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Abstract. The aims of these lecture notes are two-fold: (i) we inves-
tigate the relation between the operational semantics of probabilistic
programming languages and Discrete Time Markov Chains (DTMCs),
and (ii) we present a framework for probabilistic program analysis which
is inspired by the classical Abstract Interpretation framework by Cousot
& Cousot and which we introduced as Probabilistic Abstract Interpreta-
tion (PAI) in [1]. The link between programming languages and DTMCs
is the construction of a so-called Linear Operator semantics (LOS) in a
syntax-directed or compositional way. The main element in this construc-
tion is the use of tensor product to combine information about different
aspects of a program. Although this inevitably results in a combinato-
rial explosion of the size of the semantics of program, the PAI approach
allows us to keep some control and to obtain reasonably sized abstract
models.

1 Introduction

These lecture notes aim in establishing a formal link between the semantics
of deterministic and probabilistic programming languages and Markov Chains.
We will consider only discrete time models but, as we have shown in [2], it is
possible to use similar constructions also to model continuous time systems. Our
motivation is based on concrete systems rather than specifications of systems as
we find it for example in the area of process algebras; we therefore eliminate any
non-probabilistic or pure non-determinism. To a certain degree non-deterministic
models can be simulated by using “unknown” probability variables rather than
constants to express choice probabilities. However, this leads to slightly different
outcomes as even “unknown” probabilities, for example, are able to express
correlations between different choices.

A further (didactic) restriction we will use throughout these notes is the
finiteness of our state and configuration spaces. Although it is possible to develop
a similar framework also for infinite spaces, this requires certain mathematical
tools from Functional Analysis and Operator Theory (e.g. C∗algebras, Hilbert
and Banach spaces) which are beyond what a short introduction can provide.
We will therefore consider only a finite-dimensional algebraic theory for which a
basic knowledge of linear algebra is sufficient.



In the following we will use a simple but intriguing example to illustrate our
approach:

Example 1 (Monty Hall). The origins of this example are legendary. Allegedly,
it goes back to some TV show in which the contestant was given the chance
to win a car or other prizes by picking the right door behind which the desired
prize could be found.

The game proceeds as follows: First the contestant is invited to pick one of
three doors (behind one is the prize) but the door is not yet opened. Instead,
the host – legendary Monty Hall – opens one of the other doors which is empty.
After that the contestant is given a last chance to stick with his/her door or to
switch to the other closed one. Note that the host (knowing where the prize is)
has always at least one door he can open.

The problem is whether it is better to stay stubborn or to switch the chosen
door. Assuming that there is an equal chance for all doors to hide the prize it is
a favourite exercise in basic probability theory to demonstrate that it is better
to switch to a new door.

We will analyse this example using probabilistic techniques in program anal-
ysis - rather than more or less informal mathematical arguments. An extensive
discussion of the problem can be found in [3] where it is also observed that a
bias in hiding the car (e.g. because the architecture of the TV studio does not
allow for enough room behind a door to put the prize there) changes the analysis
dramatically.

Note that it is pointless to investigate a non-deterministic version of the
Monty Hall problem: If we are only interested in a possibilistic analysis then
both strategies have exactly the same possible outcomes: The contestant might
win or lose – everything is possible. As in many walks of life it is not what is
possible that determines success, but the chances of achieving one’s aim.

2 Mathematical Preliminaries

We assume that the reader of these lecture notes is well acquainted with basic
ideas from linear algebra and probability theory. We will consider here only finite
dimensional spaces and thus avoid a detailed consideration of finite dimensional
spaces, as in functional analysis, and general measure theoretic concepts. How-
ever, it is often possible to generalise the concepts to such an infinite dimensional
setting and we may occasionally mention this or give hints in this direction.

We need to introduce a few basic mathematical concepts – the acquainted
readers may skip immediately to Section 3. The aim of this section is to sketch
the basic constructions and to provide some motivation and intuition of the
mathematical framework we use. A more detailed discussion of the notions and
concepts we need can be found in the appropriate textbooks on probability and
linear algebra.



2.1 Vector Spaces

In all generality, the real vector space V(S,R) = V(S) over a set S is defined as
the formal3 linear combinations of elements in S which we can also see as tuples
of real numbers xs indexed by elements in S

V(S) = {〈xs, s〉s∈S | xs ∈ R} =

{∑
s∈S

xss

}
= {(xs)s∈S} ,

with the usual point-wise algebraic operations, i.e. scalar multiplication for λ ∈
R:

λ · (xs)s = (λ · xs)s
and vector addition

(xs)s + (ys)s = (xs + ys)s.

We denote tuples like (xs)s or (ys)s as vectors x and y.
We consider in the following only finite dimensional vector spaces, i.e. V(S)

over finite sets S, as they possess a unique topological structure, see e.g. [4,
1.22]. By imposing additional constraints one could equip V(S) with an appro-
priate topological structure even for infinite sets S, e.g. by considering Banach
or Hilbert spaces like `1(S), `2(S), etc. (see for example [5]).

The importance of vector spaces in the context of these notes comes from the
fact that we can use them to represent probability distributions ρ, i.e. normalised
functions which associate to elements in S some probability in the interval [0, 1]

ρ : S → [0, 1] s.t.
∑
s∈S

ρ(s) = 1.

The set of all distributions Dist(S) on S is isomorphic to a sub-set (however,
not a sub-space) of V(S). This helps to transfer the algebraic structures of V
like, for example, the tensor product (see below) immediately into the context
of distributions.

The important class of structure preserving maps between vector spaces V
and W are linear maps T : V → W which fulfil:

T(v) = λ ·T(v) and T(v1 + v2) = T(v1) + T(v2).

For linear maps T : V → V we usually use the term operator.
Vectors in any vector space can be represented – as in the above definition

of V(S) – as a linear combination of elements a certain basis, or even simpler
as a tuple, i.e. a row, of coordinates. Usually, we will use here the defining basis
{s | s ∈ S} so that we do not need to consider the problem of base changes.

As with vectors we can also represent linear maps in a standardised way as
matrices. We will treat here the terms linear map and operator as synonymous of
3 We allow for any – also infinite – linear combinations. For the related notion of a

free vector space one allows only finite linear combinations.



matrix. The standard representation of a linear map T : V → W simply records
the image of all basis vectors of the basis in V and collects them as row vectors
of a matrix. It is sufficient to just specify what happens to the (finitely many)
basis vectors to completely determine T as by linearity this can be extended to
all (uncountably infinitely many) vectors in V. Given a (row) vector x = (xs)s
and the matrix (Tst)st, with the first index indicating the row and the second
the column of the matrix entry, representing a linear map T we can implement
the application of T to x as a matrix multiplication:

T(x) = x ·T = (xs)s · (Tst)st = (
∑
s

xsTst)t.

2.2 Discrete Time Markov Chains

The standard and most popular model for probabilistic processes are Markov
Chains. We assume a basic knowledge as presented for example in [6–10], to
mention just a few of the many monographs on this topic.

Markov chains have the important property that they are memory-less in the
sense that the “next state” does not depend on anything else but the current
state. Markov Chains come in two important versions as Discrete Time Markov
Chains (DTMC) and Continuous Time Markov Chains (CTMC). We will deal
here only with DTMCs, i.e. probabilistic descriptions of a system only at discrete
time steps. This allows us to talk about the next state in the obvious way (for
CTMC this concept is a bit more complicated).

The DTMCs we will use to model the semantics of a programming language
will be based on finitely many states S.4. For such a system a description at a
given point in time is represented by a distribution over the finite state space S,
we will refer to the elements in s also as classical states and to the elements in
Dist(S) as probabilistic states. In general, we would need measures or vectors in
Banach or Hilbert spaces to describe probabilistic states.

Once we have an enumeration of states in S we can represent probabilistic
states, i.e. distributions on S, as normalised tuples or simply as vectors in V(S).
The fact that DTMCs are memory-less means that we only need to specify how
the description of a system changes into the one at the next step, i.e. how to
transform one probabilistic state dt into the next one dt+1. Intuitively, we need
to describe how much of the probability of an si ∈ S is “distributed” to the other
sj in the next moment. Again, we can use matrices to do this. More precisely,
we need to consider stochastic matrices M, where all rows must sum up to 1, i.e.∑

t

Mst = 1 for all s,

so that for a distribution represented by d the image x·M is again a (normalised)
distribution. Note that we follow in these notes the convention of postmultiplying
M and that vectors are implemented as row vectors.
4 Unfortunately, the term “state” is used differently in probability theory and seman-

tics: The (probabilistic) state space for the semantics we represent is made up of
so-called configurations which are pairs of (semantical) states and statements.



We will consider here only homogenous DTMCs where the way the system
changes does not change itself over time, i.e. d0 is transformed into d1 in the
same way as dt becomes dt+1 at any time t. The change to matrix M, thus,
does not depend on t. In fact, we can define a DTMC as we use it here just
by specifying its state space S and its generator matrix M, which has to be
stochastic.

2.3 Kronecker and Tensor Product

For the definition of our semantics we will use the tensor product construction.
The tensor product U ⊗ V of two vector spaces U and V can be defined in
a purely abstract way via the following universal property: For each bi-linear
function f : U × V → W there exists a unique linear function f⊗ : U ⊗ V → W
such that f(u, v) = f⊗(u⊗ v), see e.g. [11, Ch 14].

In the case of infinite dimensional topological vector spaces one usually im-
poses additional requirements on the tensor product ensuring, for example, that
the tensor product of two Hilbert spaces is again a Hilbert space, see e.g. [12, 2.6].
Product measures on the Cartesian product of measure spaces as characterised
by Fubini’s Theorem, see e.g. [13, 4.5], can also be seen as tensor products.

For finite dimensional vector spaces we can realise U ⊗ V as the space of the
tensor product of vectors in V and U . More concretely, we can construct the
tensor product of two finite dimensional matrices or vectors – seen as 1 × n or
n× 1 matrices – via the so-called Kronecker product: Given an n×m matrix A
and a k × l matrix B then A⊗B is the nk ×ml matrix

A⊗B =

 a1,1 . . . a1,m

...
. . .

...
an,1 . . . am,n

⊗
 b1,1 . . . b1,l

...
. . .

...
bk,1 . . . bk,l

 =

 a1,1B . . . a1,mB
...

. . .
...

an,1B . . . an,mB


For a d1 dimensional vector u and a d2 dimensional vector v we get a d1 ·

d2 dimensional vector u ⊗ v. The ith entry in u ⊗ v is the product of the i1th
coordinate of u with the i2th coordinate of v. The relation between index i and
the indices i1 and i2 is as follows:

i = (i1 − 1) · d2 + (i2 − 1) + 1

i1 = (i− 1) div d2 + 1
i2 = (i− 1) mod d2 + 1

Note that the concrete realisation of the tensor product via the Kronecker
product is not base independent, i.e. if we use a different basis to represent A and
B then it is non-trivial to see how the coordinates of A⊗B change. Thus many
texts prefer the abstract definition of tensor products. However, our discussions
will not involve base changes and we thus can work with Kronecker and tensor
products as synonyms.



The binary tensor/Kronecker product can easily be generalised to an n-ary
version which is associative but not commutative. Among the important alge-
braic properties of the tensor/Kronecker product (of matrices and vectors with
matching dimensions) we have for example, see e.g. [11, 12]:

(λA)⊗B = λ(A⊗B) = A⊗ (λB)
(A1 + A2)⊗B = (A1 ⊗B) + (A1 ⊗B)
A⊗ (B1 + B2) = (A⊗B1) + (A⊗B2)

(A1 ⊗B1)(A2 ⊗B2) = (A1A2)⊗ (B1B2)

If we consider the tensor product of vector spaces V(X) and V(Y ) over some
(finite) sets X and Y then we get the following important isomorphism which
relates the Cartesian product and the tensor product:

V(X × Y ) = V(X)⊗ V(Y )

This follows directly from the universal properties of the tensor product. In
terms of distribution this provides a way to construct and understand the space
of distributions over product spaces.

3 Probabilistic While

We now introduce a simple imperative language, pWhile, with constructs for
probabilistic choice and random assignment, which is based on the well known
While language one can find for example in [14, 15]. We will use this language
to investigate static program analysis techniques based on its semantics. We
first present the syntax and operational semantics (in an SOS style) of pWhile;
then we develop a syntax-directed semantics which will immediately give the
generator of the corresponding DTMC.

3.1 Syntax

The overall structure of a pWhile program is made up from a possibly empty
declaration part D of variables and a single statement S which represents the
actual program:

P ::= begin S end
| var D begin S end

The declarations D of variables v associate to them a certain basic type e.g.
int, bool, or a simple value range r, which determine the possible values of the
variable v. Each variable can have only one type, i.e. possible values are in the
disjoint union of Z representing integers, B = {true, false} for booleans.

r ::= bool
| int
| { c1, . . . cn }
| { c1 .. cn }

D ::= v : r
| v : r ; D



The syntax of statements S is as follows:

S ::= stop
| skip
| v := a
| v ?= r
| S1 ; S2

| choose p1 : S1 or p2 : S2 ro
| if b then S1 else S2 fi
| while b do S od

We have in pWhile two types of “empty” statements, namely stop and the
usual skip statement. We can use both as final statements in a program but
while skip represents actual termination the meaning of stop is an infinite loop
which replicates the terminal configuration forever – this is a behaviour we need
in order to avoid “probability leaks” and to obtain proper DTMCs. The meaning
of the assignment “:=”, sequential composition “;”, “if” and “while” are as
usual – we only change the syntax slightly to allow for an easier implementation
of a pWhile parser in ocaml. We have two additional probabilistic statements:
a random assignment “?=” which assigns a random value to a variable using a
uniform distribution over the possible values in the range r; and a probabilistic
choice “choose”, which executes either S1 or S2 with probabilities p1 and p2,
respectively. Here p1 and p2 are constants and we assume without loss of gen-
erality that they are normalised, i.e. that p1 + p2 = 1; if this is not the case,
we can also require that at compile time these values are normalised to obtain
p̃i = pi

p1+p2
. It is obvious how to generalise the “choose” construct from a binary

to an n-ary version. We will also use brackets, indentation and comment lines
“#” to improve the readability of programs.

Expressions e in pWhile are either boolean expressions b or arithmetic ex-
pressions a. Arithmetic expressions are of the form

a ::= n
| a1 � a2

with n ∈ Z a constant and ‘�’ representing one of the usual arithmetic operations
like ‘+’, ‘−’, ‘×’, ‘/’ or ‘%’ (representing the remainder of an integer division).

The syntax of boolean expressions b is defined by

b ::= true
| false
| not b
| b1 && b2
| b1 || b2
| a1 <> a2

The symbol ‘<>’ denotes one of the standard comparison operators for arithmetic
expressions, i.e. <,≤,=, 6=,≥, >.



3.2 Operational Semantics

The semantics of pWhile follows essentially the standard one for While as
presented, e.g., in [15]. The only two differences concern (i) the probabilistic
choice and (ii) random assignments. The structured operational semantics (SOS)
is given as usual via a transition system on configurations 〈S, σ〉, i.e. pairs of
statements and (classical) states. To allow for probabilistic choices we label these
transitions with probabilities; except for the choose construct and the random
assignment these probabilities will always be 1 as all other statements in pWhile
are deterministic.

A state σ ∈ State describes how variables in Var are associated to values in
Value = Z + B (with ‘+’ denoting the disjoint union). The value of a variable
can be either an integer or a boolean constant, i.e.

State = Var→ Z + B

The expressions a and b evaluate to values of type Z and B in the usual way.
The value represented by an arithmetic expression can be computed by:

E(n)σ = n
E(v)σ = σ([[v]]σ)

E(a1 � a2)σ = E(a1)σ � E(a2)σ

The result is always an integer (i.e. E(.)a ∈ Z). Boolean expressions are also han-
dled in a similar way; their semantics is given by an element in B = {true, false}:

E(true)σ = true
E(false)σ = false
E(not b)σ = ¬E(b)σ
E(b1 || b2)σ = E(b1)σ ∨ E(b2)σ
E(b1 && b2)σ = E(b1)σ ∧ E(b2)σ
E(a1 <> a2)σ = E(a1)σ <> E(a2)σ

If we denote by Expr the set of all expressions e then the evaluation function
E(.). is a function from Expr× State into Z + B.

Based on the functions [[.]]. and E(.). the semantics of an assignment is given,
for example, by:

〈v := e, σ〉−→1〈stop, σ[v 7→ E(e)σ]〉.

The state σ stays unchanged except for the variable v. The value of this variable
is changed so that it now contains the value represented by the expression e.

The formal definition of the transition rules defining the operational seman-
tics of pWhile in the SOS style is given in Table 3.2.

3.3 Examples

To illustrate the the use of pWhile to formulate probabilistic programs we
present two small examples which we will use throughout these lecture notes.



R0 〈skip, σ〉−→1〈stop, σ〉

R1 〈stop, σ〉−→1〈stop, σ〉

R2 〈v := e, σ〉−→1〈stop, σ[v 7→ E(e)σ]〉

R3 〈v ?= r, σ〉−→ 1
|r|
〈stop, σ[v 7→ ri ∈ r]〉

R41
〈S1, σ〉−→p〈S′1, σ′〉

〈S1;S2, σ〉−→p〈S′1;S2, σ
′〉

R42
〈S1, σ〉−→p〈stop, σ′〉
〈S1;S2, σ〉−→p〈S2, σ

′〉

R51 〈choose p1 : S1 or p2 : S2 ro, σ〉−→p1〈S1, σ〉

R52 〈choose p1 : S1 or p2 : S2 ro, σ〉−→p2〈S2, σ〉

R61 〈if b then S1 else S2 fi, σ〉−→1〈S1, σ〉 if E(b)σ = true

R62 〈if b then S1 else S2 fi, σ〉−→1〈S2, σ〉 if E(b)σ = false

R71 〈while b do S od, σ〉−→1〈S; while b do S od, σ〉 if E(b)σ = true

R72 〈while b do S od, σ〉−→1〈stop, σ〉 if E(b)σ = false

Table 1. The rules of the SOS semantics of pWhile

Example 2 (Factorial). This example concerns the Factorial of a natural number,
i.e. n! = 1 ·2 ·3 · . . . ·n (with 0! = 1). The two programs below compute the usual
factorial n! and the “double factorial 2 · n!.

var
m : {0..2};
n : {0..2};

begin
m := 1;
while (n>1) do
m := m*n;
n := n-1;

od;
stop; # looping
end

var
m : {0..2};
n : {0..2};

begin
m := 2;
while (n>1) do
m := m*n;
n := n-1;

od;
stop; # looping
end

Though these two programs are deterministic, we will still analyse them using
probabilistic techniques.



Example 3 (Monty Hall). Let us consider again Example 1 in Section 1. We can
implement the two possible strategies of the contestant: Either to stick to his/her
initial choice no matter what the show host is doing, or to switch doors once one
of the empty doors has been opened.

var
d :{0,1,2};
g :{0,1,2};
o :{0,1,2};

begin
# Pick winning door
d ?= {0,1,2};
# Pick guessed door
g ?= {0,1,2};
# Open empty door
o ?= {0,1,2};
while ((o == g) || (o == d)) do
o := (o+1)%3;

od;
# Stick with guess
stop; # looping
end

var
d :{0,1,2};
g :{0,1,2};
o :{0,1,2};

begin
# Pick winning door
d ?= {0,1,2};
# Pick guessed door
g ?= {0,1,2};
# Open empty door
o ?= {0,1,2};
while ((o == g) || (o == d)) do
o := (o+1)%3;

od;
# Switch guess
g := (g+1)%3;
while (g == o) do
g := (g+1)%3;

od;
stop; # looping
end

3.4 Linear Operator Semantics

In order to study the semantic properties of a pWhile program we will in-
vestigate the stochastic process which corresponds to the program executions.
More precisely, we will construct the generator of a Discrete Time Markov Chain
(DTMC) which represents the operational semantics of the program in question.

The generator matrix of the DTMC which we will construct for any given
pWhile program defines a linear operator – thus we refer to it as a Linear
Operator Semantics (LOS) – on a vector space based on the labelled blocks and
classical states of the program in question.

The SOS transition relation – and in particular its restriction to the reachable
configurations of a given program – can be directly encoded in a linear operator
(cf. [16]), i.e. a matrix T defined for all configurations ci, cj by

(T)ci,cj =
{
p if 〈Si, σi〉 −→p 〈Sj , σj〉
0 otherwise,

However, this approach is in fact only a matrix representation of the SOS
semantics and requires the construction of all possible execution trees. This is



in itself not compositional, i.e. if we know already the DTMC of a part of the
program (e.g. a while loop) it is impossible or at least extremely difficult to
describe the operational semantics of a program which contains this part.

Instead we present here a different construction which has the advantage of
being compositional and therefore provides a more suitable basis for the compo-
sitional analysis in Section 4.2.

In order to be able to refer to particular program points in an unambiguous
way we introduce a standard labelling (cf. [15])

S ::= [stop]`

| [skip]`

| [v := a]`

| [v ?= r]`

| [S1 ; S2

| [choose]` p1 : S1 or p2 : S2 ro
| if [b]` then S1 else S2 fi
| while [b]` do S od

where ` is a label in Lab – typically just a unique number.

Classical and Probabilistic States. The probabilistic state of the computa-
tion is described via a probability measure over the space of (classical) states
State = (Var→ Z + B).

In order to keep the mathematical treatment as simple as possible we will
exploit the fact that Var is finite for any given program. We furthermore restrict
the actual range of integer variables to a finite sub-set Z of Z. Although such a
finite restriction is somewhat unsatisfactory from a purely theoretical point of
view, it appears to be justified in the context of static program analysis (one
could argue that any “real world” program has to be executed on a computer
with certain memory limitations). As a result we can restrict our construction
to probability distributions on State, i.e. Dist(State) ⊆ V(State) rather than
referring to the more general notion of probability measures on states.

While in discrete, i.e. finite, probability spaces every measure can be defined
via a distribution, the same does not hold any more for infinite state spaces, even
for countable ones: it is, for example, impossible to define on the set of rationals
in the interval [0, 1] a kind of “uniform distribution” which would correspond to
the Lebesgue measure.

As we consider only finitely many variables, v = |Var|, we can represent the
space of all possible states Var→ Z + B as the Cartesian product (Z + B)v, i.e.
for every variable vi ∈ Var we specify its associated value in (a separate copy
of) Z+B. As the declarations of variables fix their types – in effect their possible
range – we can exploit this information by presenting the state in a slightly more
effective way:

State = Value1 ×Value2 . . .×Valuev
with Valuei = Z or B. We will use the convention that, given v variables, we
enumerate them according to the sequence in which they are declared in D.



Probabilistic Control Flow. We base the compositional construction of our
LOS semantics on a probabilistic version of the control flow [15] or abstract
syntax [17] of pWhile programs.

The flow F = flow is a set of triples 〈`i, pij , `j〉 which record the fact that
control passes with probability pij from block Bi to block Bj , where a block is
of the form Bi = [. . .]`i . We assume label consistency, i.e. the labels on blocks
are unique. We denote by Block(P ) the set of all blocks and by Lab(P ) the set
of all labels in a program P . Except for the choose statement and the random
assignment the probability pij is always equal to 1. For the if statement we
indicate the control step into the then branch by underlining the target label;
the same is the case for while statements.

The formal definition of the control flow of a program following the presen-
tation in [15] is based on two auxiliary operations init and final

init : Stmt→ Lab

final : Stmt→ P(Lab)

which return the initial label and the final labels of a statement (whereas a
sequence of statements has a single entry, it may have multiple exits, as for
example in the conditional).

init([skip]`) = `

init([stop]`) = `

init([v := e]`) = `

init([v ?= e]`) = `

init(S1;S2) = init(S1)
init([choose]` p1 : S1 or p2 : S2 ro) = `

init(if [b]` then S1 else S2 fi) = `

init(while [b]` do S od) = `

and

final([skip]`) = {`}
final([stop]`) = {`}

final([v := e]`) = {`}
init([v ?= e]`) = {`}

final(S1;S2) = final(S2)
final([choose]` p1 : S1 or p2 : S2 ro) = final(S1) ∪ final(S2)

final(if [b]` then S1 else S2 fi) = final(S1) ∪ final(S2)
final(while [b]` do S od) = {`}

The probabilistic control flow F(S) = flow(S) is then defined via the a func-
tion flow

flow : Stmt→ P(Lab× [0, 1]× Lab)



which maps statements to sets of triples which represent the probabilistic control
flow graph:

flow([skip]`) = ∅
flow([stop]`) = {〈`, 1, `〉}

flow([v := e]`) = ∅
flow([v ?= e]`) = ∅

flow(S1;S2) = flow(S1) ∪ flow(S2) ∪
∪ {(`, 1, init(S2)) | ` ∈ final(S1)}

flow([choose]` p1 : S1 or p2 : S2 ro) = flow(S1) ∪ flow(S2) ∪
∪ {(`, p1, init(S1)), (`, p2, init(S2))}

flow(if [b]` then S1 else S2 fi) = flow(S1) ∪ flow(S2) ∪
∪ {(`, 1, init(S1)), (`, 1, init(S2))}

flow(while [b]` do S od) = flow(S) ∪
∪ {(`, 1, init(S))} ∪ {(`′, 1, `) | `′ ∈ final(S)}

Example 4. Consider the following labelled program P :

var
z : {0..200};

begin
while [z<100]1 do
[choose]2 1/3:[x:=3]3 or 2/3:[x:=1]4 ro;

od;
[stop]5;
end

The flow of this program is given by:

flow(P ) = {〈1, 1, 2〉, 〈1, 1, 5〉, 〈2, 1
3
, 3〉, 〈2, 2

3
, 4〉, 〈3, 1, 1〉, 〈4, 1, 1〉}.

Probabilistic Configurations. The construction of the DTMC representing
the probabilistic semantics of a pWhile program will – as in the SOS case,
represent a transition relation on configurations in Conf. In the classical case
configurations are pairs formed by the (remaining) program S which is to be ex-
ecuted and the computational state σ representing the current values of all the
variables. For pWhile it is in fact enough to just record the initial init(S) state-
ment of the program S. In other words, a classical configuration is an element
in Stmt× State or just in Block× State.

For probabilistic programs there is in general no unique configuration which
describes the current situation when we execute a program. Instead we need to
use distributions (in general measures) over classical configurations, i.e. config-
urations are elements in

Dist(State×Block) ⊆ V(State×Block).



In order to distinguish between classical and probabilistic states we reverse the
order between the value part and the syntactic part of configurations.

Exploiting the fact that states can also be described as tuples in the Cartesian
products of values of each variable and that blocks are uniquely labelled we
identify as the space of configurations describing the computational situation in
the probabilistic case as

Dist(Value1 × . . .×Valuev × Lab) ⊆ V(Value1 × . . .×Valuev × Lab).

Finally we observe the important isomorphism between the vector space over
Cartesian products and the tensor product of vector spaces. This allows us to
construct probabilistic configurations as elements in

V(Value1 × . . .×Valuev × Lab) = V(Value1)⊗ . . .⊗ V(Valuev)⊗ V(Lab).

This decomposition of the space of configurations is the basis for a com-
positional description of the DTMC generator which defines the semantics of
a program. In particular, by the finiteness condition for Valuei and the fact
that Lab is always finite we know immediately the finite set of (potentially)
reachable states and thus the state of probabilistic configurations. Furthermore,
we will exploit the tensor product to describe the DTMC generator as a lin-
ear combination of local updates. These factors themselves are given as tensor
products of operators which describe the computational dynamics of individual
statements (blocks).

Basic Operators. In order to construct the concrete semantics we need to
identify those states which satisfy certain conditions, e.g. all those states where
a variable has a value larger than 5. This is achieved by “filtering” states which
fulfil some conditions via projection operators, which are concretely represented
by diagonal matrices.

Consider a variable x together with the set of its possible values Value =
{v1, v2, . . .}, and the vector space V(Value). The probabilistic state of the vari-
able v can be described by a distribution over its possible values, i.e. a vector
in V(Value). For example, if we know that x holds the value v1 or v3 with
probabilities 1

3 and 2
3 respectively (and no other values) then this situation is

represented by the vector ( 1
3 , 0,

2
3 , 0, . . .).

As we represent distributions by row vectors x the application of a linear
map corresponds to a post-multiplication by the corresponding matrix T, i.e.
T(x) = x ·T.

We might need to apply a transformation T to the probabilistic state of
the variable xi only when a certain condition is fulfilled. We can express such
a condition by a predicate q on Valuei. Defining a diagonal matrix P with
otherwise,

(P)ii =
{

1 if p(vi) holds
0 otherwise.

allows us to “filter out” only those states which fulfil the condition q, i.e. P ·T
applies T only to those states.



(E(m,n))ij =


1 if m = i ∧ n = j
0 otherwise.

(I)ij =


1 if i = j
0 otherwise.

Table 2. Basic Operators for pWhile

(P(c))ij =


1 if i = c = j
0 otherwise.

P(σ) =

vO
i=1

P(σ(xi))

P(e = c) =
X
E(e)σ=c

P(σ)

Table 3. Test or Filter Operators pWhile

The Linear Operator Semantics (LOS) of pWhile is built using a number
of basic operators which can be represented by the (sparse) square matrices
specified in Table 2. The matrix units E(m,n) contains only one non-zero entry,
and I is the identity operator.

Using these basic building blocks we can define a number of “filters” P as
depicted in Table 3. The operator P(c) has only one non-zero entry: the diagonal
element Pcc = 1, i.e. P(c) = E(c, c). This operator extracts the probability cor-
responding to the c-th coordinate of a vector, i.e. for x = (xi)i the multiplication
with P(c) results in a vector x′ = x · P(c) with only one non-zero coordinate,
namely x′c = xc.

The operator P(σ) performs a similar test for a vector representing the prob-
abilistic state of the computation. It filters the probability that the computation
is in a classical state σ. This is achieved by checking whether each variable xi
has the value specified by σ namely σ(xi). Finally, the operator P(e = c) filters
those states where the values of the variables xi are such that the evaluation of
the expression e results in c. The number of (diagonal) non-zero entries of this
operator is exactly the number of states σ for which E(e)σ = c.



(U(c))ij =


1 if j = c
0 otherwise.

U(xk ← c) =

k−1O
i=1

I⊗U(c)⊗
vO

i=k+1

I

U(xk ← e) =
X
c

P(e = c)U(xk ← c)

Table 4. Update Operators for pWhile

LOS Semantics. The update operators (see Table 4) implement state changes.
From an initial probabilistic state σ, i.e. a distribution over classical states, we
get a new probabilistic state σ′ via σ′ = σ ·U

The simple operator U(c) implements the deterministic update of a variable
xi: Whatever the value(s) of xi are, after applying U(c) to the state vector
describing xi we get a point distribution expressing the fact that the value of xi
is now certainly c. The operator U(xk ← c) puts U(c) into the context of other
variables: Most factors in the tensor product are identities, i.e. most variables
keep their previous values, only xk is deterministically updated to its new value
c using the previously defined U(c) operator. The operator U(xk ← e) updates
a variable not to a constant but to the value of an expression e. This update is
realised using the filter operator P(e = c): For all possible values c of e we select
those states where e evaluates to c and then update xk to this c.

The full LOS semantics of a pWhile program P is defined as the operator
T = T(P ) on V(State×B(P )). This concrete semantics of a program P is given
by:

T(P ) =
∑

〈i,pij ,j〉∈F(P )

pij ·T(`i, `j).

The meaning of T(P ) is to collect for every triple in the probabilistic flow F(P )
of P its effects, weighted according the probability associated to this triple. The
operators T(`i, `j) which implement the local state updates and control transfers
from `i to `j are presented in Table 5.

Each local operator T(`i, `j) is of the form N⊗E(`i, `j) where the first factor
N represents a state update or, in the case of tests, a filter operator while the
second factor realises the transfer of control from label `i to label `j . For the
skip and stop no changes to the state happen, we only transfer control (deter-
ministically) to the next statement or loop on the current (terminal) statement
using matrix units E. Also in the case of a choose there is no change to the
state but only a transfer of control, however the probabilities pij will in general



T(`1, `2) = I⊗E(`1, `2) for [skip]`1

T(`, `) = I⊗E(`, `) for [stop]`

T(`1, `2) = U(v ← e)⊗E(`1, `2) for [v := e]`1

T(`1, `2) =
“

1
|r|
P
c∈r U(v ← c)

”
⊗E(`1, `2) for [v ?= r]`1

T(`, `k) = I⊗E(`, `k) for [choose]`

T(`, `t) = P(b = true)⊗E(`, `t) for [b]`

T(`, `f ) = P(b = false)⊗E(`, `f ) for [b]`

Table 5. Linear Operator Semantics for pWhile

be different from 1, unlike skip. With assignments we have both a state up-
date, implemented using U(p← e) as well as a control flow step. For tests b we
use a filter operator P(b = true) to select those states which pass the test or
P(b = false) fail it to determine to which label control will pass.

Proposition 1. The operator T(P ) is a stochastic matrix for any pWhile pro-
gram P , i.e. the sum of all elements in each row add up to one.

Thus, T is indeed the generator of a DTMC. Furthermore, by the construc-
tion of T it also follows immediately that the SOS and LOS semantics are equiv-
alent in the following sense.

Proposition 2. For any pWhile program P and any classical state σ ∈ State,
we have: 〈S, σ〉 −→p 〈S′, σ′〉 iff (T(P ))〈σ,`〉,〈σ′,`′〉 = p,where ` and `′ label the
first block in the statement S and S′, respectively.

It is an easy exercise to introduce additional languages features, e.g. pointers
(see [18]) or (probabilistic) jumps, i.e. gotos, or sub-routines.

3.5 Example

Example 5 (Monty Hall). Consider again our running Example 1. The labelled
version of the program Hw (with switching doors) is:



var
d :{0,1,2};
g :{0,1,2};
o :{0,1,2};

begin
[d ?= {0,1,2}]1;
[g ?= {0,1,2}]2;
[o ?= {0,1,2}]3;
while [((o == g)||(o == d))]4 do
[o := (o+1)%3]5;

od;
[g := (g+1)%3]6;
while [(g == o)]7 do
[g := (g+1)%3]8;

od;
[stop]9;
end

The blocks for this program Hw are thus

Block(Hw) = {[d ?= { 0, 1, 2 }]1, [g ?= { 0, 1, 2 }]2,

[o ?= { 0, 1, 2 }]3, [((o == g)||(o == d))]4,

[o := ((o + 1) % 3)]5, [g := ((g + 1) % 3)]6,

[(g == o)]7, [g := ((g + 1) % 3)]8, [stop]9}

and the flow

Flow(Hw) = {(1, 1, 2), (2, 1, 3), (3, 1, 4), (4, 1, 5), (5, 1, 4), (4, 1, 6),
(6, 1, 7), (7, 1, 8), (8, 1, 7), (7, 1, 9), (9, 1, 9)}

The elements describing the version Ht where we stick to the original door is
identical to this one, except that it just involves labels 1 to 5 and then a final
[stop]6 (instead of [stop]9). Note that this program does not use probabilistic
choices and so the second element of all entries in flow are 1 (though we use
random assignments here).

Following the definition of the LOS semantics we can construct the transition
operators, i.e. the generators of the corresponding DTMCs, in a straight forward
way.

T(Ht) =
1
3

(U(d← 0) + U(d← 1) + U(d← 2))⊗E(1, 2) +

1
3

(U(g← 0) + U(g← 1) + U(g← 2))⊗E(2, 3) +

1
3

(U(o← 0) + U(o← 1) + U(o← 2))⊗E(3, 4) +

P((o == g)||(o == d) = true)⊗E(4, 5) +
P((o == g)||(o == d) = false)⊗E(4, 6) +
I⊗E(6, 6)



and

T(Hw) =
1
3

(U(d← 0) + U(d← 1) + U(d← 2))⊗E(1, 2) +

1
3

(U(g← 0) + U(g← 1) + U(g← 2))⊗E(2, 3) +

1
3

(U(o← 0) + U(o← 1) + U(o← 2))⊗E(3, 4) +

P((o == g)||(o == d) = true)⊗E(4, 5) +
P((o == g)||(o == d) = false)⊗E(4, 6) +
U(g← (g + 1)%3)⊗E(6, 7) +
P((g == o) = true)⊗E(7, 8) +
P((g == o) = false)⊗E(7, 9) +
U(g← (g + 1)%3)⊗E(6, 7) +
I⊗E(9, 9)

The individual update operators T(i, j) are then given by the following ma-
trices where the enumeration of elements in State is as follows
1 . . . (d 7→ 0, g 7→ 0, o 7→ 0)
2 . . . (d 7→ 0, g 7→ 0, o 7→ 1)
3 . . . (d 7→ 0, g 7→ 0, o 7→ 2)
4 . . . (d 7→ 0, g 7→ 1, o 7→ 0)
5 . . . (d 7→ 0, g 7→ 1, o 7→ 1)
6 . . . (d 7→ 0, g 7→ 1, o 7→ 2)
7 . . . (d 7→ 0, g 7→ 2, o 7→ 0)
8 . . . (d 7→ 0, g 7→ 2, o 7→ 1)
9 . . . (d 7→ 0, g 7→ 2, o 7→ 2)

10 . . . (d 7→ 1, g 7→ 0, o 7→ 0)
11 . . . (d 7→ 1, g 7→ 0, o 7→ 1)
12 . . . (d 7→ 1, g 7→ 0, o 7→ 2)
13 . . . (d 7→ 1, g 7→ 1, o 7→ 0)
14 . . . (d 7→ 1, g 7→ 1, o 7→ 1)
15 . . . (d 7→ 1, g 7→ 1, o 7→ 2)
16 . . . (d 7→ 1, g 7→ 2, o 7→ 0)
17 . . . (d 7→ 1, g 7→ 2, o 7→ 1)
18 . . . (d 7→ 1, g 7→ 2, o 7→ 2)

19 . . . (d 7→ 2, g 7→ 0, o 7→ 0)
20 . . . (d 7→ 2, g 7→ 0, o 7→ 1)
21 . . . (d 7→ 2, g 7→ 0, o 7→ 2)
22 . . . (d 7→ 2, g 7→ 1, o 7→ 0)
23 . . . (d 7→ 2, g 7→ 1, o 7→ 1)
24 . . . (d 7→ 2, g 7→ 1, o 7→ 2)
25 . . . (d 7→ 2, g 7→ 2, o 7→ 0)
26 . . . (d 7→ 2, g 7→ 2, o 7→ 1)
27 . . . (d 7→ 2, g 7→ 2, o 7→ 2)

For the first three random assignments we have

T(1, 2) =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
3 . . . . . . . . 1

3 . . . . . . . . 1
3 . . . . . . . .

. 1
3 . . . . . . . . 1

3 . . . . . . . . 1
3 . . . . . . .

. . 1
3 . . . . . . . . 1

3 . . . . . . . . 1
3 . . . . . .

. . . 1
3 . . . . . . . . 1

3 . . . . . . . . 1
3 . . . . .

. . . . 1
3 . . . . . . . . 1

3 . . . . . . . . 1
3 . . . .

. . . . . 1
3 . . . . . . . . 1

3 . . . . . . . . 1
3 . . .

. . . . . . 1
3 . . . . . . . . 1

3 . . . . . . . . 1
3 . .

. . . . . . . 1
3 . . . . . . . . 1

3 . . . . . . . . 1
3 .

. . . . . . . . 1
3 . . . . . . . . 1

3 . . . . . . . . 1
3

1
3 . . . . . . . . 1

3 . . . . . . . . 1
3 . . . . . . . .

. 1
3 . . . . . . . . 1

3 . . . . . . . . 1
3 . . . . . . .

. . 1
3 . . . . . . . . 1

3 . . . . . . . . 1
3 . . . . . .

. . . 1
3 . . . . . . . . 1

3 . . . . . . . . 1
3 . . . . .

. . . . 1
3 . . . . . . . . 1

3 . . . . . . . . 1
3 . . . .

. . . . . 1
3 . . . . . . . . 1

3 . . . . . . . . 1
3 . . .

. . . . . . 1
3 . . . . . . . . 1

3 . . . . . . . . 1
3 . .

. . . . . . . 1
3 . . . . . . . . 1

3 . . . . . . . . 1
3 .

. . . . . . . . 1
3 . . . . . . . . 1

3 . . . . . . . . 1
3

1
3 . . . . . . . . 1

3 . . . . . . . . 1
3 . . . . . . . .

. 1
3 . . . . . . . . 1

3 . . . . . . . . 1
3 . . . . . . .

. . 1
3 . . . . . . . . 1

3 . . . . . . . . 1
3 . . . . . .

. . . 1
3 . . . . . . . . 1

3 . . . . . . . . 1
3 . . . . .

. . . . 1
3 . . . . . . . . 1

3 . . . . . . . . 1
3 . . . .

. . . . . 1
3 . . . . . . . . 1

3 . . . . . . . . 1
3 . . .

. . . . . . 1
3 . . . . . . . . 1

3 . . . . . . . . 1
3 . .

. . . . . . . 1
3 . . . . . . . . 1

3 . . . . . . . . 1
3 .

. . . . . . . . 1
3 . . . . . . . . 1

3 . . . . . . . . 1
3

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

⊗E(1, 2)



T(2, 3) =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
3 . . 1

3 . . 1
3 . . . . . . . . . . . . . . . . . . . .

. 1
3 . . 1

3 . . 1
3 . . . . . . . . . . . . . . . . . . .

. . 1
3 . . 1

3 . . 1
3 . . . . . . . . . . . . . . . . . .

1
3 . . 1

3 . . 1
3 . . . . . . . . . . . . . . . . . . . .

. 1
3 . . 1

3 . . 1
3 . . . . . . . . . . . . . . . . . . .

. . 1
3 . . 1

3 . . 1
3 . . . . . . . . . . . . . . . . . .

1
3 . . 1

3 . . 1
3 . . . . . . . . . . . . . . . . . . . .

. 1
3 . . 1

3 . . 1
3 . . . . . . . . . . . . . . . . . . .

. . 1
3 . . 1

3 . . 1
3 . . . . . . . . . . . . . . . . . .

. . . . . . . . . 1
3 . . 1

3 . . 1
3 . . . . . . . . . . .

. . . . . . . . . . 1
3 . . 1

3 . . 1
3 . . . . . . . . . .

. . . . . . . . . . . 1
3 . . 1

3 . . 1
3 . . . . . . . . .

. . . . . . . . . 1
3 . . 1

3 . . 1
3 . . . . . . . . . . .

. . . . . . . . . . 1
3 . . 1

3 . . 1
3 . . . . . . . . . .

. . . . . . . . . . . 1
3 . . 1

3 . . 1
3 . . . . . . . . .

. . . . . . . . . 1
3 . . 1

3 . . 1
3 . . . . . . . . . . .

. . . . . . . . . . 1
3 . . 1

3 . . 1
3 . . . . . . . . . .

. . . . . . . . . . . 1
3 . . 1

3 . . 1
3 . . . . . . . . .

. . . . . . . . . . . . . . . . . . 1
3 . . 1

3 . . 1
3 . .

. . . . . . . . . . . . . . . . . . . 1
3 . . 1

3 . . 1
3 .

. . . . . . . . . . . . . . . . . . . . 1
3 . . 1

3 . . 1
3

. . . . . . . . . . . . . . . . . . 1
3 . . 1

3 . . 1
3 . .

. . . . . . . . . . . . . . . . . . . 1
3 . . 1

3 . . 1
3 .

. . . . . . . . . . . . . . . . . . . . 1
3 . . 1

3 . . 1
3

. . . . . . . . . . . . . . . . . . 1
3 . . 1

3 . . 1
3 . .

. . . . . . . . . . . . . . . . . . . 1
3 . . 1

3 . . 1
3 .

. . . . . . . . . . . . . . . . . . . . 1
3 . . 1

3 . . 1
3

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

⊗E(2, 3)

T(3, 4) =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
3

1
3

1
3 . . . . . . . . . . . . . . . . . . . . . . . .

1
3

1
3

1
3 . . . . . . . . . . . . . . . . . . . . . . . .

1
3

1
3

1
3 . . . . . . . . . . . . . . . . . . . . . . . .

. . . 1
3

1
3

1
3 . . . . . . . . . . . . . . . . . . . . .

. . . 1
3

1
3

1
3 . . . . . . . . . . . . . . . . . . . . .

. . . 1
3

1
3

1
3 . . . . . . . . . . . . . . . . . . . . .

. . . . . . 1
3

1
3

1
3 . . . . . . . . . . . . . . . . . .

. . . . . . 1
3

1
3

1
3 . . . . . . . . . . . . . . . . . .

. . . . . . 1
3

1
3

1
3 . . . . . . . . . . . . . . . . . .

. . . . . . . . . 1
3

1
3

1
3 . . . . . . . . . . . . . . .

. . . . . . . . . 1
3

1
3

1
3 . . . . . . . . . . . . . . .

. . . . . . . . . 1
3

1
3

1
3 . . . . . . . . . . . . . . .

. . . . . . . . . . . . 1
3

1
3

1
3 . . . . . . . . . . . .

. . . . . . . . . . . . 1
3

1
3

1
3 . . . . . . . . . . . .

. . . . . . . . . . . . 1
3

1
3

1
3 . . . . . . . . . . . .

. . . . . . . . . . . . . . . 1
3

1
3

1
3 . . . . . . . . .

. . . . . . . . . . . . . . . 1
3

1
3

1
3 . . . . . . . . .

. . . . . . . . . . . . . . . 1
3

1
3

1
3 . . . . . . . . .

. . . . . . . . . . . . . . . . . . 1
3

1
3

1
3 . . . . . .

. . . . . . . . . . . . . . . . . . 1
3

1
3

1
3 . . . . . .

. . . . . . . . . . . . . . . . . . 1
3

1
3

1
3 . . . . . .

. . . . . . . . . . . . . . . . . . . . . 1
3

1
3

1
3 . . .

. . . . . . . . . . . . . . . . . . . . . 1
3

1
3

1
3 . . .

. . . . . . . . . . . . . . . . . . . . . 1
3

1
3

1
3 . . .

. . . . . . . . . . . . . . . . . . . . . . . . 1
3

1
3

1
3

. . . . . . . . . . . . . . . . . . . . . . . . 1
3

1
3

1
3

. . . . . . . . . . . . . . . . . . . . . . . . 1
3

1
3

1
3

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

⊗E(3, 4)

In each of these cases we have an update of the values of one of the three
variables d, g and o together with a (deterministic) transfer control from one
label to the next implemented via a matrix unit E(1, 2), E(2, 3) and E(3, 4).

After that we have to consider the projections which implement the guard
of the first while loop. If the current state of the variables d, g and o fulfils
the condition that (o == g) || (o ==d) then we transfer control to label 5,
otherwise to label 6. The filter or projections which determine which control



transfer will be executed are diagonal matrices such that the transfer operators
are given by:

T(4, 5) =diag
(

1 0 0 1 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 0 1 0 1 1 0 0 1
)
⊗E(4, 5)

and

T(4, 6) =diag
(

0 1 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0 0 0 1 0 1 0 0 1 1 0
)
⊗E(4, 6).

The single statement labelled with 5 is a deterministic update and is com-
bined with a return to the guard of the loop labelled with 4, i.e.

T(5, 4) =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

. 1 . . . . . . . . . . . . . . . . . . . . . . . . .

. . 1 . . . . . . . . . . . . . . . . . . . . . . . .
1 . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 1 . . . . . . . . . . . . . . . . . . . . . .
. . . . . 1 . . . . . . . . . . . . . . . . . . . . .
. . . 1 . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 1 . . . . . . . . . . . . . . . . . . .
. . . . . . . . 1 . . . . . . . . . . . . . . . . . .
. . . . . . 1 . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 1 . . . . . . . . . . . . . . . .
. . . . . . . . . . . 1 . . . . . . . . . . . . . . .
. . . . . . . . . 1 . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 1 . . . . . . . . . . . . .
. . . . . . . . . . . . . . 1 . . . . . . . . . . . .
. . . . . . . . . . . . 1 . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 1 . . . . . . . . . .
. . . . . . . . . . . . . . . . . 1 . . . . . . . . .
. . . . . . . . . . . . . . . 1 . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 1 . . . . . . .
. . . . . . . . . . . . . . . . . . . . 1 . . . . . .
. . . . . . . . . . . . . . . . . . 1 . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 1 . . . .
. . . . . . . . . . . . . . . . . . . . . . . 1 . . .
. . . . . . . . . . . . . . . . . . . . . 1 . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 1 .
. . . . . . . . . . . . . . . . . . . . . . . . . . 1
. . . . . . . . . . . . . . . . . . . . . . . . 1 . .

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

⊗E(5, 4)

If we are not switching doors then we can construct essentially with these
matrices the full LOS semantics of Ht. For the switching strategy we also need to
execute the switch. This starts with the statement at label 6 which its associated
control step from label 6 to 7.

T(6, 7) =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

. . . 1 . . . . . . . . . . . . . . . . . . . . . . .

. . . . 1 . . . . . . . . . . . . . . . . . . . . . .

. . . . . 1 . . . . . . . . . . . . . . . . . . . . .

. . . . . . 1 . . . . . . . . . . . . . . . . . . . .

. . . . . . . 1 . . . . . . . . . . . . . . . . . . .

. . . . . . . . 1 . . . . . . . . . . . . . . . . . .
1 . . . . . . . . . . . . . . . . . . . . . . . . . .
. 1 . . . . . . . . . . . . . . . . . . . . . . . . .
. . 1 . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 1 . . . . . . . . . . . . . .
. . . . . . . . . . . . . 1 . . . . . . . . . . . . .
. . . . . . . . . . . . . . 1 . . . . . . . . . . . .
. . . . . . . . . . . . . . . 1 . . . . . . . . . . .
. . . . . . . . . . . . . . . . 1 . . . . . . . . . .
. . . . . . . . . . . . . . . . . 1 . . . . . . . . .
. . . . . . . . . 1 . . . . . . . . . . . . . . . . .
. . . . . . . . . . 1 . . . . . . . . . . . . . . . .
. . . . . . . . . . . 1 . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 1 . . . . .
. . . . . . . . . . . . . . . . . . . . . . 1 . . . .
. . . . . . . . . . . . . . . . . . . . . . . 1 . . .
. . . . . . . . . . . . . . . . . . . . . . . . 1 . .
. . . . . . . . . . . . . . . . . . . . . . . . . 1 .
. . . . . . . . . . . . . . . . . . . . . . . . . . 1
. . . . . . . . . . . . . . . . . . 1 . . . . . . . .
. . . . . . . . . . . . . . . . . . . 1 . . . . . . .
. . . . . . . . . . . . . . . . . . . . 1 . . . . . .

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

⊗E(6, 7)

After this we have another loop which is guarded by the test g == o labelled
with 7. To implement this we need again two diagonal matrices which allow us
to construct

T(7, 8) =
(

1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1
)
⊗E(7, 8)



and

T(7, 9) =
(

0 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1 1 0
)
⊗E(7, 9)

Finally, we only need the LOS semantics of the single statement which makes
up the loop we have to avoid changing our guess to the already open door. The
matrix for this is given by

T(8, 7) =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

. . . 1 . . . . . . . . . . . . . . . . . . . . . . .

. . . . 1 . . . . . . . . . . . . . . . . . . . . . .

. . . . . 1 . . . . . . . . . . . . . . . . . . . . .

. . . . . . 1 . . . . . . . . . . . . . . . . . . . .

. . . . . . . 1 . . . . . . . . . . . . . . . . . . .

. . . . . . . . 1 . . . . . . . . . . . . . . . . . .
1 . . . . . . . . . . . . . . . . . . . . . . . . . .
. 1 . . . . . . . . . . . . . . . . . . . . . . . . .
. . 1 . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 1 . . . . . . . . . . . . . .
. . . . . . . . . . . . . 1 . . . . . . . . . . . . .
. . . . . . . . . . . . . . 1 . . . . . . . . . . . .
. . . . . . . . . . . . . . . 1 . . . . . . . . . . .
. . . . . . . . . . . . . . . . 1 . . . . . . . . . .
. . . . . . . . . . . . . . . . . 1 . . . . . . . . .
. . . . . . . . . 1 . . . . . . . . . . . . . . . . .
. . . . . . . . . . 1 . . . . . . . . . . . . . . . .
. . . . . . . . . . . 1 . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 1 . . . . .
. . . . . . . . . . . . . . . . . . . . . . 1 . . . .
. . . . . . . . . . . . . . . . . . . . . . . 1 . . .
. . . . . . . . . . . . . . . . . . . . . . . . 1 . .
. . . . . . . . . . . . . . . . . . . . . . . . . 1 .
. . . . . . . . . . . . . . . . . . . . . . . . . . 1
. . . . . . . . . . . . . . . . . . 1 . . . . . . . .
. . . . . . . . . . . . . . . . . . . 1 . . . . . . .
. . . . . . . . . . . . . . . . . . . . 1 . . . . . .

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

⊗E(8, 7)

Note that the update part of T(8, 7) is exactly the same as for T(6, 7). This
reflects the fact that we have the same statement at label 6 and 8: g := (g+1)%3.
The LOS semantics is compositional and syntax directed, it treats syntactically
equivalent parts in exactly the same way. The only difference between T(8, 7)
and T(6, 7) is the different “continuation” after the update.

The final [stop]` statement will just introduce an infinite loop on the ter-
minal state we have reached (in order to “preserve” the final result). It is imple-
mented both for the program Ht as well as for the program Hw as the matrix
I⊗E(`, `).

Putting everything together we get the LOS semantics for both programs as;

T(Hs) = T(1, 2) + T(2, 3) + T(3, 4) + T(4, 5) + T(5, 4) + T(4, 6) +
+ I⊗ E(6, 6)

and

T(Hw) = T(1, 2) + T(2, 3) + T(3, 4) + T(4, 5) + T(5, 4) + T(4, 6) +
+ T(6, 7) + T(7, 8) + T(8, 7) + T(7, 9) + I⊗ E(9, 9)

This is for Ht a (27 ·5)×(27 ·5) = 162×162 matrix and for Ht a (27 ·9)×(27 ·
9) = 243×243 matrix which we omit to present in full. These matrices encode all
possible transitions between all (potentially) reachable configurations. For any
probabilistic state, i.e. distributions over State, we can construct the successor
configuration using just this matrices.



4 Probabilistic Static Analysis

Program analysis is a collection of techniques to predict in advance what will
happen when a program is executed. Classically, such information could be used
to optimise the code produced by a compiler; more recently this has formed the
basis for the automatic debugging, verification and certification of code. Since
well known un-decidability results tell us that it is impossible to know every-
thing about the behaviour of every program, we can only aim for partial answers
to some of the questions. Program analysis techniques allows us to obtain such
partial answers via the use of approximation and abstraction aiming at reduc-
ing/simplifying the problem under consideration. It is now widely recognised
that considering probabilistic information allows one to obtain more precise and
practically useful results from a static analysis. Statistical or other types of in-
formation can be encoded in the form of probabilities in the program semantics
and used to weight the execution paths according to their likelihood to actu-
ally be executed. We will show here how one of the basic techniques of static
analysis, namely Abstract Interpretation, can be extended so as to include quan-
titative information in the form of both probabilities associated to the analysed
programs, and estimates of the precision of the resulting analyses.

4.1 Classical Abstract Interpretation

The basic idea behind abstract interpretation is to analyse a program not in
terms of its standard or concrete semantics, but rather in terms of an appropri-
ately simplified approximated or abstract semantics, which only registers aspects
of the program which are of relevance with respect to a specific analysis (cf. [19,
20, 15]). Typically these aspects are encoded in the definition of an abstract
domain, which is usually structured, like the concrete domain, as a complete
partially ordered set.

The idea is to execute the program using abstract instead of concrete values
to describe the current state or configuration. For an informal introduction let
us consider the factorial programs.

Example 6 (Factorial). Considering the two programs in Example 2 we get the
following labelling:

var
m : {0..2};
n : {0..2};

begin
[m := 1]1;
while [(n>1)]2 do
[m := m*n]3;;
[n := n-1]4;;

od;
[stop]5;
end

var
m : {0..2};
n : {0..2};

begin
[m := 2]1;
while [(n>1)]2 do
[m := m*n]3;
[n := n-1]4;

od;
[stop]5;
end



The idea is now to analyse the properties of the states during the execution
of the program rather than the actual or concrete values of the variables. To
demonstrate this idea let us look at the parity of the variables, i.e. whether they
are even or odd.

The abstract property we are interested in is the description of the possible
parities of the variables m and n: If we can guarantee that a variable is always
‘even’ when we reach a certain program point then we associate to it the abstract
value or property even; if on the other hand we are certain that a variable is
always ‘odd’, then we use odd as its abstract value. However, we also have to
take care of the case when we are not sure about the parity of a variable: it
could be sometimes even or sometimes odd. We use the value > to indicate this
ambiguous situation. We can distinguish this situation from another kind of
unknown value ⊥ we use to handle non-initialised variables which are neither
even nor odd. This situation can be formalised using the notion of a lattice L,
cf. [21]:

>

DD
DD

DD
DD

yy
yy

yy
yy

y

even

EE
EE

EE
EE

E odd

zz
zz

zz
zz

⊥
which expresses the relation between abstract values as an order relation, e.g.
> is more general than even and odd, i.e. if we know that a variable could be
even and odd then the general statement which describes its (abstract) value is
to say that its parity is ambiguous or >. We can interprete this property lattice
also as the power-set of {even,odd}, i.e. L = P({even,odd}), identifying
> = {even,odd} and ⊥ = ∅ and ordered by inclusion “⊆”.

We now consider the abstract execution of the “double factorial” program
(on the left-hand side above). Two cases are possible: One where the guard
in label 2 fails, and one where we enter the loop. The abstract values we can
associate in these two cases (assuming that we start with unknown rather than
non-initialised values) are:

1 : m 7→ >, n 7→ >
2 : m 7→ even, n 7→ >
3 :
4 :
5 : m 7→ even, n 7→ >

1 : m 7→ >, n 7→ >
2 : m 7→ even, n 7→ >
3 : m 7→ even, n 7→ >
4 : m 7→ even, n 7→ >
5 : m 7→ even, n 7→ >

We observe that the parity of n remains ambiguous throughout the execution of
the program. However, whether or not the loop is executed, the parity of m will
always be even when we reach the final label 5: If we omit the loop then the even
value 2 we assigned to m is directly used; if we execute the loop, then m enters
the loop at the first iteration with an even value and remains even despite the
fact that in label 3 it is multiplied with an unknown n because we know that the



product of an even number with any number results again in an even number.
In any subsequent iteration the same argument holds. Thus, whenever the loop
terminates, we will always be certain that m is even when we reach label 5. The
“double factorial” always produces an even result.

If we consider the program on the right-hand side, which implements the
simple “factorial” then our arguments break down. The abstract executions in
this case give us:

1 : m 7→ >, n 7→ >
2 : m 7→ odd, n 7→ >
3 :
4 :
5 : m 7→ odd, n 7→ >

1 : m 7→ >, n 7→ >
2 : m 7→ odd, n 7→ >
3 : m 7→ >, n 7→ >
4 : m 7→ >, n 7→ >
5 : m 7→ >, n 7→ >

If the loop is not executed we can guarantee that m is odd; but if we execute the
loop then we have to multiply (in the first iteration) an odd m with an unknown
n and we cannot guarantee any particular parity for m from then on. As a result
the analysis will return > for the parity of m at label 5.

The factorial indeed may give an odd value (for 0 and 1) but it is obvious
that for “most” values of n it will be an even number. The classical analysis
is conservative and unable to extract this information. The remainder of these
notes aims in developing a framework which allows for a formal analysis which
captures such a “probabilistic” intuition.

A detailed formal discussion of the relation between the concrete values of m
and n as sub-sets of Z, i.e. as elements in the power-set P(Z) (which also forms
a lattice in a canonical way via the sub-set relation) and their abstract values
in L is beyond the the scope of these notes. For our purposes, it is sufficient to
say that there exists a abstraction function α between the concrete and abstract
values of m and n and a formal way to define an abstract semantics describing our
factorial programs in terms of these abstract values by constructing the “right”
concretisation function γ.

In the standard theory of abstract interpretation, which was introduced by
Cousot & Cousot 30 years ago [22, 23], the correctness of an abstract semantics
is guaranteed by ensuring that we have a pair of functions α and γ which form
a Galois connection between two lattices C and D representing concrete and
abstract properties.

Definition 1. Let C = (C,≤C) and D = (D,≤D) be two partially ordered set
(e.g. lattices). If there are two functions α : C 7→ D and γ : D 7→ C such that for
all c ∈ C and all d ∈ D:

c ≤C γ(d) iff α(c) ≤D d,

then (C, α, γ,D) forms a Galois connection.

The intended meaning is that an abstract element d approximates a concrete
one c if c ≤C γ(d) or equivalently (by adjunction) if α(c) ≤D d. Therefore,



the concrete value corresponding to an abstract denotation d is γ(d), while the
adjunction guarantees that α(c) is the best possible approximation of c in D
(because whenever d is a correct approximation of c, then α(c) ≤D d).

An abstract function f# : D 7→ D is a correct approximation of a concrete
function f : C 7→ C if

α ◦ f ≤A f# ◦ α
If α and γ form a Galois connection then correctness is automatically guaranteed.
The important case is when f describes the (concrete) semantics of a program.
An easy way to define a correct abstract function (e.g. a semantics) f# is to
induce it simply via f# = α ◦ f ◦ γ.

An alternative characterisation of a Galois connection is as follows:

Theorem 1. Let C = (C,≤C) and D = (D,≤D) be two partially ordered set
together with two functions α : C 7→ D and γ : D 7→ C. Then (C, α, γ,D) form a
Galois connection iff

1. α and γ are order-preserving,
2. α ◦ γ is reductive (i.e. for any d ∈ D, α ◦ γ(d) ≤D d),
3. γ ◦ α is extensive (i.e. for any c ∈ C, c ≤C γ ◦ α(c)).

A further important property of Galois connections guarantees that the ap-
proximation of a concrete semantics by means of two functions α and γ related
by a Galois connection is not only safe but also conservative in as far as repeat-
ing the abstraction or the concretisation gives the same results as by a single
application of these functions. Formally, this property is expressed by the fol-
lowing proposition: Let (C, α, γ,D) be a Galois connection, then α and γ are
quasi-inverse, i.e. α ◦ γ ◦ α = α, and γ ◦ α ◦ γ = γ.

4.2 Probabilistic Abstract Interpretation

The general approach for constructing simplified versions of a concrete (collect-
ing) semantics via abstract interpretation is based on order-theoretic and not
on linear structures. One can define a number of orderings (lexicographic, etc.)
as an additional structure on a given vector space, and then use this order to
compute over- or under-approximations using classical Abstract Interpretation.

Though such approximations will always be safe, they might also be quite
unrealistic, addressing a worst case scenario rather than the average case [24].
Furthermore, there is no canonical order on a vector space (e.g. the lexicographic
order depends on the base). In order to provide probabilistic estimates we have
previously introduced, cf. [1, 25], a quantitative version of the Cousot & Cousot
framework, which we have called Probabilistic Abstract Interpretation (PAI).

The PAI approach is based, as in the classical case, on a concrete and abstract
domain C and D – except that C and D are now vector spaces (or in general,
Hilbert spaces) instead of lattices. We assume that the pair of abstraction and
concretisation function α : C → D and γ : D → C are again structure preserving,
i.e. in our setting they are (bounded) linear maps represented by matrices A
and G. Finally, we replace the notion of a Galois connection by the notion of a
Moore-Penrose pseudo-inverse.



Definition 2. Let C and D be two finite dimensional vector spaces, and let
A : C → D be a linear map between them. The linear map A† = G : D → C is
the Moore-Penrose pseudo-inverse of A iff

A ◦G = PA and G ◦A = PG

where PA and PG denote orthogonal projections (i.e. P∗A = PA = P2
A and

P∗G = PG = P2
G where .∗ denotes the adjoint [11, Ch 10]) onto the ranges of A

and G.

Alternatively, if A is Moore-Penrose invertible, its Moore-Penrose pseudo-
inverse, A† satisfies the following:

(i) AA†A = A,
(ii) A†AA† = A†,
(iii) (AA†)∗ = AA†,
(iv) (A†A)∗ = A†A.

It is instructive to compare these equations with the classical setting. For ex-
ample, if (α, γ) is a Galois connection we similarly have α ◦ γ ◦ α = α and
γ ◦ α ◦ γ = γ.

This allows us to construct the closest (i.e. least square, see for example [26,
27]) approximation T# : D → D of the concrete semantics T : C → C as:

T# = G ·T ·A = A† ·T ·A = A ◦T ◦G.

As our concrete semantics is constructed using tensor products it is impor-
tant that the Moore-Penrose pseudo-inverse of a tensor product can easily be
computed as follows [27, 2.1,Ex 3]:

(A1 ⊗A2 ⊗ . . .⊗An)† = A†1 ⊗A†2 ⊗ . . .⊗A†n.

Example 7 (Parity). Let us consider as abstract and concrete domains C =
V({−n, . . . , n}) and D = V({even, odd}). The abstraction operator Ap and its
concretisation operator Gp = A†p corresponding to a parity analysis are repre-
sented by the following n × 2 and 2 × n matrices (assuming w.l.o.g. that n is
even) with .T denoting the matrix transpose, (AT )ij = (A)ji:

Ap =



1 0
0 1
1 0
0 1
...

...
1 0


A†p =

(
1

n+1 0 1
n+1 0 . . . 1

n+1

0 1
n 0 1

n . . . 0

)

The concretisation operator A†p represents uniform distributions over the n+ 1
even numbers in the range −n, . . . , n (as the first row) and the n odd numbers
in the same range (in the second row).



Example 8 (Sign). With C = V({−n, . . . , 0, . . . , n}) and D = V({−, 0,+}) we
can represent the usual sign abstraction by the following matrices:

As =



1 0 0
...

...
...

1 0 0
0 1 0
0 0 1
...

...
...

0 0 1


A†s =

 1
n . . .

1
n 0 0 . . . 0

0 . . . 0 1 0 . . . 0
0 . . . 0 0 1

n . . .
1
n



Example 9 (Forget). We can also abstract all details of the concrete semantics.
Although this is in general a rather unusual abstraction it is quite useful in the
context of a tensor product state and/or abstraction. Let the concrete domain be
the vector space over any range, i.e. C = V({n, . . . , 0, . . . ,m}), and the abstract
domain a one dimensional space D = V({?}). Then the forgetful abstraction and
concretisation can be defined by:

AT
f =

(
1 1 1 . . . 1

)
A†f =

(
1

m−n+1
1

m−n+1
1

m−n+1 . . .
1

m−n+1

)
For any matrix M operating on C = V({n, . . . , 0, . . . ,m}) the abstraction A†f ·M·
Af gives a one dimensional matrix, i.e. a single scalar µ. For stochastic matrices,
such as our T generating the DTMC representing the concrete semantics we
have: µ = 1. If we consider a tensor product of two matrices M ⊗N, then the
abstraction Af ⊗ I extracts (essentially) N,

(Af ⊗ I)† · (M⊗N) · (Af ⊗ I) =

= (A†f ⊗ I†) · (M⊗N) · (Af ⊗ I) =

= (A†f ·M ·Af )⊗ (I ·N · I) =
= µ⊗N = µN.

4.3 Abstract LOS Semantics

The abstract semantics T#(P ) of a program P is constructed exactly like the
concrete one, except that we will use abstract tests and update operators. This
is possible as abstractions and concretisations distribute over sums and tensor
products. More precisely, we can construct T# for a program P as:

T#(P ) =
∑

〈i,pij ,j〉∈F(P )

pij ·T#(`i, `j)

where the transfer operator along a computational step from label `i to `j can be
abstracted “locally”: Abstracting each variable separately and using the concrete
control flow we get the operator

A = (
v⊗
i=1

Ai)⊗ I = A1 ⊗A2 ⊗ . . .⊗Av ⊗ I.



Then the abstract transfer operator T#(`i, `j) can be defined as:

T#(`i, `j) = (A†1Ni1A1)⊗ (A†2Ni2A2)⊗ . . .⊗ (A†vNivAv)⊗E(`i, `j).

This operator implements the (abstract) effect to each of the variables in the
individual statement at `i and combines it with the concrete control flow. This
follows directly from a short calculation:

T# = A†TA =

= A†(
∑
i,j

pij ·T(`i, `j))A =

=
∑
i,j

pij · (A†T(`i, `j)A) =

=
∑
i,j

pij · (
⊗
k

Ak ⊗ I)†T(`i, `j)(
⊗
k

Ak ⊗ I) =

=
∑
i,j

pij · (
⊗
k

A†k ⊗ I†)(
⊗
k

Nik ⊗E(`i, `j))(
⊗
k

Ak ⊗ I) =

=
∑
i,j

pij ·
⊗
k

(A†kNikAk)⊗E(`i, `j).

It is of course also possible to abstract the control flow, or to use abstractions
which abstract several variables at the same time, e.g. by specifying the abstract
state via the difference of two variables. The dramatic reduction in size, i.e. di-
mensions, achieved via PAI illustrated also by the examples in these notes lets
us hope that our approach could ultimately lead to scalable analyses, despite
the fact that the concrete semantics is non-feasibly large. As many people have
observed – the use of tensor products or similar constructions in probabilistic
models leads to a combinatorial explosion of the size of the formal model. How-
ever, the PAI approach allows us to keep some control and to obtain reasonably
sized abstract models. Further work in the form of practical implementations
and experiments is needed to decide whether this is indeed the case.

The LOS represents the SOS via the generator of a DTMC. It describes
the stepwise evolution of the state of a computation and does not provide a
fixed-point semantics. Therefore, neither in the concrete nor in the abstract case
can we guarantee that limn→∞(T(P ))n or limn→∞(T(P )#)n always exist. The
analysis of a program P based on the abstract operator T(P )# is considerably
simpler than by considering the concrete one but still not entirely trivial. Vari-
ous properties of T(P )# can be extracted by iterative methods (e.g. computing
limn→∞(T(P )#)n or some averages). As often in numerical computation, these
methods will converge only for n → ∞ and any result obtained after only a
finite number of steps will only be an approximation. However, one can study
stopping criteria which guarantee a certain quality of this approximation. The
development or adaptation of iterative methods and formulation of appropri-
ate stopping criteria might be seen as the numerical analog to widening and
narrowing techniques within the classical setting.



4.4 Classical vs Probabilistic Abstract Interpretation

Classical abstract interpretation and probabilistic abstract interpretation pro-
vide “approximations” for different mathematical structures, namely partial or-
ders vs vector spaces. In order to illustrate and compare their features we there-
fore need a setting where the domain in question in some way naturally provides
both structures. One such situation is in the context of classical function inter-
polation or approximation.

The set of real-valued functions on a real interval [a, b] obviously comes with
a canonical partial order, namely the point-wise ordering, and at the same time
is equipped with a vector space structure, where again addition and scalar mul-
tiplication are defined point-wise. Some care has to be taken in order to define
an inner product – which we need to obtain a Hilbert space structure, e.g. one
could consider only the square integrable functions L2([a, b]). In order to avoid
mathematical (e.g. measure-theoretic) details we simplify the situation by just
considering the step functions on the interval [a, b].

For a (closed) real interval [a, b] ⊆ R we call the set of subintervals [ai, bi] with
i = 1, . . . , n the n-subdivision of [a, b] if

⋃n
i=1[ai, bi] = [a, b] and bi− ai = b−a

n for
all i = 1, . . . , n. We assume that the sub-intervals are enumerated in the obvious
way, i.e. ai < bi = ai+1 < bi+1 for all i and in particular that a = a1 and bn = b.

Definition 3. The set of n-step functions Tn([a, b]) on [a, b] is the set of real-
valued functions f : [a, b]→ R such that f is constant on each subinterval (ai, bi)
in the n-subdivision of [a, b].

We define a partial order on Tn([a, b]) in the obvious way for f, g ∈ Tn([a, b]):

f v g iff f(
bi − ai

2
) ≤ g(

bi − ai
2

), for all 1 ≤ i ≤ n

i.e. iff the value of f (which we obtain by evaluating it on the mid-point in
(ai, bi)) on all subintervals (ai, bi) is less or equal to the value of g.

It is also obvious to see that Tn([a, b]) has a vector space structure isomorphic
to Rn and thus is also provided with an inner product. More concretely we
define the vector space operations . · . : R × Tn([a, b]) → Tn([a, b]) and . + . :
Tn([a, b])× Tn([a, b])→ Tn([a, b]) pointwise as follows:

(α · f)(x) = αf(x)

(f + g)(x) = f(x) + g(x)

for all α ∈ R, f, g ∈ Tn([a, b]) and x ∈ [a, b]. The inner product is given by:

〈f, g〉 =
n∑
i=1

f(
bi − ai

2
)g(

bi − ai
2

).

In this setting we now can apply and compare both the classical and the
quantitative version of abstract interpretation as in the following example.



Example 10. Let us consider a step function f in T16 (the concrete values of a
and b don’t really play a role in our setting) which can be depicted as:

a b
0
1
2
3
4
5
6
7
8
9
10

We can also represent f by the vector in R16:(
5 5 6 7 8 4 3 2 8 6 6 7 9 8 8 7

)
We then construct a series of abstractions which correspond to coarser and
coarser sub-divisions of the interval [a, b], e.g. considering 8, 4 etc. subintervals
instead of the original 16. These abstractions are from T16([a, b]) to T8([a, b]),
T4([a, b]) etc. and can be represented by 16× 8, 16× 4, etc. matrices. For exam-
ple, the abstraction which joins two sub-intervals and which corresponds to the
abstraction α8 : T16([a, b])→ T8([a, b]) together with its Moore-Penrose pseudo-
inverse is represented by:

A8 =



1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1



G8 =



1
2

1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1
2

1
2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1
2

1
2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1
2

1
2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
2

1
2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1
2

1
2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
2

1
2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2

1
2



With the help of Aj , j ∈ {1, 2, 4, 8}, we can easily compute the abstraction
of f as fAj , which in order to compare it with the original f we can then again



concretise using G, i.e. computing fAG. In a similar way we can also compute
the over- and under-approximation of f in Ti based on the above pointwise
ordering and its reverse ordering. The result of these abstractions is depicted
geometrically in Figure 1.

With the help of Aj , j ∈ {1, 2, 4, 8}, we can easily compute the abstraction
of f as fAj , which in order to compare it with the original f we can then again
concretise using G, i.e. computing fAG. In a similar way we can also compute
the over- and under-approximation of f in Ti based on the above pointwise
ordering and its reverse ordering. The result of these abstractions is depicted
geometrically in Figure 1.

The individual diagrams in this figure depict the original, i.e. concrete step
function f ∈ T16 together with its approximations in T8, T4, etc. On the left
hand side the PAI abstractions show how coarser and coarser interval subdi-
visions result in a series of approximations which try to interpolate the given
function as closely as possible, sometimes below, sometimes above the concrete
values. The diagrams on the right hand side depict the classical over- and under-
approximations: In each case the function f is entirely below or above these
approximations, i.e. we have safe but not necessarily close approximations. Ad-
ditionally, one can also see from these figures not only that the PAI interpolation
is in general closer to the original function than the classical abstractions (in fact
it is the closest possible) but also that the PAI interpolation is always between
the classical over- and under-approximations.

The vector space framework also allows us to judge the quality of an ab-
straction or approximation via the Euclidian distance between the concrete and
abstract version of a function. We can compute the least square error as

‖f − fAG‖.

In our case we get for example:

‖f − fA8G8‖ = 3.5355
‖f − fA4G4‖ = 5.3151
‖f − fA2G2‖ = 5.9896
‖f − fA1G1‖ = 7.6444

which illustrates, as expected, that the coarser our abstraction is the larger is
also the mistake or error.

4.5 Examples

We conclude by discussing in detail how probabilistic abstraction allows us to
analyse the properties of programs. In the first example we are going to present,
the aim is to reduce the size (dimension) of the concrete semantics so as to allow
for an immediate understanding of the results of a computation. The second
example will look more closely at the efficiency of an analysis, i.e. how PAI



Probabilistic Abstract Interpretation Classical Abstract Interpretation

T8

T4

T2

T1

Fig. 1. Average, Over- and Under-Approximation



can be deployed in order to beat the combinatorial explosion or the curse of
dimensionality.

Example 11 (Monty Hall). We have already investigated the LOS semantics of
the Monty Hall program in Example 5. We still have to analyse whether it is Ht

or Hw that implements the better strategy. In principle, we can do this using
the concrete semantics we constructed above. However, it is rather cumbersome
to work with “relatively large” 162× 162 or 243× 243 matrices, even when they
are sparse, i.e. contain almost only zeros (in fact only about 1.2% of entries in
Ht and 0.7% of entries in Hw are non-zero).

If we want to analyse the final states, i.e. which of the two programs has a
better chance of getting the right door, we need to start with an initial config-
uration and then iterate T(H) until we reach a/the final configuration. For our
programs it is sufficient to indicate that we start in label 1, while the state is
irrelevant as we initialise all three variables at the beginning of the program; we
could take – for example – a state with d = o = g = 0. The vector or distribution
which describes this initial configuration is a 162 or 243 dimensional vector. We
can describe it in a rather compact form as:

x0 =
(

1 0 0
)
⊗
(

1 0 0
)
⊗
(

1 0 0
)
⊗
(

1 0 0 . . . 0
)
,

where the last factor is 6 or 9 dimensional, depending on whether we deal with Ht

or Hw. This represents a point distribution on 162 or 243 relevant distributions.
Assuming that our program terminates for all initial states, as it is the case

here, then there exists a certain number of iterations t such that x0T(H)t =
x0T(H)t+1, i.e. we will eventually reach a fix-point which gives us a distribution
over configurations. In general, as in our case here, this will not be just a point
distribution. Again we get vectors of dimension 162 or 243, respectively. For Ht

and Hw there are 12 configurations which have non-zero probability.

for Ht



x12 = 0.074074
x18 = 0.037037
x36 = 0.11111
x48 = 0.11111
x72 = 0.11111
x78 = 0.037037
x90 = 0.074074
x96 = 0.11111
x120 = 0.11111
x132 = 0.11111
x150 = 0.074074
x156 = 0.037037

for Hw



x18 = 0.11111
x27 = 0.11111
x54 = 0.037037
x72 = 0.074074
x108 = 0.074074
x117 = 0.11111
x135 = 0.11111
x144 = 0.037037
x180 = 0.037037
x198 = 0.074074
x225 = 0.11111
x234 = 0.11111

It is anything but easy to determine from this information which of the two
strategies is more successful. In order to achieve this we will abstract away all
unnecessary information. First, we ignore the syntactic information: If we are in
the terminal state, then we have reached the final stop state, but even if this



would not be the case we only need to know whether in the final state we have
guessed the right door, i.e. whether d==g or not. We thus also don’t need to
know the value of o as it ultimately is of no interest to us which door had been
opened during the game. Therefore, we can use the forgetful abstraction Af to
simplify the information contained in the terminal state. Regarding d and g we
want to know everything, and thus use the trivial abstraction A = I, i.e. the
identity. The result for Ht is for x the terminal configuration distribution:

x · (I⊗ I⊗Af ⊗Af ) =
(

0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
)

and for Hw we get:

x · (I⊗ I⊗Af ⊗Af ) =
(

0.22 0.04 0.07 0.07 0.22 0.04 0.04 0.07 0.22
)

The nine coordinates of these vectors correspond to (d 7→ 0, g 7→ 0), (d 7→ 0, g 7→
1), (d 7→ 0, g 7→ 2), (d 7→ 1, g 7→ 0), . . . , (d 7→ 2, g 7→ 2). This is in principle
enough to conclude that Hw is the better strategy.

However, we can go a step further and abstract not the values of d and g
but their relation, i.e. whether they are equal or different. For this we need the
abstraction:

Aw =



1 0
0 1
0 1
0 1
1 0
0 1
0 1
0 1
1 0


where the first column corresponds to a winning situation (i.e. d and g are equal),
and the second to unequal d and g. With this we get for Ht:

x · (Aw ⊗Af ⊗Af ) =
(

0.33333 0.66667
)

and for Hw

x · (Aw ⊗Af ⊗Af ) =
(

0.66667 0.33333
)

It is now obvious that Ht has just a 1
3 chance of winning, while Hw has a 2

3
probability of picking the winning door.

This example illustrates how abstraction can be used in order to obtain useful
information from a large collection of data – so to say, how to use abstractions to
do statistics. We did not utilise PAI here to simplify the semantics itself but only
the final results. We will now consider this issue in our second running example.

Example 12 (Factorial). Classical abstraction allows us to determine the parity
properties of the “double factorial” in Example 2. However, we cannot use it to
justify our intuition that even the plain factorial itself almost always produces
a even result. In order to do this, let us first consider the concrete semantics of
our program using the following labelling:



var
m : {0..2};
n : {0..2};

begin
[m := 1]1;
while [(n>1)]2 do
[m := m*n]3;
[n := n-1]4;

od;
[stop]5;
end

The flow of this program F is given as follows:

Flow(F ) = {(1, 1, 2), (2, 1, 3), (3, 1, 4), (4, 1, 2), (2, 1, 5), (5, 1, 5)}

The operator T(F ) is then constructed as

T(F ) = U(m← 1)⊗E(1, 2) +
P((n > 1))⊗E(2, 3) +
U(m← (m * n))⊗E(3, 4) +
U(n← (n - 1))⊗E(4, 2) +
P((n <= 1))⊗E(2, 5) +
I⊗E(5, 5)

using the matrices T(`, `′) = S(`) ⊗ E(`, `′) (where we indicate the then and
else branches again by underlining in the obvious way):

S(1) =



0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0


S(2) =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1



S(3) =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0


S(4) =



0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0





S(2) =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0


S(5) =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


Note that for the updates in label 3 and 4 we have “empty rows”, i.e. rows

where we have no non-zero entries. These correspond to over- and under-flows
as we are dealing only with finite values in Z. We could clarify the situation in
various ways, e.g. by introducing an additional value ⊥ for undefined (concrete)
values of variables, or by introducing an error configuration, etc. In the analysis
we present in this example these over- and under-flows do not play any relevant
role and we therefore leave things as they are – one should however keep in mind
that this violates the observation that T(F ) is a stochastic matrix.

The full operator representing the LOS semantics of this (small) factorial
program is given by a (3 · 3 · 5)× (3 · 3 · 5) = 45× 45 matrix:

T(F ) =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

. . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 .

. . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . .

. . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

We can now construct an abstract version T#(F ) of T(F ) by recording only
the parity of m as even and odd. We will not abstract n nor the labels defining



the current configuration during the execution. We thus get

T#(F ) = (Ap ⊗ I⊗ I)†T(F )(Ap ⊗ I⊗ I)

a (2 · 3 · 5)× (2 · 3 · 5) = 30× 30 matrix.
Though this abstract semantics does have some interesting properties, it ap-

pears to be only a minor improvement with regard to the concrete semantics:
We managed to reduce the dimension only from 45 to 30. However, the simplifi-
cation becomes substantially more dramatic once we increase the possible values
of m and n, and combinatorial explosion really takes a hold. If we allow n to
take values between 0 and n then we must allow for m values between 0 and n!.
Concrete values of the dimensions of T(F ) and T#(F ) are given in the following
table:

n dim(T(F )) dim(T#(F ))
2 45 30
3 140 40
4 625 50
5 3630 60
6 25235 70
7 201640 80
8 1814445 90
9 18144050 100

The problem is that the size of T(F ) explodes so quickly that it is impossible
to simulate it for values of n much larger than 5 on a normal PC. If we want
to analyse the abstract semantics, things remain much smaller. Importantly, we
can construct the abstract semantics in the same way as the concrete one, just
using “smaller” matrices:

T#(F ) = U#(m← 1)⊗E(1, 2) +
P#((n > 1))⊗E(2, 3) +
U#(m← (m * n))⊗E(3, 4) +
U#(n← (n - 1))⊗E(4, 2) +
P#((n <= 1))⊗E(2, 5) +
I# ⊗E(5, 5)

Fortunately, most of the operators T#(`, `′) are very easy to construct. These
matrices are 2 · (n+ 1) · 5× 2 · (n+ 1) · 5 = 10(n+ 1)× 10(n+ 1) matrices if we
consider the control transfer and only 2(n+ 1)×2n+ 1) matrices if we deal only
with the update of the current state. In principle we could abstract the T#(`, `′)
from their concrete versions T(`, `′) using our abstraction and its Moore-Penrose
pseudo-inverse as concretisation.

However, by considering the matrices T#(`, `′) in detail it is possible to
come up with an even more direct construction. Except for label 3 only either
m or n (but not both) are involved in each statement: We thus can express the



T#(`, `′)’s as tensor products of a 2× 2 and a (n+ 1)× (n+ 1) matrix.

U#(m← 1) =
(

0 1
0 1

)
⊗



1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 00 0 . . . 1



U#(n← (n-1)) =
(

1 0
0 1

)
⊗



0 0 0 0 . . . 0
1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 0



P#((n > 1)) =
(

1 0
0 1

)
⊗



0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1



P#((n <= 1)) =
(

1 0
0 1

)
⊗



1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 0



Finally, we need just to construct the update for label 3. It is easy to see that
for even m the result is again even and for odd m the parity of n determines the
parity of the resulting m. We can thus write this update as:

U#(m← (m * n)) =
(

1 0
0 0

)
⊗



1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1


+



+
(

0 0
1 0

)
⊗



1 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 0 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . .
. . .


+
(

0 0
0 1

)
⊗



0 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . .
. . .


With this we can now approximate the probabilistic properties of the factorial

function. In particular, if we look at the terminal configurations with the initial
abstract configuration:

x0 =
(

1
2

1
2

)
⊗
(

1
n+1 . . .

1
n+1

)
⊗
(

1 0 0 0 0
)

which corresponds to a uniform distribution over all possible abstract values
for our variables m and n (in fact, the part describing m could be any other
distribution) then we get as final probabilistic configuration:

x =
(
n−1
n+1

2
n+1

)
⊗
(

1
n+1

n
n+1 0 . . . 0

)
⊗
(

0 0 0 0 1
)

This expresses the fact that indeed in most cases (with probability n−1
n+1 ) we get

an even factorial – only in two cases out of n + 1 (for 0 and 1) we get an odd
result (namely 1). The final value of n is nearly always 1 except when we start
with 0 and we always reach the final statement with label 5.

If we start with the abstract initial state x0 above and execute T#(F ) until
we get a fix-pint x we can use (as before in the Monty Hall example) abstrac-
tions not to simplify the semantics but instead in order to extract the relevant
information. Concretely we can use:

A = I⊗Af ⊗Af

i.e. once we reached the terminal configuration (of the abstract execution) we
ignore the value of n and the final label ` and only concentrate on the abstract,
i.e. parity, values of m. Concretely we have to compute:

( lim
i→∞

x0 · (T#(F ))i) ·A

Note that we always reach the fix-point after a finite number of iterations
(namely at most n) so this can be computed in finite time. The concrete proba-
bilities we get are for various n are:

n even odd
10 0.81818 0.18182

100 0.98019 0.019802
1000 0.99800 0.0019980

10000 0.99980 0.00019998

We see that we can easily compute the final distribution on {even,odd} for
quite large n despite the fact that, as said, it is virtually impossible to compute
the explicit representation of the concrete semantics T(F ) already for n = 6.



Acknowledgements. These lecture notes are partly based on previously published
material in [18] and [24]. The example (matrices) in these notes were generated
using a parser written in ocaml and using octave [28].
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