
Probabilistic Program Analysis
A Probabilistic Language and its Semantics

Alessandra Di Pierro
University of Verona, Italy

alessandra.dipierro@univr.it

Herbert Wiklicky
Imperial College London, UK

herbert@doc.ic.ac.uk

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 1 of 47

Why probabilistic analysis

Analysis of probabilistic programs
Obtaining probabilistic answers from the analysis of
deterministic programs
Compiler optimization via data speculative optimization.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 2 of 47

mailto:alessandra.dipierro@univr.it
mailto:herbert@doc.ic.ac.uk

Probabilistic Analysis

By introducing probability we are able to perform:
Probabilistic program analysis and probabilistic program
analysis.

Analysis of probabilistic programs

May give ‘incorrect’ answers.

Probabilistic analysis of (deterministic) programs

Speculative vs conservative answers.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 3 of 47

A simple example

The two deterministic programs below compute the factorial n!
and the double factorial 2 · n!

m := 1;
while (n>1) do

m := m*n;
n := n-1;

od

m := 2;
while (n>1) do

m := m*n;
n := n-1;

od

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 4 of 47

Classical vs Probabilistic Results

Parity Analysis: Determine at every program point whether a
variable is even or odd.
A safe classical analysis will detect (starting with m and n
“unknown")

that m = 2× n! at the end of the second program is always
even;
that the parity of m is “unknown” at the end of the first
program.

However, it is obvious that m = n! is “nearly always” even.
The purpose of a probabilistic analysis is a formal derivation of
this intuition about the parity of m when the program
terminates.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 5 of 47

Double Factorial: Data-flow Analysis

Consider the abstract values ⊥ ≤ even; ⊥ ≤ odd; odd ≤ >
and even ≤ >.

1 : m 7→ >, n 7→ >
2 : m 7→ even, n 7→ >
3 :
4 :
5 : m 7→ even, n 7→ >

1 : m 7→ >, n 7→ >
2 : m 7→ even, n 7→ >
3 : m 7→ even, n 7→ >
4 : m 7→ even, n 7→ >
5 : m 7→ even, n 7→ >

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 6 of 47

Simple Factorial: Data-flow Analysis

If the loop is not executed we can guarantee that m is odd. If
we execute the loop then the analysis will return > for the parity
of m at label 5.

1 : m 7→ >, n 7→ >
2 : m 7→ odd, n 7→ >
3 :
4 :
5 : m 7→ odd, n 7→ >

1 : m 7→ >, n 7→ >
2 : m 7→ odd, n 7→ >
3 : m 7→ >, n 7→ >
4 : m 7→ >, n 7→ >
5 : m 7→ >, n 7→ >

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 7 of 47

Conservatism of Data-flow Analysis

A policy decision is safe or conservative if it never allows
us to change what the program computes.
Classical data-flow analyses computes solutions according
to a ‘meet-over-all-paths’ approach
This guarantees that any errors are in the safe direction
Safe policies may, unfortunately, cause us to miss some
code improvements that would retain the meaning of the
program

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 8 of 47

Speculative Optimisation

As compilers must always preserve the program semantics,
they are forced to make conservative (i.e. pessimistic)
assumptions. Instead:

Implement a potentially unsafe optimisation
Verify
Recover if necessary

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 9 of 47

Example: Reaching Definitions

A definition d reaches a point p if there is a path from d to p
such that d is not “killed" (i.e. if there is any other definition of x
in the path).
A RD analysis determines for any program point p which
statements that assign, or may assign, a value to a variable x ,
reach p.
Possible uses for code optimisation:

a compiler can determine whether x is a constant at p;
a debugger can determine whether x , used at p, may be
an undefined variable.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 10 of 47

RD: Classical vs Probabilistic

Classical RD analysis assumes that all edges of a flow graph
can be traversed. This assumption may not be true in practice.

if (a == b) statement 1;
else if (a == b) statement 2;

The second statement is actually never reached.

A Probabilistic RD analysis would allow us to use branching
probabilities that could establish that the likelihood of taking the
else path is lower than the if branch.

On this basis one could therefore ‘speculate’ on whether
considering also the unlikely path or not.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 11 of 47

Example: Live Variables

A variable x is live at point p if the value of x at p could be used
along some path in the flow graph starting at p.
A LV analysis determines for any program point p which
variables may be live at the exit from p.
Possible use for code optimisation:

register assignment
register allocation

A Probabilistic LV analysis would make use of branching
probabilities to estimate the likelihood that a certain variable is
later used that could be used to ‘speculate’ on wether to
perform a certain code optimisation or not.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 12 of 47

A Probabilistic Language

We present a simple imperative language with probabilistic
choice.

We will use this language to define
a probabilistic semantics
probabilistic analysis techniques based on it.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 13 of 47

pWhile – Syntax I

Full programs contain optional variable declarations:

P ::= begin S end
| var D begin S end

Declarations are of the form:

r ::= bool
| int
| { c1, . . . , cn }
| { c1 .. cn }

D ::= v : r
| v : r ; D

with ci (integer) constants and r denoting ranges.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 14 of 47

pWhile – Syntax II

The syntax of statements S is as follows:
S ::= stop

| skip
| v := a
| S1; S2
| choose p1 : S1 or p2 : S2 ro
| if b then S1 else S2 fi
| while b do S od

S ::= [stop]`

| [skip]`

| [v := a]`

| S1; S2
| choose` p1 : S1 or p2 : S2 ro
| if [b]` then S1 else S2 fi
| while [b]` do S od

Where the pi are constants, representing choice probabilities.Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 15 of 47

Evaluation of Expressions

σ 3 State = Var→ Z] B

Evaluation E of expressions e in state σ:

E(n)σ = n
E(v)σ = σ(v)

E(a1 � a2)σ = E(a1)σ � E(a2)σ

E(true)σ = tt
E(false)σ = ff
E(not b)σ = ¬E(b)σ

. . . = . . .

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 16 of 47

pWhile – SOS Semantics I

R0 〈skip, σ〉⇒1〈stop, σ〉

R1 〈stop, σ〉⇒1〈stop, σ〉

R2 〈v:=e, σ〉⇒1〈stop, σ[v 7→ E(e)σ]〉

R31
〈S1, σ〉⇒p〈S′1, σ′〉

〈S1;S2, σ〉⇒p〈S′1;S2, σ
′〉

R32
〈S1, σ〉⇒p〈stop, σ′〉
〈S1;S2, σ〉⇒p〈S2, σ

′〉

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 17 of 47

pWhile – SOS Semantics II

R41 〈choose p1 : S1 or p2 : S2, σ〉⇒p1〈S1, σ〉

R42 〈choose p1 : S1 or p2 : S2, σ〉⇒p2〈S2, σ〉

R51 〈if b then S1 else S2, σ〉⇒1〈S1, σ〉 if E(b)σ = tt

R52 〈if b then S1 else S2, σ〉⇒1〈S2, σ〉 if E(b)σ = ff

R61 〈while b do S, σ〉⇒1〈S; while b do S, σ〉 if E(b)σ = tt

R62 〈while b do S, σ〉⇒1〈stop, σ〉 if E(b)σ = ff

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 18 of 47

DTMC

Markov chains behave as transition systems where
nondeterministic choices among successor states are replaced
by probabilistic ones.
Equivalently: the successor state of a state s is chosen
according to a probability distribution d.

d only depends on the current state s, and evolution does not
depend on the history (memoryless property).

The name Discrete Time Markov Chain (DTMC) refers to the
fact that Markov chains are used as a time-abstract model (like
transition systems): each transition is assumed to take a single
time unit.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 19 of 47

DTMC: Formal Definition

Definition
A DTMC is a tuple (S,P, ιin) where

S is a countable, nonempty set of states,
P : S × S 7→ [0,1] is the transition probability function such
that for all s ∈ S ∑

s′∈S

P(s, s′) = 1,

ιin : S 7→ [0,1] is the initial distribution, s.t.
∑

s∈S ιin(s) = 1.

Paths in a DTMC are maximal (i.e. infinite) in the underlying
directed graph.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 20 of 47

DTMC Semantics

Given a pWhile program, consider any enumeration of all its
configurations (= pairs of statements and state)
C1,C2,C3, . . . ∈ Conf. Then

(T)ij =

{
p if Ci = 〈S, σ〉 ⇒p Cj = 〈S′, σ′〉
0 otherwise

is the generator of a Discrete Time Markov Chain.

Transitions are implemented as

dn · T =
∑

i

(dn)i · Tij = dn+1

where di is the probability distribution over Conf at the i th step.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 21 of 47

Example Program

Let us investigate the possible transitions of the following
labelled program (with x ∈ {0,1}):

if [x = 0] then
[x := 0];

else
[x := 1];

fi;
[stop]

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 22 of 47

Example DTMC

〈x = 0, [x = 0]〉 . . .
〈x = 0, [x:=0]〉 . . .
〈x = 0, [x:=1]〉 . . .
〈x = 0, [stop]〉 . . .
〈x = 1, [x = 0]〉 . . .
〈x = 1, [x:=0]〉 . . .
〈x = 1, [x:=1]〉 . . .
〈x = 1, [stop]〉 . . .



0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1



Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 23 of 47

Example Transition

(
0 0 1 0 0 0 0 0

)


0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1


We get:

(
0 0 0 0 0 0 0 1

)
.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 24 of 47

Dataflow Analysis

Dataflow analyses work by calculating an assignment of
abstract states to the edges of a control-flow graph.

Depending on whether the analysis is forward or backward,
either the direct or the inverse control-flow graph of a given
program is used and the calculation takes place by propagating
abstract states across the nodes of the graph in the appropriate
direction.

Probabilistic dataflow analyses work in the same way, but
calculation is carried out by propagating probabilities together
with abstract states.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 25 of 47

An Example

Consider the following program, power, computing the x-th
power of the number stored in y:

[z := 1]1;
while [x > 1]2 do (

[z := z*y]3;
[x := x-1]4);

We have labels(power) = {1,2,3,4}, init(power) = 1, and
final(power) = {2}. The function flow produces the set:

flow(power) = {(1,2), (2,3), (3,4), (4,2)}

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 26 of 47

Flow Graph

[x:=x-1]4

[z:=z*y]3

[x>0]2

[z:=1]1
?

?

?

-

?

?

yes

no

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 27 of 47

Probabilistic Control Flow

Consider the following labelled program:

1: while [z < 100]1 do
2: [choose]2 1

3 : [x:=3]3 or 2
3 : [x:=1]4 ro

3: od
4: [stop]5

Its probabilistic control flow is given by:

flow(P) = {〈1,1,2〉, 〈1,1,5〉, 〈2, 1
3
,3〉, 〈2, 2

3
,4〉, 〈3,1,1〉, 〈4,1,1〉}.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 28 of 47

Init — First Label

init([skip]`) = `

init([stop]`) = `

init([v:=e]`) = `

init(S1;S2) = init(S1)

init([choose]` p1 : S1 or p2 : S2) = `

init(if [b]` then S1 else S2) = `

init(while [b]` do S) = `

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 29 of 47

Final — Last Labels

final([skip]`) = {`}
final([stop]`) = {`}
final([v:=e]`) = {`}

final(S1;S2) = final(S2)

final([choose]` p1 : S1 or p2 : S2) = final(S1) ∪ final(S2)

final(if [b]` then S1 else S2) = final(S1) ∪ final(S2)

final(while [b]` do S) = {`}

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 30 of 47

Flow I — Control Transfer

The probabilistic control flow is defined by the function:

flow : Stmt→ P(Lab× [0,1]× Lab)

flow([skip]`) = ∅
flow([stop]`) = {〈`,1, `〉}
flow([v:=e]`) = ∅

flow(S1;S2) = flow(S1) ∪ flow(S2) ∪
∪ {(`,1, init(S2)) | ` ∈ final(S1)}

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 31 of 47

Flow II — Control Transfer

flow([choose]` p1 : S1 or p2 : S2) = flow(S1) ∪ flow(S2) ∪
∪ {(`,p1, init(S1)), (`,p2, init(S2))}

flow(if [b]` then S1 else S2) = flow(S1) ∪ flow(S2) ∪
∪ {(`,1, init(S1)), (`,1, init(S2))}

flow(while [b]` do S) = flow(S) ∪
∪ {(`,1, init(S))}
∪ {(`′,1, `) | `′ ∈ final(S)}

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 32 of 47

Linear Operator Semantics (LOS)

The matrix representation of the SOS semantics of a pWhile
program is not ‘compositional’.

In order to be able to analyse programs by analysing its parts, a
more useful semantics is one resulting from the composition of
different linear operators each expressing a particular operation
contributing to the overall behaviour of the program.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 33 of 47

The Space of Configurations

For a pWhile program P we can identify configurations with
elements in

Dist(State× Lab) ⊆ V(State× Lab).

Assuming v = |Var| finite,

State = (Z+ B)v = Value1 × Value2 . . .× Valuev

with Valuei = Z or B.

Thus, we can represent the space of configurations as

Dist(Value1 × . . .× Valuev × Lab) ⊆
V(Value1)⊗ . . .⊗ V(Valuev)⊗ V(Lab).

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 34 of 47

Tensor Product

Given a n ×m matrix A and a k × l matrix B:

A =

 a11 . . . a1m
...

. . .
...

an1 . . . anm

 B =

 b11 . . . b1l
...

. . .
...

bk1 . . . bkl


The tensor product A⊗ B is a nk ×ml matrix:

A⊗ B =

 a11B . . . a1mB
...

. . .
...

an1B . . . anmB


Special cases are square matrices (n = m and k = l) and
vectors (row n = k = 1, column m = l = 1).

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 35 of 47

A Linear Operator based on flow

T(P) =
∑

〈i,pij ,j〉∈flow(P)

pij · T(`i , `j),

where

T(`i , `j) = N⊗ E(`i , `j),

with N an operator representing a state update while the
second factor realises the transfer of control from label `i to
label `j .

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 36 of 47

Transfer Operators

T(〈`1,p, `2〉) = I⊗ E(`1, `2) for [skip]`1
T(〈`1,p, `2〉) = U(x← a)⊗ E(`1, `2) for [x← a]`1

T(〈`,p, `t〉) = P(b = true)⊗ E(`, `t) for [b]`

T(〈`,p, `f 〉) = P(b = false)⊗ E(`, `f) for [b]`

T(〈`,pk , `k 〉) = I⊗ E(`, `k) for [choose]`

T(〈`,p, `〉 = I⊗ E(`, `) for [stop]`

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 37 of 47

Projection Operators

Filtering out relevant probabilities, i.e. only for states/values
which fulfill a certain condition. Use diagonal matrix:

(P)ii =

{
1 if condition holds for ci ∈ Value
0 otherwise.



d1
d2
d3
d4
d5
d6



T

·



0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

 =



0
d2
d3
0
d5
0



T

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 38 of 47

Tests and Filters

Select a certain value c ∈ Valuek for variable xk :

(P(c))ij =

{
1 if i = c = j
0 otherwise.

Select a certain classical state σ ∈ State:

P(σ) =
v⊗

i=1

P(σ(xi))

Select states where expression e = a | b evaluates to c:

P(e = c) =
∑
E(e)σ=c

P(σ)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 39 of 47

Updates

Modify the value of variable xk to a constant c ∈ Valuek :

(U(c))ij =

{
1 if j = c
0 otherwise.

Set value of variable xk ∈ Var to constant c ∈ Value:

U(xk ← c) =

(
k−1⊗
i=1

I

)
⊗ U(c)⊗

(
v⊗

i=k+1

I

)

Set value of variable xk ∈ Var to value given by e = a | b:

U(xk ← e) =
∑

c

P(e = c)U(xk ← c)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 40 of 47

An Example
if [x == 0]a then

[x ← 0]b;
else

[x ← 1]c ;
fi;
[stop]d

T(P) = P(x = 0)⊗ E(a,b) +
+ P(x 6= 0)⊗ E(a, c) +
+ U(x ← 0)⊗ E(b,d) +
+ U(x ← 1)⊗ E(c,d) +
+ I⊗ E(d ,d)

T(P) =

(
1 0
0 0

)
⊗ E(a,b) +

+

(
0 0
0 1

)
⊗ E(a, c) +

+

((
1 0
1 0

)
⊗ E(b,d)

)
+

+

((
0 1
0 1

)
⊗ E(c,d)

)
+

+ (I⊗ E(d ,d))

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 41 of 47

An Example

T(P) =

((
1 0
0 0

)
⊗
(0 1 0 0

0 0 0 0
0 0 0 0
0 0 0 0

))
+

((
0 0
0 1

)
⊗
(0 0 1 0

0 0 0 0
0 0 0 0
0 0 0 0

))
+

((
1 0
1 0

)
⊗
(0 0 0 0

0 0 0 1
0 0 0 0
0 0 0 0

))
+

((
0 1
0 1

)
⊗
(0 0 0 0

0 0 0 0
0 0 0 1
0 0 0 0

))
+

((
1 0
0 1

)
⊗
(0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 1

))

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 42 of 47

LOS and DTMC

〈x = 0, [x = 0]〉 . . .
〈x = 0, [x:=0]〉 . . .
〈x = 0, [x:=1]〉 . . .
〈x = 0, [stop]〉 . . .
〈x = 1, [x = 0]〉 . . .
〈x = 1, [x:=0]〉 . . .
〈x = 1, [x:=1]〉 . . .

〈x = 1, [stop]d〉 . . .



0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1



Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 43 of 47

Research Tool: A pWhile Compiler pwc

Written in OCaml produces an octave file c.m which specify
the LOS matrices U, P, etc. for a pWhile program c.pw.

c.pw OCaml

pwc

c.m octave

>...

LOS.m

We can use the interactive interface of octave and definitions
of standard operations in LOS.m to analyse matrices in c.m.

Exploiting sparse matrix representation to handle programs
with about 3 to 5 variables, up to 10 values and program
fragments with something like 20 lines/labels.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 44 of 47

Factorial

Consider the program F for calculating the factorial of n:

var
m : {0..2};
n : {0..2};

begin
m := 1;
while (n>1) do

m := m*n;
n := n-1;

od;
stop; # looping
end

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 45 of 47

Control Flow and LOS for F

flow(F) = {(1,1,2), (2,1,3), (3,1,4), (4,1,2), (2,1,5), (5,1,5)}

T(F) = U(m← 1)⊗ E(1,2) +
P((n > 1))⊗ E(2,3) +
U(m← (m ∗ n))⊗ E(3,4) +
U(n← (n − 1))⊗ E(4,2) +
P((n <= 1))⊗ E(2,5) +
I⊗ E(5,5)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 46 of 47

Introducing PAI

The matrix T(F) is very big already for small n.

n dim(T(F))

2 45× 45
3 140× 140
4 625× 625
5 3630× 3630
6 25235× 25235
7 201640× 201640
8 1814445× 1814445
9 18144050× 18144050

We will show how we can drastically reduce the dimension of
the LOS by using Probabilistic Abstract Interpretation (next
talk).

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 47 of 47

