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Practicalities

Two lecturers for this introductory course:

Herbert Wiklicky
h.wiklicky@imperial.ac.uk

Alessandra Di Pierro
alessandra.dipierro@univr.it

Approximate schedule:
Motivation: Computation and Probability
Syntax and Semantics of a Probabilistic Language
Probabilistic Abstract Interpretation
Probabilistic Data-Flow Analysis
Logic of PAI, Precision, Applications, etc.
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Probability and Computation

Commonly, computations are understood to follow a well
defined (deterministic) set of rules as to obtain a certain result.

There are randomised algorithms which involve an element of
chance or randomness.

Las Vegas Algorithms are randomised algorithms that always
give correct results (with non-deterministic running
time), e.g. QuickSort (with random pivoting).

Monte Carlo Algorithms produce (with deterministic running
time) an output which may be incorrect with a
certain probability, e.g. Buffon’s Needle.
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(Georges-Louis Leclerc, Comte de) Buffon’s Needle

Pr(cross) =
2
π

or π =
2

Pr(cross)
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Information and Security

Side-Channel Attacks (Kocher, 1996)
The problem appears in attacks against public encryption
algorithms like RSA. In (optimised) versions of de/encoding
(using modular exponentation) properties of the secrete key
determine the execution time.

How much information about the secret key is revealed?

Differential Privacy (Dwork, 2006)
In large (statistical) databases an attacker can try to reveal
information about individuals (de-anonymise), e.g. there are
only three under-25 with hair loss registered, and there are two
people getting hair-loss treatment in Bolzano. Andrea is on the
database, 21 and lives in Bozen.

How much information about individuals is revealed?
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Information – A Measure of Surprise

The Entropy of a probability distribution p is:

H(p) = −
∑

p(x) log2(p(x)).

Example (Cover&Thomas)
Consider a Cheltenham Horse Race with 8 horses with winning
chances (1

2 ,
1
4 ,

1
8 ,

1
16 ,

1
64 ,

1
64 ,

1
64 ,

1
64). then the entropy is 2.

Label horses 0,10,110,1110,111100,111101,111110,111111
then we need only only 2 bits in average to report winner.

For equally strong horses (1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8) we have an

entropy of 3, and the minimal message length is also 3 bits.
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A Priori – Surprise vs Prejudice

A father and son are on a fishing trip in the mountains of Wales.
On the way back home their car has a serious accident.

The father is immediately killed and declared dead on the site
of the accident. However, the son is severely injured and driven
by ambulance to the next hospital.

When the son is brought into the operating theatre the surgeon
exclaims "I can’t do this, he is my son."

Scientific American, 1980s
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The Monty Hall Problem

The game show proceeds as follows: First the contestant
is invited to pick one of three doors (behind one is the
prize) but the door is not yet opened.
Instead, the host – legendary Monty Hall – opens one of
the other doors which is empty.
After that the contestant is given a last chance to stick with
his/her door or to switch to the other closed one.
Note that the host (knowing where the prize is) has always
at least one door he can open.
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Optimal Strategy: To Switch or not to Switch
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wi = win behind i pi = pick door i oi = Monty opens door i
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Certainty, Possibility, Probability

Certainty — Determinism
Model: Definite Value
e.g. 2 ∈ N

Possibility — Non-Determinism
Model: Set of Values
e.g. {2,4,6,8,10} ∈ P(N)

Probability — Probabilistic Non-Determinism
Model: Distribution (Measure)
e.g. (0,0, 1

5 ,0,
1
5 ,0, . . .) ∈ V(N)
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Structures: Power Sets

Given a finite set (universe) Ω (of states) we can construct the
power set P(Ω) of Ω easily as:

P(Ω) = {X | X ⊆ Ω}

Ordered by inclusion “⊆” this is the example of a lattice/order.

It can also be seen as the set of functions from S into a two
element set, thus P(Ω) = 2Ω:

P(Ω) = {χ : Ω→ {0,1}}

A priori, no major problems when Ω is (un)countable infinite.
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Structures: Vector Spaces

Vector Spaces = Abelian Additive Group + Quantities

Given a finite set Ω we can construct the (free) vector space
V(Ω) of Ω as a tuple space (with K a field like R or C):

V(Ω) = {〈ω, xω〉 | ω ∈ Ω, xω ∈ K} = {(xω)ω∈Ω | xω ∈ K}

As function spaces V(Ω) and P(Ω) are not so different:

V(Ω) = {v : Ω→ K}

However, there are major topological problems when Ω is
(un)countable infinite.
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Tuple Spaces

Theorem
All finite dimensional vector spaces are isomorphic to the (finite)
Cartesian product of the underlying field Kn (e.g. Rn or Cm).

Finite dimensional vectors can always be represented via their
coordinates with respect to a given base, e.g.

x = (x1, x2, x3, . . . , xn)

y = (y1, y2, y3, . . . , yn)

Algebraic Structure

αx = (αx1, αx2, αx3, . . . , αxn)

x + y = (x1 + y1, x2 + y2, x3 + y3, . . . , xn + yn)
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Probability Theory

Probability theory is concerned with quantifying or measuring
the chances that certain events can happen.

We consider an event space, i.e. a finite set Ω and a set
B ⊆ P(Ω) of measurable sets in Ω which form a Boolean
algebra (based on union, intersection and complement).
For finite sets one can use the power-set B = P(Ω).

Probabilities are then assigned to event sets via a measure, i.e.
a function Pr : B → R or m : B → R or µ : B → R.

Note: For (uncountable) infinite Ω one needs to develop a more
general measure theory [more later].
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Finite Probability Spaces

Consider a finite measurable spaces (Ω,B) with |Ω| = n,

Definition
A probability (measure) Pr : B on (Ω,B) has to fulfill

Pr(Ω) = 1.
0 ≤ Pr(A) ≤ 1 for all A ∈ B.
Pr(A ∪ B) = Pr(A) + Pr(B) for A ∩ B = ∅.

Some further rules (which follow from the axioms above):
Pr(∅) = 0,
Pr(A) = 1− Pr(A),
Pr(A ∪ B) = Pr(A) + Pr(B)− Pr(A ∩ B).
etc.
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Random Distributions

For finite probability spaces (Ω,B,Pr) with |Ω| = n, we can
define a probability (measure) via atoms in ω ∈ Ω.

Definition
A probability distribution is a function p : Ω→ [0,1], with∑

ω∈Ω

P(ω) = 1.

If we enumerate the elements in Ω in some arbitrary way as
Ω = {ω1, ω2, . . . , ωn} then we can also represented p by a (row)
vector in Rn.

p = (p(ω1),p(ω2), . . . ,p(ωn))
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Random Variables

Probability distributions on a finite Ω define a probability
(measure) in the obvious way

Pr(A) =
∑
ω∈A

p(ω).

Definition
A random variable is function X : Ω→ R.

We can represent random variables as (column) vectors in Rn.

Example
Consider a dice. The event space describes the top face of the
dice, i.e. Ω =

{
, , , , ,

}
, define X which

counts the number of eyes, e.g. X
( )

= 5 etc.
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Moments in Probability

Expectation Value. For a random variable X and probability
distribution p we define:

E(X ) =
∑
ω∈Ω

p(ω)X (ω) =
∑

i

piXi = µX

One can show: E(X + Y ) = E(X ) + E(Y ) and E(αX ) = αE(X ).

Example
Consider a (fair) dice and previous random variable X , then

E(X ) = 1
1
6

+ 2
1
6

+ 3
1
6

+ 4
1
6

+ 5
1
6

+ 6
1
6

=
21
6

Variance. For random variable X and distribution p we define:

Var(X ) = E((X − E(X ))2 = E(X 2)− (E(X ))2.

The standard deviation is σX =
√

Var(X ).
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Bayes Theorem and Independence

Given two subsets A and B in a probability space (Ω,B,Pr).
The conditional probability of A given that B has happened is

PrB(A) = Pr(A | B) =
Pr(A ∩ B)

Pr(B)

One can show Bayes Theorem which states:

PrA(B) =
PrB(A)Pr(B)

Pr(A)
=

Pr(A | B)Pr(B)

Pr(A)
= Pr(B | A).

Given two subsets A and B in a probability space (Ω,B,Pr), A
and B are (probabilistically) independent if

Pr(B) = Pr(B | A) =
Pr(A ∩ B)

Pr(A)
or Pr(A ∩ B) = Pr(A)Pr(B).
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Products and Probability

Given two probability spaces (Ω1,Pr1) and (Ω2,Pr2), to keep
things simple use Bi = P(Ωi). We can define a probability Pr on
the cartesian product Ω = Ω1 × Ω2 via:

Pr(〈ω1, ω2〉) = Pr1(ω1)Pr1(ω2)

If Pr1 and Pr2 correspond to probability distributions p1 and p2
and p to Pr then p = p1 ⊗ p2, i.e. the tensor product.

Caveat: Not all distributions on Ω1 × Ω2 are a product.

Example

Consider Ω1 = {0,1} and Ω2 = {z,o} and probability
Pr(〈0, z〉) = Pr(〈1,o〉) = 1

2 and Pr(〈0,o〉) = Pr(〈1, z〉) = 0
cannot be represented as a product p1 ⊗ p2.
However, one can show: p = 1

2(1,0)⊗ (1,0) + 1
2(0,1)⊗ (0,1).
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Tensor/Kronecker Product

Given a n ×m matrix A and a k × l matrix B:

A =

 a11 . . . a1m
...

. . .
...

an1 . . . anm

 B =

 b11 . . . b1l
...

. . .
...

bk1 . . . bkl


The tensor or Kronecker product A⊗ B is a nk ×ml matrix:

A⊗ B =

 a11B . . . a1mB
...

. . .
...

an1B . . . anmB


Special cases are square matrices (n = m and k = l) and
vectors (row n = k = 1, column m = l = 1).
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Correlation

The covariance of two random variables X and Y is:

Cov(X ,Y ) = E((X − E(X ))E((Y − E(Y )) = E(XY )− E(X )E(Y )

The correlation coefficient is ρ(X ,Y ) = Cov(X ,Y )/(σXσY ).

For independent random variables X and Y – i.e. if we have
Pr((X = xj) ∩ (Y = yk )) = Pr(X = xj)Pr(Y = yk ):

E(XY ) = E(X )E(Y ) and Cov(X ,Y ) = ρ(X ,Y ) = 0.

Note that ρ(X ,Y ) = 0 does not imply independence.

Example

Pr(X = x) = 1
3 for x = −1,0,1 and Y = X 2, then ρ(X ,Y ) = 0.
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Random or Stochastic Processes

Definition
A random process (or stochastic process) {Xt | t ∈ T} is a
sequences of random variables Xi .

Depending on the kind of ‘time’ (usually a group or semi-group)
one can distinguish between discrete time processes (with
T = Z or T = N), and continuous time processes (with T = R).

Typically, one can ask, for example, that all Xi in a random
process are identically distributed and independent, i.i.d, e.g.
coin flips or rolling dices.

One can also allow that the Xi ’s depend on all or some previous
Xj , a particular case are Markov processes or chains [more
tomorrow], e.g. random walks.
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process are identically distributed and independent, i.i.d, e.g.
coin flips or rolling dices.

One can also allow that the Xi ’s depend on all or some previous
Xj , a particular case are Markov processes or chains [more
tomorrow], e.g. random walks.
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Discrete Time Markov Chain

Given a finite set of states Ω = {s1, . . . , sr}.

A discrete time Markov chain (DTMC) on Ω is defined via a
stochastic matrix P as a above, i.e. an r × r (square) matrix
with entries 0 ≤ pij ≤ 1 and such that all row sums are equal to
one, i.e. ∑

j

pij = 1.

The entry pij gives the conditional probability that from state si
we go to state sj in one descrete) time step, i.e. T = Z or N.
That is

pij = Pr(Xn+1 = sj | Xn = si)

which is independent of n and also considers only the
next/previous time step (memory-less property).
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Discrete Time Markov Processes

Let P be the transition matrix of a DTMC. The entry in p(n)
ij in

the n-th matrix power Pn gives the probability that the Markov
chain, starting in state si , will be in state sj after exactly n steps.

At any time step we can describe the probabilities of being in a
certain state si by a probability ui . These probabilities define a
probability distribution, i.e. a row vector

u = (u1,u2, · · · ,ur )

such that 0 ≤ ui ≤ 1 and
∑

i

ui = 1.

For any stochastic matrix P and probability distribution u the
multiplication uP is again a probability distribution.
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The Land of Oz

The Land of Oz is blessed with many things, but not by good
weather. They never have two nice days in a row. If they have a
nice day, the chance of rain or snow the next day are the same.
If there is rain or snow the chances are even that the weather
stays the same for the next day. If there is a change from snow
or rain, only half of the time is this a change to a nice day.
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The Land of Oz

From this we obtain the transition probabilities between nice
(N), rainy (R) and snowy (S) days:
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2 88
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The Land of Oz

We can then define the following transition matrix:

P =

 1
2

1
4

1
4

1
2 0 1

2
1
4

1
4

1
2



From Grinstead & Snell: Introduction to Probability, p406;
available as GNU book on http://www.dartmouth.edu/∼chance
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The Land of Oz

Consider the initial probability distributions u = (0,1,0) and
v = (1

3 ,
1
3 ,

1
3) in the Oz Example.

The vector u describes a situation where we are certain that we
start with a nice day (N), while v corresponds to one where we
assume the same chances of having a rainy (R), nice (N) or
snowy (S) day.
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The Land of Oz

Consider the initial probability distributions u = (0,1,0) and
v = (1

3 ,
1
3 ,

1
3) in the Oz Example.

uP =

(
1
2
,0,

1
2

)
uP2 =

(
3
8
,
1
4
,
3
8

)
. . .
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The Land of Oz

Consider the initial probability distributions u = (0,1,0) and
v = (1

3 ,
1
3 ,

1
3) in the Oz Example.

vP0 = (0.33333,0.33333,0.33333)
vP1 = (0.41667,0.16667,0.41667)
vP2 = (0.39583,0.20833,0.39583)
vP3 = (0.40104,0.19792,0.40104)
vP4 = (0.39974,0.20052,0.39974)
· · ·
vP100 = (0.40000,0.20000,0.40000)
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Convention

Note that in the theory of Markov chains one usually is
concerned with probability distributions as row vectors.
Therefore, probability vectors are post-multiplied by the
stochastic matrix P defining a Markov chain.

The usual pre-multiplication could be realised via:

Pu = (utPT )t
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Measure Theory = Infinite Probability

If we have infinite (countable or uncountable) "universes" Ω then
there are a number of problems one has to resolve when we
want to define probabilities Pr(A) or measures µ(A) for A ⊆ Ω.

E.g. consider the real interval [0,1]; it is impossible to have
1 µ(x) > 0 for all x ∈ [0,1], or
2 µ(x) = µ(y) for all x , y ∈ [0,1], and
3 µ([0,1]) = 1 <∞

Similarly, if we consider infinite sequences of events, e.g. coin
flips, then the probability of any particular sequence is zero:

∞∏
i=0

1
2

= lim
i→∞

(
1
2

)n

= 0

Avoid dealing with expressions like
∑∞

i=0 pi and
∏∞

i=0 pi .
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Measurable Spaces

Definition
Given any set Ω. A family σ of sub-sets σ ⊆ P(Ω) is called a
σ-algebra iff

1 ∅ ∈ σ and Ω ∈ σ.

2

∞⋂
i=0

Si ∈ σ for Si ∈ σ (countable).

3 Ω \ S ∈ σ for S ∈ σ.
We say that (Ω, σ) is a measurable space, and S ∈ σ are
measurable sets.

By de Morgan we have also:
∞⋃

i=0

Si ∈ σ for Si ∈ σ (countable).
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Measures and Measurable Functions

Definition
Given a measurable space (Ω, σ) then µ : σ → R+ is a (finite)
measure if

1 µ(∅) = 0 (for µ(Ω) = 1 we have a probability measure).

2 µ(
∞⋃

i=0

Si) =
∞∑

i=0

µ(Si) for Si ∈ σ with Si ∩ Sj = ∅ for i 6= j .

Definition
A function f : Ω→ Ω′ between two measure spaces spaces
(Ω, σ, µ) and (Ω′, τ ′, µ′) is called
measurable iff ∀S ∈ σ′ : f−1(S) ∈ σ.
measure preserving iff ∀S ∈ σ′ also µ′(S′) = µ(f−1(S)).
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Toplological Spaces

Definition
A topological space is a set Ω together with a family of sub-sets
τ ⊆ P(Ω), the topology (of open sets), iff

1 ∅ ∈ τ and Ω ∈ τ .

2

n⋂
i=0

Oi ∈ τ for Oi ∈ τ (finite).

3
⋃
i∈I

Oi ∈ τ for Oi ∈ τ (arbritrary).

The sets O ∈ τ are called open sets. The complements
A = O \O of open sets are closed sets.

One can also define a topology in other ways, e.g. starting with
closed sets (in which case one has finite unions and arbitrary
intersections).
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Generating Measure Spaces

We can always construct a measure space from a base set
B ⊆ P(Ω) (not necessarily from singletons or atoms) and an
appropriate measure µ defined on B.

Generate a unique σ-algebra from B via complements and
countable intersections/unions from sets in B.
The function µ : B → R can be extended to this σ-algebra
in the obvious way (e.g. µ(Ω \ B) = 1− µ(B) etc.)

Example

The Lebesgue measure on [0,1] is defined via the base B =
{[a,b] | a,b ∈ [0,1]}, i.e. all sub-intervals, with µ([a,b]) = b − a
(also base for the standard topology, i.e. Borel measure).

One can use the Axiom of Choice to construct non-measurable
sets X ⊆ [0,1], e.g. Vitali sets, Banach-Tarski paradox
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Measures on Trace Spaces

The set of infinite paths on {0,1} is (uncountable) infinite; every
0/1 sequence is the binary representation of a real in [0,1].

We need to define a measure structure, i.e. σ-algebra, on this
space. This can be done as before by considering as base B.

Definition
Given a (finite) set of states S. A cylinder set of a finite path
π = s0 . . . sn with si ∈ S is the set of all paths s0 . . . sn . . ..

For infinite paths take the σ-algebra generated by all cylinders
with probability Pr(s0 . . . sn) to define a measure space, cf.
Billingsly, Baier & Katoen: Principles of Model Checking.

Caveat: Not all trace sets are generated from cylinder sets, i.e.
there are non-measurable trace properties.
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Integrals

For a measure space (Ω, σ, µ) one can define integral(s) for
random variables, i.e. functions X or f , on Ω:

E(f ) =

∫
Ω

f (ω)dµ(ω)

Typically one starts with step functions t ∈ T with t : Ω→ R
which are constant on some base sets in B or the σ-algebra σ.

Example (Step functions on [0,1])

For t =
∑

i ti with ti(ω) = ci ∈ R for ω in interval Ii s.t. Ii = [ai ,bi ]
and

⋃
i Ii = [0,1] and Ii ∩ Ij = ∅ for i 6= j ordered pointwise.

From integrals for t ∈ T defined in the obvious way, e.g. as
E(t) =

∫
Ω t(ω)dµ(ω) =

∑
i µ(Ii)ci , use lattice approximation(s):∫

Ω
f (ω)dµ(ω) =

⊔{∫
Ω

t(ω)dµ(ω) | t ∈ T ∧ t v f
}
.
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Abstract Vector Spaces

Definition
A Vector Space (over a field K, e.g. R or C) is a set V together
with two operations:

Scalar Multiplication . ·. : K× V 7→ V
Vector Addition .+. : V × V 7→ V

such that (∀x , y , z ∈ V and α, β ∈ K):

1 x + (y + z) = (x + y) + z
2 x + y = y + x
3 ∃o : x + o = x
4 ∃−x : x + (−x) = o

1 α(x + y) = αx + αy
2 (α + β)x = αx + βx
3 (αβ)x = α(βx)

4 1x = x (1 ∈ K)
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Linear Operators

Definition
A map T : V → W between two vector spaces V andW is
called a linear map iff

1 T(x + y) = T(x) + T(y) and
2 T(αx) = αT(x)

for all x , y ∈ V and all α ∈ K (e.g. K = C or R).

The set of all linear maps between V andW is denoted
L(V,W). For V =W we talk about a linear operator on V.

On normed vector spaces the continuous or equivalently
bounded linear operators are of particular interest, i.e.

B(V) = {T | ‖T‖ = sup
x∈V

‖T(x)‖
‖x‖

<∞} ⊆ L(V) = L(V,V).
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Matrices and Lifted Functions

Any liner map T : V → W can be conveniently be represented
by a matrix, especially if they are finite dimensional; application
then becomes vector/matrix multiplication.

Let {v1, v2, . . .} and {w1,w2, . . .} be bases for V andW, then T
can be represented via the matrix:

T = (Tij)ij =

 T11 T12 . . .
T21 T22 . . .

...
...

. . .

 with T(vi) =
∑

j

Tijwj .

Lifting Functions. Given a function f : Ω→ Ω′ then we can lift it
to a linear map Tf : V(Ω)→ V(Ω′):

Tf (vi) = f (vi) i.e. Tf ,ij =

{
1 iff f (vi) = wj
0 otherwise
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Metric Spaces

Vector spaces are purely algebraic structures. One can also
equip them with a topological structure. For finite dimensional
vector spaces the topology is essentially unique, for infinite
dimensional spaces one often defines a metric topology.

Definition
A metric space is a set Ω and a real-valued function d(., .), a
metric, on Ω× Ω which satisfies:

1 d(x , y) ≥ 0
2 d(x , y) = 0 ⇐⇒ x = y
3 d(x , y) = d(y , x)

4 d(x , z) ≤ d(x , y) + d(y , z)
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Complete Metric Spaces

In a metric space we can define a basis for the topology open
sets via open balls, i.e. sets B(x , ε) = {x ′ | d(x , x ′) < ε}, i.e.
open sets are those which are unions of open balls.

Given a sequence (xi)i∈N of points in a topological space. We
say that it converges if there exists x = lim xi such that for all
neighbourhoods U(x) of x there ∃N s.t. for n > N : xn ∈ U(x).

A sequence of elements (xi)i∈N in a metric space (X ,d) is
called a Cauchy sequence if

∀ε > 0 ∃N : n,m ≥ N ⇒ d(xn, xm) < ε.

A metric space (X ,d) in which all Cauchy sequences converge
is called complete (metric) space.
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Banach Spaces

Definition
A complex vector space V is called a normed (vector) space if
there is a real valued function ‖.‖ on V that satisfies (∀x , y ∈ V
and ∀α ∈ C):

1 ‖x‖ ≥ 0
2 ‖x‖ = 0 ⇐⇒ x = o
3 ‖αx‖ = |α| ‖x‖
4 ‖x + y‖ ≤ ‖x‖+ ‖y‖

The function ‖.‖ is called a norm on V.

We have a Banach space if the topology induced by d(x , y)
= ‖x − y‖ is complete – always for finite dimensional spaces.
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Hilbert Spaces

Definition
A complex vector space H is called an inner product space (or
(pre-)Hilbert space) if there is a complex valued function 〈., .〉
on H×H that satisfies (∀x , y , z ∈ H and ∀α ∈ C):

1 〈x , x〉 ≥ 0
2 〈x , x〉 = 0 ⇐⇒ x = o
3 〈αx , y〉 = α 〈x , y〉
4 〈x , y + z〉 = 〈x , y〉+ 〈x , z〉
5 〈x , y〉 = 〈y , x〉

The function 〈., .〉 is called an inner product on H.

If the topology induced by ‖x‖ =
√
〈x , x〉 is complete then we

have a Hilbert space – always for finite dimensional spaces.
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Dual Spaces

Linear functionals on a vector space V are maps f : V → K with
f (x + y) = f (x) + f (y) and f (αx) = αf (x) for all x , y ∈ V, α ∈ K.

Theorem (Riesz Representation Theorem)
Every (bounded) linear functional on a Hilbert space H can be
represented by a vector in the Hilbert space H, such that

f (x) = 〈yf |x〉 = fy (x)

The dual Hilbert space H∗ is isomorphic to the original Hilbert
space H, e.g. for the universal Hilbert space `2(N)∗ = `2(N).

`p(Ω) =

(xi)i∈Ω |

(∑
i∈Ω

|xi |p
) 1

p

<∞


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Measure Theory and Duality

Classical Banach and Hilbert spaces are the sequence spaces
`1(N), `2(N), . . . , `∞(N) or the spaces L1(Ω),L2(Ω), . . . ,L∞(Ω)
of (equivalence classes) of integrable function f : Ω→ R for
(general) Ω. Then `p/`q or Lp/Lq are dual for 1

p + 1
q = 1.

There is a general duality between vectors and functionals.
This duality corresponds to the duality between random
variables/functions and distributions/measures. One can
identify expectation values, integrals and inner products:

E(f , µ) =

∫
Ω

f (ω)dµ(ω) = 〈f |µ〉 .

Example

Consider the set L∞(Ω) of bounded functions on Ω with
‖f‖∞ = supΩ |f (ω)| and the dual space L1(Ω) of "measures".
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E(f , µ) =

∫
Ω

f (ω)dµ(ω) = 〈f |µ〉 .

Example

Consider the set L∞(Ω) of bounded functions on Ω with
‖f‖∞ = supΩ |f (ω)| and the dual space L1(Ω) of "measures".
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Some Text Books

David Applebaum: Probability and Information, Cambridge
University Press, 1996/2008.
David Strizacker: Probability and Random Variables,
Cambridge University Press, 1996/2008.
Patrick Billingsley: Probability and Measure John Wiley &
Sons, 1979.
Carlos Kubrusly: The Elements of Operator Theory,
Birkhäuser, 2011.
Achim Klenke: Probability Theory - A Comprehensive
Course, Springer Verlag, 2006.
Steven Roman: Advanced Linear Algebra, Springer Verlag,
2005.
Kadison and Ringrose: Fundamentals of the Theory of
Operator Algebras, AMS, 1997.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 45 of 45



Some Text Books

David Applebaum: Probability and Information, Cambridge
University Press, 1996/2008.
David Strizacker: Probability and Random Variables,
Cambridge University Press, 1996/2008.
Patrick Billingsley: Probability and Measure John Wiley &
Sons, 1979.
Carlos Kubrusly: The Elements of Operator Theory,
Birkhäuser, 2011.
Achim Klenke: Probability Theory - A Comprehensive
Course, Springer Verlag, 2006.
Steven Roman: Advanced Linear Algebra, Springer Verlag,
2005.
Kadison and Ringrose: Fundamentals of the Theory of
Operator Algebras, AMS, 1997.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 45 of 45



Some Text Books

David Applebaum: Probability and Information, Cambridge
University Press, 1996/2008.
David Strizacker: Probability and Random Variables,
Cambridge University Press, 1996/2008.
Patrick Billingsley: Probability and Measure John Wiley &
Sons, 1979.
Carlos Kubrusly: The Elements of Operator Theory,
Birkhäuser, 2011.
Achim Klenke: Probability Theory - A Comprehensive
Course, Springer Verlag, 2006.
Steven Roman: Advanced Linear Algebra, Springer Verlag,
2005.
Kadison and Ringrose: Fundamentals of the Theory of
Operator Algebras, AMS, 1997.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 45 of 45



Some Text Books

David Applebaum: Probability and Information, Cambridge
University Press, 1996/2008.
David Strizacker: Probability and Random Variables,
Cambridge University Press, 1996/2008.
Patrick Billingsley: Probability and Measure John Wiley &
Sons, 1979.
Carlos Kubrusly: The Elements of Operator Theory,
Birkhäuser, 2011.
Achim Klenke: Probability Theory - A Comprehensive
Course, Springer Verlag, 2006.
Steven Roman: Advanced Linear Algebra, Springer Verlag,
2005.
Kadison and Ringrose: Fundamentals of the Theory of
Operator Algebras, AMS, 1997.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 45 of 45



Some Text Books

David Applebaum: Probability and Information, Cambridge
University Press, 1996/2008.
David Strizacker: Probability and Random Variables,
Cambridge University Press, 1996/2008.
Patrick Billingsley: Probability and Measure John Wiley &
Sons, 1979.
Carlos Kubrusly: The Elements of Operator Theory,
Birkhäuser, 2011.
Achim Klenke: Probability Theory - A Comprehensive
Course, Springer Verlag, 2006.
Steven Roman: Advanced Linear Algebra, Springer Verlag,
2005.
Kadison and Ringrose: Fundamentals of the Theory of
Operator Algebras, AMS, 1997.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 45 of 45



Some Text Books

David Applebaum: Probability and Information, Cambridge
University Press, 1996/2008.
David Strizacker: Probability and Random Variables,
Cambridge University Press, 1996/2008.
Patrick Billingsley: Probability and Measure John Wiley &
Sons, 1979.
Carlos Kubrusly: The Elements of Operator Theory,
Birkhäuser, 2011.
Achim Klenke: Probability Theory - A Comprehensive
Course, Springer Verlag, 2006.
Steven Roman: Advanced Linear Algebra, Springer Verlag,
2005.
Kadison and Ringrose: Fundamentals of the Theory of
Operator Algebras, AMS, 1997.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 45 of 45



Some Text Books

David Applebaum: Probability and Information, Cambridge
University Press, 1996/2008.
David Strizacker: Probability and Random Variables,
Cambridge University Press, 1996/2008.
Patrick Billingsley: Probability and Measure John Wiley &
Sons, 1979.
Carlos Kubrusly: The Elements of Operator Theory,
Birkhäuser, 2011.
Achim Klenke: Probability Theory - A Comprehensive
Course, Springer Verlag, 2006.
Steven Roman: Advanced Linear Algebra, Springer Verlag,
2005.
Kadison and Ringrose: Fundamentals of the Theory of
Operator Algebras, AMS, 1997.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 45 of 45


