show that

Proposition
Given an extraction function η : C 7→ D, the quadruple
(P(C), αη, γη,P(D)) is a Galois connection with αη and γη
defined by:

αη(C′) = {η(c) | c ∈ C′} and γη(D′) = {v | η(v) ∈ D′}

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 15 of 1

Extraction Functions

An extraction function η : C 7→ D is a mapping from a set of
values to their descriptions in D.
It is easy to show that

Proposition
Given an extraction function η : C 7→ D, the quadruple
(P(C), αη, γη,P(D)) is a Galois connection with αη and γη
defined by:

αη(C′) = {η(c) | c ∈ C′} and γη(D′) = {v | η(v) ∈ D′}

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 15 of 1

Vector Space Lifting

Free vector space construction on a set S:

V(S) = {
∑

xss | xs ∈ R, s ∈ S}

An obvious way to lift an extraction function to a linear map
between vector spaces is to construct the free vector spaces on
C and D and define:

Vector Space lifting: ~α : V(C)→ V(D)

~α(p1 · ~c1 + p2 · ~c2 + . . .) = pi · η(c1) + p2 · η(c2) . . .

Support Set: supp : V(C)→ P(C)

supp(~x) =
{

ci | 〈ci ,pi〉 ∈ ~x and pi 6= 0
}

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 16 of 1

Vector Space Lifting

Free vector space construction on a set S:

V(S) = {
∑

xss | xs ∈ R, s ∈ S}

An obvious way to lift an extraction function to a linear map
between vector spaces is to construct the free vector spaces on
C and D and define:

Vector Space lifting: ~α : V(C)→ V(D)

~α(p1 · ~c1 + p2 · ~c2 + . . .) = pi · η(c1) + p2 · η(c2) . . .

Support Set: supp : V(C)→ P(C)

supp(~x) =
{

ci | 〈ci ,pi〉 ∈ ~x and pi 6= 0
}

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 16 of 1

Vector Space Lifting

Free vector space construction on a set S:

V(S) = {
∑

xss | xs ∈ R, s ∈ S}

An obvious way to lift an extraction function to a linear map
between vector spaces is to construct the free vector spaces on
C and D and define:

Vector Space lifting: ~α : V(C)→ V(D)

~α(p1 · ~c1 + p2 · ~c2 + . . .) = pi · η(c1) + p2 · η(c2) . . .

Support Set: supp : V(C)→ P(C)

supp(~x) =
{

ci | 〈ci ,pi〉 ∈ ~x and pi 6= 0
}

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 16 of 1

Vector Space Lifting

Free vector space construction on a set S:

V(S) = {
∑

xss | xs ∈ R, s ∈ S}

An obvious way to lift an extraction function to a linear map
between vector spaces is to construct the free vector spaces on
C and D and define:

Vector Space lifting: ~α : V(C)→ V(D)

~α(p1 · ~c1 + p2 · ~c2 + . . .) = pi · η(c1) + p2 · η(c2) . . .

Support Set: supp : V(C)→ P(C)

supp(~x) =
{

ci | 〈ci ,pi〉 ∈ ~x and pi 6= 0
}

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 16 of 1

Relation with Classical Abstractions

Lemma
Let ~α be a probabilistic abstraction function and let ~γ be its
Moore-Penrose pseudo-inverse.

Then ~γ ◦ ~α is extensive with respect to the inclusion on the
support sets of vectors in V(C), i.e. ∀~x ∈ V(C),

supp(~x) ⊆ supp(~γ ◦ ~α(~x)).

Analogously we can show that ~α ◦ ~γ is reductive. Therefore,

Proposition

(~α,~γ) form a Galois connection wrt the support sets of V(C)
and V(D), ordered by inclusion.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 17 of 1

Relation with Classical Abstractions

Lemma
Let ~α be a probabilistic abstraction function and let ~γ be its
Moore-Penrose pseudo-inverse.

Then ~γ ◦ ~α is extensive with respect to the inclusion on the
support sets of vectors in V(C), i.e. ∀~x ∈ V(C),

supp(~x) ⊆ supp(~γ ◦ ~α(~x)).

Analogously we can show that ~α ◦ ~γ is reductive. Therefore,

Proposition

(~α,~γ) form a Galois connection wrt the support sets of V(C)
and V(D), ordered by inclusion.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 17 of 1

Relation with Classical Abstractions

Lemma
Let ~α be a probabilistic abstraction function and let ~γ be its
Moore-Penrose pseudo-inverse.

Then ~γ ◦ ~α is extensive with respect to the inclusion on the
support sets of vectors in V(C), i.e. ∀~x ∈ V(C),

supp(~x) ⊆ supp(~γ ◦ ~α(~x)).

Analogously we can show that ~α ◦ ~γ is reductive. Therefore,

Proposition

(~α,~γ) form a Galois connection wrt the support sets of V(C)
and V(D), ordered by inclusion.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 17 of 1

Examples of Lifted Abstractions

Parity Abstraction operator on V({1, . . . ,n}) (with n even):

Ap =



1 0
0 1
1 0
0 1
...

...
0 1


A†p =

(2
n 0 2

n 0 . . . 0
0 2

n 0 2
n . . . 2

n

)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 18 of 1

Examples of Lifted Abstractions

Parity Abstraction operator on V({1, . . . ,n}) (with n even):

Ap =



1 0
0 1
1 0
0 1
...

...
0 1


A†p =

(2
n 0 2

n 0 . . . 0
0 2

n 0 2
n . . . 2

n

)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 18 of 1

Examples of Lifted Abstractions

Sign Abstraction operator on V({−n, . . . ,0, . . . ,n}):

As =



1 0 0
...

...
...

1 0 0
0 1 0
0 0 1
...

...
...

0 0 1


A†s =

 1
n . . . 1

n 0 0 . . . 0
0 . . . 0 1 0 . . . 0
0 . . . 0 0 1

n . . . 1
n



Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 18 of 1

Examples of Lifted Abstractions

Sign Abstraction operator on V({−n, . . . ,0, . . . ,n}):

As =



1 0 0
...

...
...

1 0 0
0 1 0
0 0 1
...

...
...

0 0 1


A†s =

 1
n . . . 1

n 0 0 . . . 0
0 . . . 0 1 0 . . . 0
0 . . . 0 0 1

n . . . 1
n



Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 18 of 1

Example: Function Approximation (ctd.)

Concrete and abstract domain are step-functions on [a,b].
The set of (real-valued) step-function Tn is based on the
sub-division of the interval into n sub-intervals.

Each step function in Tn corresponds to a vector in Rn, e.g.(
5 5 6 7 8 4 3 2 8 6 6 7 9 8 8 7

)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 19 of 1

Example: Function Approximation (ctd.)

Concrete and abstract domain are step-functions on [a,b].
The set of (real-valued) step-function Tn is based on the
sub-division of the interval into n sub-intervals.

Each step function in Tn corresponds to a vector in Rn, e.g.(
5 5 6 7 8 4 3 2 8 6 6 7 9 8 8 7

)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 19 of 1

Example: Function Approximation (ctd.)

Concrete and abstract domain are step-functions on [a,b].
The set of (real-valued) step-function Tn is based on the
sub-division of the interval into n sub-intervals.

Each step function in Tn corresponds to a vector in Rn, e.g.(
5 5 6 7 8 4 3 2 8 6 6 7 9 8 8 7

)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 19 of 1

Example: Function Approximation (ctd.)

Concrete and abstract domain are step-functions on [a,b].
The set of (real-valued) step-function Tn is based on the
sub-division of the interval into n sub-intervals.

Each step function in Tn corresponds to a vector in Rn, e.g.

(
5 5 6 7 8 4 3 2 8 6 6 7 9 8 8 7

)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 19 of 1

Example: Function Approximation (ctd.)

Concrete and abstract domain are step-functions on [a,b].
The set of (real-valued) step-function Tn is based on the
sub-division of the interval into n sub-intervals.

Each step function in Tn corresponds to a vector in Rn, e.g.(
5 5 6 7 8 4 3 2 8 6 6 7 9 8 8 7

)
Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 19 of 1

Example: Abstraction Matrices

A8 =



1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1


Compute the abstractions of f as fAj .

In a similar way we can also compute the over- and
under-approximation of f in Ti based on the pointwise ordering
and its reverse.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 20 of 1

Example: Abstraction Matrices

G8 =



1
2

1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1
2

1
2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1
2

1
2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1
2

1
2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
2

1
2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1
2

1
2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
2

1
2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2

1
2


Compute the abstractions of f as fAj .

In a similar way we can also compute the over- and
under-approximation of f in Ti based on the pointwise ordering
and its reverse.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 20 of 1

Example: Abstraction Matrices

Compute the abstractions of f as fAj .

In a similar way we can also compute the over- and
under-approximation of f in Ti based on the pointwise ordering
and its reverse.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 20 of 1

Approximation Estimates

Compute the least square error as

‖f − fAG‖.

‖f − fA8G8‖ = 3.5355
‖f − fA4G4‖ = 5.3151
‖f − fA2G2‖ = 5.9896
‖f − fA1G1‖ = 7.6444

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 21 of 1

Approximation Estimates

Compute the least square error as

‖f − fAG‖.

‖f − fA8G8‖ = 3.5355
‖f − fA4G4‖ = 5.3151
‖f − fA2G2‖ = 5.9896
‖f − fA1G1‖ = 7.6444

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 21 of 1

Concrete Semantics (LOS)

T(P) =
∑

〈i,pij ,j〉∈flow(P)

pij · T(`i , `j),

where

T(`i , `j) = N⊗ E(`i , `j),

with N an operator representing a state update while the
second factor realises the transfer of control from label `i to
label `j .

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 22 of 1

Concrete Semantics (LOS)

T(P) =
∑

〈i,pij ,j〉∈flow(P)

pij · T(`i , `j),

where

T(`i , `j) = N⊗ E(`i , `j),

with N an operator representing a state update while the
second factor realises the transfer of control from label `i to
label `j .

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 22 of 1

Concrete Semantics (LOS)

T(P) =
∑

〈i,pij ,j〉∈flow(P)

pij · T(`i , `j),

where

T(`i , `j) = N⊗ E(`i , `j),

with N an operator representing a state update while the
second factor realises the transfer of control from label `i to
label `j .

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 22 of 1

Abstract Semantics

Moore-Penrose Pseudo-Inverse of a Tensor Product is:

(A1 ⊗ A2 ⊗ . . .⊗ An)
† = A†1 ⊗ A†2 ⊗ . . .⊗ A†n

Via linearity we can construct T# in the same way as T, i.e

T#(P) =
∑

〈i,pij ,j〉∈F(P)

pij · T#(`i , `j)

with local abstraction of individual variables:

T#(`i , `j) = (A†1Ni1A1)⊗ (A†2Ni2A2)⊗ . . .⊗ (A†v Niv Av)⊗Mij

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 23 of 1

Abstract Semantics

Moore-Penrose Pseudo-Inverse of a Tensor Product is:

(A1 ⊗ A2 ⊗ . . .⊗ An)
† = A†1 ⊗ A†2 ⊗ . . .⊗ A†n

Via linearity we can construct T# in the same way as T, i.e

T#(P) =
∑

〈i,pij ,j〉∈F(P)

pij · T#(`i , `j)

with local abstraction of individual variables:

T#(`i , `j) = (A†1Ni1A1)⊗ (A†2Ni2A2)⊗ . . .⊗ (A†v Niv Av)⊗Mij

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 23 of 1

Argument

T# = A†TA
= A†(

∑
i,j

T(i , j))A

=
∑
i,j

A†T(i , j)A

=
∑
i,j

(
⊗

k

Ak)
†T(i , j)(

⊗
k

Ak)

=
∑
i,j

(
⊗

k

Ak)
†(
⊗

k

Nik)(
⊗

k

Ak)

=
∑
i,j

⊗
k

(A†kNikAk)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 24 of 1

Argument

T# = A†TA
= A†(

∑
i,j

T(i , j))A

=
∑
i,j

A†T(i , j)A

=
∑
i,j

(
⊗

k

Ak)
†T(i , j)(

⊗
k

Ak)

=
∑
i,j

(
⊗

k

Ak)
†(
⊗

k

Nik)(
⊗

k

Ak)

=
∑
i,j

⊗
k

(A†kNikAk)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 24 of 1

Argument

T# = A†TA
= A†(

∑
i,j

T(i , j))A

=
∑
i,j

A†T(i , j)A

=
∑
i,j

(
⊗

k

Ak)
†T(i , j)(

⊗
k

Ak)

=
∑
i,j

(
⊗

k

Ak)
†(
⊗

k

Nik)(
⊗

k

Ak)

=
∑
i,j

⊗
k

(A†kNikAk)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 24 of 1

Argument

T# = A†TA
= A†(

∑
i,j

T(i , j))A

=
∑
i,j

A†T(i , j)A

=
∑
i,j

(
⊗

k

Ak)
†T(i , j)(

⊗
k

Ak)

=
∑
i,j

(
⊗

k

Ak)
†(
⊗

k

Nik)(
⊗

k

Ak)

=
∑
i,j

⊗
k

(A†kNikAk)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 24 of 1

Argument

T# = A†TA
= A†(

∑
i,j

T(i , j))A

=
∑
i,j

A†T(i , j)A

=
∑
i,j

(
⊗

k

Ak)
†T(i , j)(

⊗
k

Ak)

=
∑
i,j

(
⊗

k

Ak)
†(
⊗

k

Nik)(
⊗

k

Ak)

=
∑
i,j

⊗
k

(A†kNikAk)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 24 of 1

Argument

T# = A†TA
= A†(

∑
i,j

T(i , j))A

=
∑
i,j

A†T(i , j)A

=
∑
i,j

(
⊗

k

Ak)
†T(i , j)(

⊗
k

Ak)

=
∑
i,j

(
⊗

k

Ak)
†(
⊗

k

Nik)(
⊗

k

Ak)

=
∑
i,j

⊗
k

(A†kNikAk)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 24 of 1

Parity Analysis

Determine at each program point whether a variable is even or
odd.
Parity Abstraction operator on V({0, . . . ,n}) (with n even):

Ap =



1 0
0 1
1 0
0 1
...

...
0 1


A† =

(2
n 0 2

n 0 . . . 0
0 2

n 0 2
n . . . 2

n

)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 25 of 1

Parity Analysis

Determine at each program point whether a variable is even or
odd.
Parity Abstraction operator on V({0, . . . ,n}) (with n even):

Ap =



1 0
0 1
1 0
0 1
...

...
0 1


A† =

(2
n 0 2

n 0 . . . 0
0 2

n 0 2
n . . . 2

n

)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 25 of 1

Example

1: [m← i]1;
2: while [n > 1]2 do
3: [m← m × n]3;
4: [n← n − 1]4

5: od
6: [stop]5

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 26 of 1

Example

1: [m← i]1;
2: while [n > 1]2 do
3: [m← m × n]3;
4: [n← n − 1]4

5: od
6: [stop]5

T = U(m← i)⊗ E(1,2)
+ P(n > 1)⊗ E(2,3)
+ P(n ≤ 1)⊗ E(2,5)
+ U(m← m × n)⊗ E(3,4)
+ U(n← n − 1)⊗ E(4,2)
+ I⊗ E(5,5)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 26 of 1

Example

1: [m← i]1;
2: while [n > 1]2 do
3: [m← m × n]3;
4: [n← n − 1]4

5: od
6: [stop]5

T# = U#(m← i)⊗ E(1,2)
+ P#(n > 1)⊗ E(2,3)
+ P#(n ≤ 1)⊗ E(2,5)
+ U#(m← m × n)⊗ E(3,4)
+ U#(n← n − 1)⊗ E(4,2)
+ I# ⊗ E(5,5)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 26 of 1

Abstract Semantics

Abstraction: A = Ap ⊗ I, i.e. m abstract (parity) but n concrete.

T# = U#(m← 1)⊗ E(1,2)
+ P#(n > 1)⊗ E(2,3)
+ P#(n ≤ 1)⊗ E(2,5)
+ U#(m← m × n)⊗ E(3,4)
+ U#(n← n − 1)⊗ E(4,2)
+ I# ⊗ E(5,5)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 27 of 1

Abstract Semantics

U#(m← 1) =

=

(
0 1
0 1

)
⊗



1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 . . . 1



Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 27 of 1

Abstract Semantics

U#(n← n − 1) =

=

(
1 0
0 1

)
⊗



0 0 0 0 . . . 0
1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 0



Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 27 of 1

Abstract Semantics

P#(n > 1) =

=

(
1 0
0 1

)
⊗



0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1



Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 27 of 1

Abstract Semantics

P#(n ≤ 1) =

=

(
1 0
0 1

)
⊗



1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 0



Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 27 of 1

Abstract Semantics

U#(m← m × n) =
(

1 0
0 0

)
⊗



1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1


+

+

(
0 0
1 0

)
⊗



1 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 0 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . .
. . .


+

(
0 0
0 1

)
⊗



0 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . .
. . .



Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 27 of 1

Implementation

Implementation of concrete and abstract semantics of Factorial
using octave. Ranges: n ∈ {1, . . . ,d} and m ∈ {1, . . . ,d !}.

d dim(T(F)) dim(T#(F))

2 45 30
3 140 40
4 625 50
5 3630 60
6 25235 70
7 201640 80
8 1814445 90
9 18144050 100

Using uniform initial distributions d0 for n and m.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 28 of 1

Implementation

Implementation of concrete and abstract semantics of Factorial
using octave. Ranges: n ∈ {1, . . . ,d} and m ∈ {1, . . . ,d !}.

d dim(T(F)) dim(T#(F))

2 45 30
3 140 40
4 625 50
5 3630 60
6 25235 70
7 201640 80
8 1814445 90
9 18144050 100

Using uniform initial distributions d0 for n and m.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 28 of 1

Scalablity

The abstract probabilities for m being even or odd when we
execute the abstract program for various d values are:

d even odd
10 0.81818 0.18182

100 0.98019 0.019802
1000 0.99800 0.0019980

10000 0.99980 0.00019998

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 29 of 1

Live Variable Analysis

1: [skip]1

2: if [odd(y)]2 then
3: [x ← x + 1]3

4: else
5: [y ← y + 1]4

6: fi
7: [y ← y + 1]5

Classical Analysis: LVentry(2) = {x , y}

Probabilistic Analysis:

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 30 of 1

Live Variable Analysis

1: [skip]1

2: if [odd(y)]2 then
3: [x ← x + 1]3

4: else
5: [y ← y + 1]4

6: fi
7: [y ← y + 1]5

Classical Analysis: LVentry(2) = {x , y}

Probabilistic Analysis:

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 30 of 1

Live Variable Analysis

1: [skip]1

2: if [odd(y)]2 then
3: [x ← x + 1]3

4: else
5: [y ← y + 1]4

6: fi
7: [y ← y + 1]5

Classical Analysis: LVentry(2) = {x , y}

Probabilistic Analysis: LVentry(2) = {〈x , 1
2〉, 〈y ,1〉}

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 30 of 1

Live Variable Analysis

1: [y ← 2× x]1

2: if [odd(y)]2 then
3: [x ← x + 1]3

4: else
5: [y ← y + 1]4

6: fi
7: [y ← y + 1]5

Classical Analysis: LVentry(2) = {x , y}

Probabilistic Analysis: LVentry(2) =

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 30 of 1

Live Variable Analysis

1: [y ← 2× x]1

2: if [odd(y)]2 then
3: [x ← x + 1]3

4: else
5: [y ← y + 1]4

6: fi
7: [y ← y + 1]5

Classical Analysis: LVentry(2) = {x , y}

Probabilistic Analysis: LVentry(2) = {〈y ,1〉}

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 30 of 1

Program “Transformation”

1: [y ← 2× x]1

2: if [odd(y)]2 then
3: [x ← x + 1]3

4: else
5: [y ← y + 1]4

6: fi
7: [y ← y + 1]5

1: [y ← 2× x]1

2: [choose]2

3: p> : [x ← x +1]3

4: or
5: p⊥ : [y ← y +1]4

6: [y ← y + 1]5

Determine branching probabilities in a first-phase analysis and
utilise this information to perform the actual analysis:

p> = A† · P(b = true) · A and p⊥ = A† · P(b = false) · A

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 31 of 1

Program “Transformation”

1: [y ← 2× x]1

2: if [odd(y)]2 then
3: [x ← x + 1]3

4: else
5: [y ← y + 1]4

6: fi
7: [y ← y + 1]5

1: [y ← 2× x]1

2: [choose]2

3: p> : [x ← x +1]3

4: or
5: p⊥ : [y ← y +1]4

6: [y ← y + 1]5

Determine branching probabilities in a first-phase analysis and
utilise this information to perform the actual analysis:

p> = A† · P(b = true) · A and p⊥ = A† · P(b = false) · A

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 31 of 1

Syntax of pWhile with Pointers

S ::= [skip]`

| [stop]`

| [p ← e]`

| S1; S2
| [choose]` p1 : S1 or p2 : S2
| if [b]` then S1 else S2
| while [b]` do S

p ::= ∗rx with x ∈ Var e ::= a | b | l

a ::= n | p | a1 � a2 l ::= NIL | p | &p

b ::= true | false | p | ¬b | b1 ∨∧b2 | a1 <> a2

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 32 of 1

Syntax of pWhile with Pointers

S ::= [skip]`

| [stop]`

| [p ← e]`

| S1; S2
| [choose]` p1 : S1 or p2 : S2
| if [b]` then S1 else S2
| while [b]` do S

p ::= ∗rx with x ∈ Var e ::= a | b | l

a ::= n | p | a1 � a2 l ::= NIL | p | &p

b ::= true | false | p | ¬b | b1 ∨∧b2 | a1 <> a2

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 32 of 1

Syntax of pWhile with Pointers

S ::= [skip]`

| [stop]`

| [p ← e]`

| S1; S2
| [choose]` p1 : S1 or p2 : S2
| if [b]` then S1 else S2
| while [b]` do S

p ::= ∗rx with x ∈ Var e ::= a | b | l

a ::= n | p | a1 � a2 l ::= NIL | p | &p

b ::= true | false | p | ¬b | b1 ∨∧b2 | a1 <> a2

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 32 of 1

Syntax of pWhile with Pointers

S ::= [skip]`

| [stop]`

| [p ← e]`

| S1; S2
| [choose]` p1 : S1 or p2 : S2
| if [b]` then S1 else S2
| while [b]` do S

p ::= ∗rx with x ∈ Var e ::= a | b | l

a ::= n | p | a1 � a2 l ::= NIL | p | &p

b ::= true | false | p | ¬b | b1 ∨∧b2 | a1 <> a2

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 32 of 1

Syntax of pWhile with Pointers

S ::= [skip]`

| [stop]`

| [p ← e]`

| S1; S2
| [choose]` p1 : S1 or p2 : S2
| if [b]` then S1 else S2
| while [b]` do S

p ::= ∗rx with x ∈ Var e ::= a | b | l

a ::= n | p | a1 � a2 l ::= NIL | p | &p

b ::= true | false | p | ¬b | b1 ∨∧b2 | a1 <> a2

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 32 of 1

Syntax of pWhile with Pointers

S ::= [skip]`

| [stop]`

| [p ← e]`

| S1; S2
| [choose]` p1 : S1 or p2 : S2
| if [b]` then S1 else S2
| while [b]` do S

p ::= ∗rx with x ∈ Var e ::= a | b | l

a ::= n | p | a1 � a2 l ::= NIL | p | &p

b ::= true | false | p | ¬b | b1 ∨∧b2 | a1 <> a2

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 32 of 1

Syntax of pWhile with Pointers

S ::= [skip]`

| [stop]`

| [p ← e]`

| S1; S2
| [choose]` p1 : S1 or p2 : S2
| if [b]` then S1 else S2
| while [b]` do S

p ::= ∗rx with x ∈ Var e ::= a | b | l

a ::= n | p | a1 � a2 l ::= NIL | p | &p

b ::= true | false | p | ¬b | b1 ∨∧b2 | a1 <> a2

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 32 of 1

Syntax of pWhile with Pointers

S ::= [skip]`

| [stop]`

| [p ← e]`

| S1; S2
| [choose]` p1 : S1 or p2 : S2
| if [b]` then S1 else S2
| while [b]` do S

p ::= ∗rx with x ∈ Var e ::= a | b | l

a ::= n | p | a1 � a2 l ::= NIL | p | &p

b ::= true | false | p | ¬b | b1 ∨∧b2 | a1 <> a2

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 32 of 1

Syntax of pWhile with Pointers

S ::= [skip]`

| [stop]`

| [p ← e]`

| S1; S2
| [choose]` p1 : S1 or p2 : S2
| if [b]` then S1 else S2
| while [b]` do S

p ::= ∗rx with x ∈ Var e ::= a | b | l

a ::= n | p | a1 � a2 l ::= NIL | p | &p

b ::= true | false | p | ¬b | b1 ∨∧b2 | a1 <> a2

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 32 of 1

Syntax of pWhile with Pointers

S ::= [skip]`

| [stop]`

| [p ← e]`

| S1; S2
| [choose]` p1 : S1 or p2 : S2
| if [b]` then S1 else S2
| while [b]` do S

p ::= ∗rx with x ∈ Var e ::= a | b | l

a ::= n | p | a1 � a2 l ::= NIL | p | &p

b ::= true | false | p | ¬b | b1 ∨∧b2 | a1 <> a2

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 32 of 1

Syntax of pWhile with Pointers

S ::= [skip]`

| [stop]`

| [p ← e]`

| S1; S2
| [choose]` p1 : S1 or p2 : S2
| if [b]` then S1 else S2
| while [b]` do S

p ::= ∗rx with x ∈ Var e ::= a | b | l

a ::= n | p | a1 � a2 l ::= NIL | p | &p

b ::= true | false | p | ¬b | b1 ∨∧b2 | a1 <> a2

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 32 of 1

Syntax of pWhile with Pointers

S ::= [skip]`

| [stop]`

| [p ← e]`

| S1; S2
| [choose]` p1 : S1 or p2 : S2
| if [b]` then S1 else S2
| while [b]` do S

p ::= ∗rx with x ∈ Var e ::= a | b | l

a ::= n | p | a1 � a2 l ::= NIL | p | &p

b ::= true | false | p | ¬b | b1 ∨∧b2 | a1 <> a2

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 32 of 1

Example

if [(z0 mod 2 = 0)]1 then
[x← &z1]

2; [y← &z2]
3

else
[x← &z2]

4; [y← &z1]
5

fi
[stop]6

[choose]1
1
2 : ([x← &z1]

2; [y← &z2]
3)

or
1
2 : ([x← &z2]

4; [y← &z1]
5)

[stop]6

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 33 of 1

Example

if [(z0 mod 2 = 0)]1 then
[x← &z1]

2; [y← &z2]
3

else
[x← &z2]

4; [y← &z1]
5

fi
[stop]6

[choose]1
1
2 : ([x← &z1]

2; [y← &z2]
3)

or
1
2 : ([x← &z2]

4; [y← &z1]
5)

[stop]6

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 33 of 1

Test Operators and Filters

Select a certain value c ∈ Value:

(P(c))ij =

{
1 if i = c = j
0 otherwise.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 34 of 1

Test Operators and Filters

Select a certain value c ∈ Value:

(P(c))ij =

{
1 if i = c = j
0 otherwise.

P(2) =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0



Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 34 of 1

Test Operators and Filters

Select a certain value c ∈ Value:

(P(c))ij =

{
1 if i = c = j
0 otherwise.

Select a certain classical state σ ∈ State:

P(σ) =
v⊗

i=1

P(σ(xi))

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 34 of 1

Test Operators and Filters

Select a certain value c ∈ Value:

(P(c))ij =

{
1 if i = c = j
0 otherwise.

Select a certain classical state σ ∈ State:

P(σ) =
v⊗

i=1

P(σ(xi))

P(σ(x1 7→ 2,x2 7→ 4)) =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⊗


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1



Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 34 of 1

Test Operators and Filters

Select a certain value c ∈ Value:

(P(c))ij =

{
1 if i = c = j
0 otherwise.

Select a certain classical state σ ∈ State:

P(σ) =
v⊗

i=1

P(σ(xi))

Select states where expression e = a | b | l evaluates to c:

P(e = c) =
∑
E(e)σ=c

P(σ)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 34 of 1

Selection via Projections

Filtering out relevant configurations, i.e. only those which fulfill
a certain condition. Use diagonal matrix P:

(P)ii =

{
1 if condition holds for ci ∈ Value
0 otherwise.



d1
d2
d3
d4
d5
d6



t

·



0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

 =



0
d2
d3
0
d5
0



t

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 35 of 1

Selection via Projections

Filtering out relevant configurations, i.e. only those which fulfill
a certain condition. Use diagonal matrix P:

(P)ii =

{
1 if condition holds for ci ∈ Value
0 otherwise.



d1
d2
d3
d4
d5
d6



t

·



0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

 =



0
d2
d3
0
d5
0



t

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 35 of 1

Example

if [(z0 mod 2 = 0)]1 then
[x← &z1]

2; [y← &z2]
3

else
[x← &z2]

4; [y← &z1]
5

fi
[stop]6

Var = {x,y,z0,z1,z2}

P(z0 mod 2 6= 0) = I⊗ I⊗


1 0 0 0 . . .
0 0 0 0 . . .
0 0 1 0 . . .
0 0 0 0 . . .
...

...
...

...
. . .

⊗ I⊗ I

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 36 of 1

Example

if [(z0 mod 2 = 0)]1 then
[x← &z1]

2; [y← &z2]
3

else
[x← &z2]

4; [y← &z1]
5

fi
[stop]6

Var = {x,y,z0,z1,z2}

P(z0 mod 2 = 0) = I⊗ I⊗


0 0 0 0 . . .
0 1 0 0 . . .
0 0 0 0 . . .
0 0 0 1 . . .
...

...
...

...
. . .

⊗ I⊗ I

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 36 of 1

Example

if [(z0 mod 2 = 0)]1 then
[x← &z1]

2; [y← &z2]
3

else
[x← &z2]

4; [y← &z1]
5

fi
[stop]6

Var = {x,y,z0,z1,z2}

P(z0 mod 2 6= 0) = I⊗ I⊗


1 0 0 0 . . .
0 0 0 0 . . .
0 0 1 0 . . .
0 0 0 0 . . .
...

...
...

...
. . .

⊗ I⊗ I

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 36 of 1

Update Operators

For all initial values change to constant c ∈ Value:

(U(c))ij =

{
1 if j = c
0 otherwise.

Set value of variable xk ∈ Var to constant c ∈ Value:

U(xk ← c) =

(
k−1⊗
i=1

I

)
⊗ U(c)⊗

(
v⊗

i=k+1

I

)

Set variable xk ∈ Var to value given by expression e = a | b | l :

U(xk ← e) =
∑

c

P(e = c)U(xk ← c)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 37 of 1

Update Operators

For all initial values change to constant c ∈ Value:

(U(c))ij =

{
1 if j = c
0 otherwise.

U(3) =



0 0 1 0 0 . . .
0 0 1 0 0 . . .
0 0 1 0 0 . . .
0 0 1 0 0 . . .
0 0 1 0 0 . . .
...

...
...

...
...

. . .


Set value of variable xk ∈ Var to constant c ∈ Value:

U(xk ← c) =

(
k−1⊗
i=1

I

)
⊗ U(c)⊗

(
v⊗

i=k+1

I

)

Set variable xk ∈ Var to value given by expression e = a | b | l :

U(xk ← e) =
∑

c

P(e = c)U(xk ← c)Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 37 of 1

Update Operators

For all initial values change to constant c ∈ Value:

(U(c))ij =

{
1 if j = c
0 otherwise.

Set value of variable xk ∈ Var to constant c ∈ Value:

U(xk ← c) =

(
k−1⊗
i=1

I

)
⊗ U(c)⊗

(
v⊗

i=k+1

I

)

Set variable xk ∈ Var to value given by expression e = a | b | l :

U(xk ← e) =
∑

c

P(e = c)U(xk ← c)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 37 of 1

Update Operators

For all initial values change to constant c ∈ Value:

(U(c))ij =

{
1 if j = c
0 otherwise.

Set value of variable xk ∈ Var to constant c ∈ Value:

U(xk ← c) =

(
k−1⊗
i=1

I

)
⊗ U(c)⊗

(
v⊗

i=k+1

I

)

Set variable xk ∈ Var to value given by expression e = a | b | l :

U(xk ← e) =
∑

c

P(e = c)U(xk ← c)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 37 of 1

Update for Pointers

For an assignment with a pointer on the l.h.s. we need to
determine recursevly the actual variable p is pointing to:

U(∗rxk ← e) =
∑
xi

P(xk = &xi)U(∗r−1xi ← e)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 38 of 1

Update for Pointers

For an assignment with a pointer on the l.h.s. we need to
determine recursevly the actual variable p is pointing to:

U(∗rxk ← e) =
∑
xi

P(xk = &xi)U(∗r−1xi ← e)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 38 of 1

Update for Pointers

For an assignment with a pointer on the l.h.s. we need to
determine recursevly the actual variable p is pointing to:

U(∗rxk ← e) =
∑
xi

P(xk = &xi)U(∗r−1xi ← e)

Note that we always get eventually to the base case, i.e. where
p refers to a concrete variable xk and thus the update operator
U(xk ← e) from before.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 38 of 1

Update for Pointers

For an assignment with a pointer on the l.h.s. we need to
determine recursevly the actual variable p is pointing to:

U(∗rxk ← e) =
∑
xi

P(xk = &xi)U(∗r−1xi ← e)

For a pointer of second order with x2 → x1 → x0 we get:

U(∗ ∗ x2 ← 4) =
∑
xi

P(x2 = &xi)U(∗xi ← 4)

U(∗x1 ← 4) =
∑
xi

P(x1 = &xi)U(xi ← 4)

U(x0 ← 4)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 38 of 1

Example

if [(z0 mod 2 = 0)]1 then
[x← &z1]

2; [y← &z2]
3

else
[x← &z2]

4; [y← &z1]
5

fi
[stop]6

P(even(z0))⊗ E(1,2)+
P(odd(z0))⊗ E(1,4)+
U(x← &z1)⊗ E(2,3)+
U(y← &z2)⊗ E(3,6)+
U(x← &z2)⊗ E(4,5)+
U(y← &z1)⊗ E(5,6)+
I⊗ E(6,6)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 39 of 1

Example

[choose]1
1
2 : ([x← &z1]

2; [y← &z2]
3)

or
1
2 : ([x← &z2]

4; [y← &z1]
5)

[stop]6

1
2 · (I⊗ E(1,2))+
1
2 · (I⊗ E(1,4))+
U(x← &z1)⊗ E(2,3)+
U(y← &z2)⊗ E(3,6)+
U(x← &z2)⊗ E(4,5)+
U(y← &z1)⊗ E(5,6)+
I⊗ E(6,6)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 39 of 1

Abstract Branching Probabilities

The abstract tests P# describe the branching probabilities
depending on abstract values.

For example, consider P(n) testing if a variable with values
1, . . . ,n is a prime number.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 40 of 1

Abstract Branching Probabilities

The abstract tests P# describe the branching probabilities
depending on abstract values.

For example, consider P(n) testing if a variable with values
1, . . . ,n is a prime number.

P(8) =



0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0



Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 40 of 1

Abstract Branching Probabilities

The abstract tests P# describe the branching probabilities
depending on abstract values.

For example, consider P(n) testing if a variable with values
1, . . . ,n is a prime number.

I− P(8) =



1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1



Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 40 of 1

Abstract Branching Probabilities

The abstract tests P# describe the branching probabilities
depending on abstract values.

For example, consider P(n) testing if a variable with values
1, . . . ,n is a prime number.

Abstraction used could be parity testing for even/odd-ness.

A†pP(5)Ap =

(
0.50000 0.00000
0.00000 0.66667

)

A†p(I− P(5))Ap =

(
0.50000 0.00000
0.00000 0.33333

)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 40 of 1

Abstract Branching Probabilities

The abstract tests P# describe the branching probabilities
depending on abstract values.

For example, consider P(n) testing if a variable with values
1, . . . ,n is a prime number.

Abstraction used could be parity testing for even/odd-ness.

A†pP(5)Ap =

(
0.50000 0.00000
0.00000 0.66667

)

A†p(I− P(5))Ap =

(
0.50000 0.00000
0.00000 0.33333

)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 40 of 1

Abstract Branching Probabilities

The abstract tests P# describe the branching probabilities
depending on abstract values.

For example, consider P(n) testing if a variable with values
1, . . . ,n is a prime number.

Abstraction used could be parity testing for even/odd-ness.

A†pP(10)Ap =

(
0.20000 0.00000
0.00000 0.60000

)
A†p(I− P(10))Ap =

(
0.80000 0.00000
0.00000 0.40000

)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 40 of 1

Abstract Branching Probabilities

The abstract tests P# describe the branching probabilities
depending on abstract values.

For example, consider P(n) testing if a variable with values
1, . . . ,n is a prime number.

Abstraction used could be parity testing for even/odd-ness.

A†pP(100)Ap =

(
0.02000 0.00000
0.00000 0.48000

)
A†p(I− P(100))Ap =

(
0.98000 0.00000
0.00000 0.52000

)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 40 of 1

Abstract Branching Probabilities

The abstract tests P# describe the branching probabilities
depending on abstract values.

For example, consider P(n) testing if a variable with values
1, . . . ,n is a prime number.

Abstraction used could be parity testing for even/odd-ness.

A†pP(1000)Ap =

(
0.00200 0.00000
0.00000 0.33400

)
A†p(I− P(1000))Ap =

(
0.99800 0.00000
0.00000 0.66600

)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 40 of 1

Abstract Branching Probabilities

The abstract tests P# describe the branching probabilities
depending on abstract values.

For example, consider P(n) testing if a variable with values
1, . . . ,n is a prime number.

Abstraction used could be parity testing for even/odd-ness.

A†pP(10000)Ap =

(
0.00020 0.00000
0.00000 0.24560

)
A†p(I− P(10000))Ap =

(
0.99980 0.00000
0.00000 0.75440

)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 40 of 1

Transforming if into choose

Based on the abstract branching probabilities we can replace
tests, e.g. in if’s, by probabilistic choices. In a a first phase, we
need to determine the probabilities of abstract values.

If we have the probabilities of z0 being even or odd we can
compute the probabilities of the then and else branch using
P#. For z0 being even and odd with the same probability:

[choose]1
1
2 : ([x← &z1]

2; [y← &z2]
3)

or
1
2 : ([x← &z2]

4; [y← &z1]
5)

[stop]6

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 41 of 1

Transforming if into choose

Based on the abstract branching probabilities we can replace
tests, e.g. in if’s, by probabilistic choices. In a a first phase, we
need to determine the probabilities of abstract values.

If we have the probabilities of z0 being even or odd we can
compute the probabilities of the then and else branch using
P#. For z0 being even and odd with the same probability:

[choose]1
1
2 : ([x← &z1]

2; [y← &z2]
3)

or
1
2 : ([x← &z2]

4; [y← &z1]
5)

[stop]6

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 41 of 1

Transforming if into choose

Based on the abstract branching probabilities we can replace
tests, e.g. in if’s, by probabilistic choices. In a a first phase, we
need to determine the probabilities of abstract values.

If we have the probabilities of z0 being even or odd we can
compute the probabilities of the then and else branch using
P#. For z0 being even and odd with the same probability:

[choose]1
1
2 : ([x← &z1]

2; [y← &z2]
3)

or
1
2 : ([x← &z2]

4; [y← &z1]
5)

[stop]6

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 41 of 1

Transforming if into choose

Based on the abstract branching probabilities we can replace
tests, e.g. in if’s, by probabilistic choices. In a a first phase, we
need to determine the probabilities of abstract values.

If we have the probabilities of z0 being even or odd we can
compute the probabilities of the then and else branch using
P#. For z0 being even and odd with the same probability:

if [(z0 mod 2 = 0)]1 then
[x← &z1]

2; [y← &z2]
3

else
[x← &z2]

4; [y← &z1]
5

fi
[stop]6

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 41 of 1

Transforming if into choose

Based on the abstract branching probabilities we can replace
tests, e.g. in if’s, by probabilistic choices. In a a first phase, we
need to determine the probabilities of abstract values.

If we have the probabilities of z0 being even or odd we can
compute the probabilities of the then and else branch using
P#. For z0 being even and odd with the same probability:

[choose]1
1
2 : ([x← &z1]

2; [y← &z2]
3)

or
1
2 : ([x← &z2]

4; [y← &z1]
5)

[stop]6

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 41 of 1

Probabilistic Pointer Analysis

The typical result of a probabilistic pointer analysis is a
so-called points-to matrix: records for every program point the
probability that a pointer refers to particular (other) variable.

Consider again our standard example.

if [(z0 mod 2 = 0)]1 then
[x← &z1]

2; [y← &z2]
3

else
[x← &z2]

4; [y← &z1]
5

fi
[stop]6

Where do x and y point to with what probabilities?

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 42 of 1

Probabilistic Pointer Analysis

The typical result of a probabilistic pointer analysis is a
so-called points-to matrix: records for every program point the
probability that a pointer refers to particular (other) variable.

Consider again our standard example.

if [(z0 mod 2 = 0)]1 then
[x← &z1]

2; [y← &z2]
3

else
[x← &z2]

4; [y← &z1]
5

fi
[stop]6

Where do x and y point to with what probabilities?

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 42 of 1

Probabilistic Pointer Analysis

The typical result of a probabilistic pointer analysis is a
so-called points-to matrix: records for every program point the
probability that a pointer refers to particular (other) variable.

Consider again our standard example.

if [(z0 mod 2 = 0)]1 then
[x← &z1]

2; [y← &z2]
3

else
[x← &z2]

4; [y← &z1]
5

fi
[stop]6

Where do x and y point to with what probabilities?

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 42 of 1

Points-To Matrix vs Points-To Tensor

if [(z0 mod 2 = 0)]1 then
[x← &z1]

2; [y← &z2]
3

else
[x← &z2]

4; [y← &z1]
5

fi
[stop]6

Points-To Matrix

&x &y &z0 &z1 &z2

x 0 0 0 1
2

1
2

y 0 0 0 1
2

1
2

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 43 of 1

Points-To Matrix vs Points-To Tensor

if [(z0 mod 2 = 0)]1 then
[x← &z1]

2; [y← &z2]
3

else
[x← &z2]

4; [y← &z1]
5

fi
[stop]6

Points-To Matrix

(0,0,0,
1
2
,
1
2
) — (0,0,0,

1
2
,
1
2
).

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 43 of 1

Points-To Matrix vs Points-To Tensor

if [(z0 mod 2 = 0)]1 then
[x← &z1]

2; [y← &z2]
3

else
[x← &z2]

4; [y← &z1]
5

fi
[stop]6

Points-To Matrix

(0,0,0,
1
2
,
1
2
) — (0,0,0,

1
2
,
1
2
).

Points-To Tensor

1
2
· (0,0,0,1,0)⊗ (0,0,0,0,1) +

1
2
· (0,0,0,0,1)⊗ (0,0,0,1,0)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 43 of 1

