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ABSTRACT
Thread-level parallelism in irregular applications with mu-
table data dependencies presents challenges because the un-
derlying data is extensively modified during execution of the
algorithm and a high degree of parallelism must be real-
ized while keeping the code race-free. In this article we de-
scribe a methodology for exploiting thread parallelism for
a class of graph-mutating worklist algorithms, which guar-
antees safe parallel execution via processing in rounds of
independent sets and using a deferred update strategy to
commit changes in the underlying data structures. Scalabil-
ity is assisted by atomic fetch-and-add operations to create
worklists and work-stealing to balance the shared-memory
workload. This work is motivated by mesh adaptation algo-
rithms, for which we show a parallel efficiency of 60% and
50% on IntelR©XeonR© Sandy Bridge and AMD OpteronTM

Magny-Cours systems, respectively, using these techniques.
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1. INTRODUCTION
Finite element/volume methods (FEM/FVM) are commonly
used in the numerical solution of partial differential equa-
tions (PDEs). Unstructured meshes, where the spatial do-
main has been discretised into simplices (i.e. triangles in
2D, tetrahedra in 3D), are of particular interest in applica-
tions where the geometric domain is complex and structured
meshes are not practical. Simplices are well suited to vary-
ing mesh resolution throughout the domain, allowing for lo-
cal coarsening and refinement of the mesh without hanging
nodes. On the other hand, this flexibility introduces compli-

cations of its own, such as management of mesh quality and
computational overheads arising from indirect addressing.

Computational mesh resolution is often the limiting factor in
simulation accuracy. Being able to accurately resolve physi-
cal processes at the small scale coupled with larger scale dy-
namics is key to improving the fidelity of numerical models
across a wide range of applications (e.g. [15, 20]). A diffi-
culty with mesh-based modelling is that the mesh is gener-
ated before the solution is known, however, the local solution
error is related to the local mesh resolution. Overly coarse
meshes lead to low accuracy whereas over-refined meshes
can greatly increase the computational cost.

Mesh adaptation methods provide an important means to
minimise computational cost while still achieving the re-
quired accuracy [16, 12]. In order to use mesh adaptation
within a simulation, the application code requires a method
to estimate the local solution error. Given an error estimate
it is then possible to compute a solution to a specified error
tolerance while using the minimum resolution everywhere in
the domain and maintaining element quality constraints.

Previous work has described how adaptive mesh methods
can be parallelised for distributed-memory systems using
MPI (e.g. [12, 10]). However, there is a continuous trend
towards an increasing number of cores per compute node in
the world’s most powerful supercomputers and it is assumed
that the nodes of a future exascale system will each contain
thousands of cores [7]. Therefore, it is important that algo-
rithms are developed with very high levels of parallelism and
using thread-parallel programming models, such as OpenMP
[5], that exploit the memory hierarchy. However, irregu-
lar applications are hard to parallelise effectively on shared-
memory architectures for reasons described in [13].

In this article we take a fresh look at anisotropic adaptive
mesh methods and parallelise them using new scalable tech-
niques suitable for modern multicore and manycore architec-
tures. These concepts have been implemented in the open
source framework PRAgMaTIc (Parallel anisotRopic Adap-
tive Mesh ToolkIt)1. The remainder of the paper is laid out
as follows: §2 gives an overview of the mesh adaptation pro-

1http://meshadaptation.github.io/



cedure; §3 describes the new irregular compute methodology
used to parallelise the adaptive algorithms; and §4 illustrates
how well our framework performs in 2D and 3D benchmarks.
We conclude the paper in §5.

2. MESH ADAPTIVITY BACKGROUND
In this section we give an overview of anisotropic mesh adap-
tation, focusing on the element quality as defined by an error
metric and the adaptation kernels which iteratively improve
local mesh quality as measured by the worst local element.

2.1 Error control
Solution discretisation errors are closely related to the size
and the shape of the elements. However, in general meshes
are generated using a priori information about the problem
under consideration when the solution error estimates are
not yet available. This may be problematic because (a) so-
lution errors may be unacceptably high and (b) parts of the
solution may be over-resolved, thereby incurring unneces-
sary computational expense. A solution to this is to compute
appropriate local error estimates and use them to dynam-
ically control the local mesh resolution at runtime. In the
most general case this is a metric tensor field so that the
resolution requirements can be specified anisotropically; for
a review of the procedure see [11].

2.2 Element quality
As discretisation errors are dependent upon element shape
as well as size, a number of measures of element quality have
been proposed, out of which, in the work described here, we
use the quality functionals by Vasilevskii et al. for trian-
gles [22] and tetrahedra [1], which indicate that the ideal
element is an equilateral triangle/tetrahedron with edges of
unit length measured in metric space.

2.3 Overall adaptation procedure
The mesh is adapted through a series of local operations:
edge collapse, edge refinement, element-edge swaps and ver-
tex smoothing. While the first two of these operations con-
trol the local resolution, the latter two are used to improve
the element quality. Algorithm 1 gives a high level view
of the anisotropic mesh adaptation procedure as described
by Li et al. [12]. The inputs are M, the piecewise linear
mesh from the modelling software, and S, the node-wise
metric tensor field which specifies anisotropically the local
mesh resolution requirements. The process involves the it-
erative application of coarsening, swapping and refinement
to optimise the resolution and quality of the mesh. The
loop terminates once the mesh optimisation algorithm con-
verges or after a maximum number of iterations has been
reached. Finally, mesh quality is fine-tuned using some ver-
tex smoothing algorithm, which aims primarily at improving
the worst-element quality. Smoothing is left out of the main
loop because it is an expensive operation and it is found
empirically that it is efficient to fine-tune the worst-element
quality once mesh topology has been fixed.

2.4 Adaptation kernels
A brief description of the four mesh optimisation kernels
follows. Figure 1 shows 2D examples to demonstrate what
each kernel does to the local mesh patch, but the same op-
erations are applied in an identical manner in 3D. For more

Algorithm 1 Mesh optimisation procedure.

Inputs: M, S.
repeat

(M∗,S∗)← coarsen(M∗, S∗)
(M∗,S∗)← swap(M∗, S∗)
(M∗,S∗)← refine(M∗, S∗)

until (max. number of iterations or convergence)
(M∗,S∗)← smooth(M∗, S∗)
return M∗

Coarsening Swapping

Smoothing Refinement

Figure 1: Examples of the four adaptive kernels.

details on the adaptive algorithms the reader is referred to
the publications by Li et al. [12] (coarsening, refinement,
swapping) and Freitag et al. [8, 9] (smoothing).

2.4.1 Coarsening
Coarsening is the process of lowering mesh resolution locally
by collapsing an edge to a single vertex, thereby removing
all elements that contain this edge, leading to a reduction in
the computational cost.

2.4.2 Refinement
Refinement is the process of increasing mesh resolution lo-
cally by (a) splitting of edges which are longer than desired
(as indicated by the error estimation) and (b) subsequent
division of elements using refinement templates [6].

2.4.3 Swapping
Swapping is done in the form of flipping an edge shared
by two elements, considering the quality of the swapped ele-
ments - if the minimum quality is improved then the original
mesh elements are replaced with the edge-swapped elements.

2.4.4 Smoothing
The kernel of vertex smoothing relocates a central vertex so
that the local mesh quality is increased. Common heuristic
methods are the quality-constrained Laplacian smoothing [8]
and the more expensive optimisation-based smoothing [9].

2.4.5 Propagation
The operations of coarsening, swapping and smoothing of-
ten need to be propagated to the local mesh neighbour-
hood. When a kernel is applied onto an edge/vertex, neigh-
bouring edges/vertices need to be reconsidered for process-
ing because the topological/geometrical changes that oc-
curred might give rise to new configurations of better quality.
Therefore, these adaptive algorithms keep sweeping over the
mesh until no further changes are made.



3. IRREGULAR COMPUTE METHOD
To allow fine grained parallelisation of mesh adaptation we
based our methodology on graph colouring, following a pro-
posal by Freitag et al. [10]. However, while this approach
avoids updates being applied concurrently to the same neigh-
bourhood, data writes will still incur significant lock and
synchronisation overheads. For this reason we incorporate
a deferred update strategy, described below, to minimise
synchronisations and allow parallel writes. Additionally, we
make use of atomic operations to create parallel worklists
in a synchronisation-free fashion and, finally, try to balance
the workload among threads using work-stealing [3].

3.1 Hazards
There are two types of hazards when running mesh optimi-
sation algorithms in parallel: topological hazards; and data
races. The former refers to the situation where an adaptive
operation results in invalid or non-conforming edges and el-
ements. For example in coarsening, if some vertex VB col-
lapses onto another vertex VA, then VA cannot collapse onto
some other vertex at the same time. Data races can oc-
cur when two threads try to update the same adjacency list
of a vertex concurrently. For example in coarsening, two
neighbours of some vertex VA can collapse onto VA concur-
rently, then VA’s adjacency list has to be updated to reflect
the changes made by the coarsening operations. Concurrent
access to VA’s adjacency list may lead to race conditions.

3.2 Colouring
Topological hazards for all adaptive algorithms are avoided
by colouring a graph whose nodes are defined by the mesh
vertices and edges are defined by the mesh edges. The adap-
tive algorithm then processes the mesh in batches of inde-
pendent sets. The fact that topological changes are made
to the mesh means that colouring is invalidated frequently
and the mesh has to be re-coloured before proceeding to the
next iteration of the adaptive algorithm. Therefore, we need
to use a fast and scalable colouring algorithm (see [18]).

3.3 Deferred Update
Colouring does not eliminate data races when updating ad-
jacency lists. A 2-distance colouring was not considered here
as it is expensive and increases the chromatic number, effec-
tively reducing the exposed parallelism. Instead, in a shared-
memory environment with N threads, each thread allocates
a private collection of N lists. When the adjacency list of
some vertex Vi has to be updated, the thread executing the
adaptive kernel does not commit the update immediately;
instead, it pushes the operation back into the list for thread
tid = ID(Vi)%N , where ID(Vi) is the integer identifier of
Vi. After processing an independent set and before pro-
ceeding to the next one, every thread Ti visits the private
collections of all threads, locates the list reserved for Ti and
commits the updates stored there. This way, it is guaranteed
that one and only thread will update the adjacency list of
any given vertex. We call this technique the deferred update.
Code Snippet 1 demonstrates a typical usage scenario. An
important advantage of this strategy is that we always read
the most up-to-date data when executing an adaptive kernel
(as if we used an “as we go” write-back scheme), eliminating
the risk of mesh data corruption in coarsening, refinement
and swapping and having a faster-converging Gauss-Seidel-
style iteration process in smoothing.

1 typede f std : : vector<Updates> DefUpdList ;
2 i n t N = omp_get_max_threads ( ) ;
3

4 // N c o l l e c t i o n s o f de f e r red−update l i s t s
5 std : : vector< std : : vector<DefUpdList> > defUpd ( N ) ;
6

7 #pragma omp p a r a l l e l
8 {
9 i n t tid = omp_get_thread_num ( ) ;

10 // Al l o ca t e one l i s t f o r each thread .
11 defUpd [ tid ] . resize ( N ) ;
12

13 // Process the independent s e t in p a r a l l e l
14 #pragma omp f o r
15 f o r ( i n t i=0; i<nVerticesInSet ; ++i ){
16 update = execute_kernel ( i ) ;
17 // To be committed by thread i%N.
18 defUpd [ tid ] [ i%N ] . push_back ( update ) ;
19 }
20

21 // Commit updates t i d i s r e s p on s i b l e f o r .
22 f o r ( i n t i=0; i<N ; ++i )
23 commit_all_updates ( defUpd [ i ] [ tid ] ) ;
24

25 // Proceed to the next independent s e t . . .
26 }

Code Snippet 1: Example of the deferred update scheme.

3.4 Worklists and Atomic-Capture
There are many cases where it is necessary to create a work-
list of items which need to be processed, e.g. for propagation
of adaptive operations. New work items generated locally by
a thread need to be accumulated into a global worklist over
which the next invocation of the adaptive kernel will iterate.
The classic approach based on prefix sums [2] requires thread
synchronisation and was found limiting in terms of scalabil-
ity. A better method is based on atomic fetch-and-add on a
global integer which stores the size of the worklist needed so
far. Every thread increments this integer atomically while
caching the old value. This way, the thread knows where to
copy its private data and increments the integer by the size
of this data, so the next thread to access the integer knows in
turn where to copy its private data. An example of using this
technique via OpenMP’s atomic-capture clause [14] is given
in Code Snippet 2, where it is shown that no thread syn-
chronisation is needed to generate the global worklist (note
the nowait clause). The overhead/spinlock associated with
atomic-capture operations was found to be insignificant.

3.5 Work-stealing
Work-stealing [3] is a sophisticated technique aiming at bal-
ancing workload among threads while keeping scheduling
overhead as low as possible. For-loop scheduling strategies
provided by the OpenMP runtime system were found to be
inadequate, either incurring significant scheduling overhead
or leading to load imbalances. As of version 4.0, OpenMP
does not support work-stealing for parallel for-loops so we
created a novel scheduler [19] which differs from other pro-
posals in two ways: it engages a heuristic to help the thief
find a suitable victim to steal from; and uses POSIX signal-
s/interrupts to accomplish stealing in an efficient manner.

4. EXPERIMENTAL RESULTS
We will show adaptivity results for viscous fingering in 2D
and structural compliance minimisation in 2D and 3D, fol-
lowed by performance evaluation.



1 i n t worklistSize = 0 ;
2 std : : vector<Item> globalWorklist ( prealloc_size ) ;
3

4 #pragma omp p a r a l l e l
5 {
6 std : : vector<Item> private_list ;
7

8 #pragma omp f o r nowait
9 f o r ( all items which need to be processed ){

10 new_item = do_some_work ( ) ;
11 private_list . push_back ( new_item ) ;
12 } // No need to synchron i s e at end o f loop .
13

14 i n t idx ;
15 #pragma omp atomic capture
16 {
17 idx = worklistSize ;
18 worklistSize += private_list . size ( ) ;
19 }
20

21 memcpy (&globalWorklist [ idx ] , &private_list [ 0 ] ,
22 private_list . size ( ) ∗ s i z e o f ( Item ) ) ;
23 }

Code Snippet 2: Creating a worklist using atomic-capture.

Figure 2: The initial condition for the viscous fin-
gering (left) and a snapshot of a simulation (right).

4.1 Viscous Fingering
Viscous fingering is a limiting process for enhanced oil re-
covery technologies. It happens whenever one fluid displaces
another with a higher viscosity [17], typically in a porous
media. A typical setup and simulation is shown in Figure
2, with the blue fluid having a viscosity e2 times lower than
the red fluid. The initial saturation is unperturbed and it
is thus the length scale of the initial mesh that triggers the
instability. Mesh adaptation is driven by the Hessian of the
pressure combined with the Hessian of the saturation φ [4].

4.2 Structural Optimisation
Structural compliance minimisation is concerned with the
problem of finding stiff and lightweight mechanical compo-
nents [21], often in the context of linear elasticity. The setup
for a classical cantilever problem with support to the left
and a load to the right is shown in Figure 3 (top left). The
question is how to form the stiffest possible link between
the two boundaries, given a certain amount of isotropic ma-
terial. The problem is ill-posed unless a minimum length
scale is imposed for the design, because the optimal struc-
ture is a composite. In fact, one can see a tendency towards
microstructured areas when a small minimum length scale
Lmin = 10−3Lchar is used as illustrated in Figure 3 (bottom
left). Note how the many straight and parallel connections

Figure 3: The setup for structural compliance min-
imisation (top left) and the result for the case of
a small minimum length scale (bottom left). Red
corresponds to solid areas and blue to void. The
result of compliance minimisation in 3D is shown in
terms of the cross-sectional view (top right) and the
solid/void interface (bottom right).

can be efficiently resolved with anisotropic elements. Mesh
adaptation is driven by the Hessians of the design and the
topological derivative [21]. A Helmholtz filter is applied to
both design and derivative to smooth out features smaller
than Lmin, before the Hessians are computed.

The two dimensional setup is also extruded to three dimen-
sions, as plotted in Figure 3 (top right and bottom right).
Note that the large planar areas with little curvature are
well resolved by the anisotropic elements. The increased di-
mensionality leads to a much simpler topology even though
the optimisation is performed with Lmin = 5 · 10−3Lchar.

In order to evaluate the parallel performance, a synthetic
solution ψ is defined to vary in time and space:

ψ(x, y, t) = 0.1 sin

(
50x+

2πt

T

)
+ arctan

(
−

0.1

2x− sin
(
5y + 2πt

T

))

where T is the period. This is a good choice as a benchmark
as it contains multi-scale features and a shock front, i.e. the
typical solution characteristics where anisotropic adaptive
mesh methods excel. An isotropic mesh was generated on
the unit square using approximately 200×200 triangles and
the adaptation benchmark was run with a requirement for
≈ 550k elements. The same example was extruded in 3D,
where an isotropic mesh was generated in the unit cube us-
ing approximately 50 × 50 × 50 tetrahedra and the adap-
tation benchmark was run with a requirement for ≈ 210k
elements. 3D swapping has not been parallelised, therefore
the corresponding results have been omitted.

The code was compiled using the Intel compiler suite (ver-
sion 14.0.1) and with the -O3 optimisation flag. We used two
systems to evaluate performance: (a) a dual-socket IntelR©

XeonR© E5-2650 system (Sandy Bridge, 2.00GHz, 8 cores per
socket, 2-way hyper-threading) running Red HatR©Enterprise
LinuxR© Server release 6.4 (Santiago) and (b) a quad-socket
AMD OpteronTM 6176 system (Magny-Cours, 2.3GHz, 12
cores per socket) running Ubuntu 12.04.5. In all cases,



thread-core affinity was used. Figures 4 and 5 show the
average (over 50 time steps) execution time per time step
and parallel efficiency against the number of threads using
single-socket (SS), dual-socket (DS) and quad-socket (QS)
configurations. On the IntelR©XeonR© system we also enable
hyper-threading (HT) to make use of all 40 logical cores.

Running on one socket, our code achieves a parallel efficiency
of over 60% on IntelR©XeonR© and around 50% on AMD
OpteronTM. Smoothing scales better than the other algo-
rithms as it is more compute-intensive, which favours scal-
ability, reaching an efficiency of over 50% even in the quad-
socket case. When we move to more sockets, NUMA effects
become pronounced, which is expected as common NUMA
optimisations such as pinning and first-touch for page bind-
ing are ineffective for irregular computations. Nonetheless,
the achievable efficiency is good considering the irregular
nature of those algorithms.

5. CONCLUSION
In this paper we examined the scalability of anisotropic mesh
adaptivity using a thread-parallel programming model and
explored new parallel algorithmic approaches to support this
model. Despite the complex data dependencies and inher-
ent load imbalances we have shown it is possible to achieve
practical levels of scaling using a combination of a fast graph
colouring technique, the deferred-update strategy, atomic-
based creation of worklists and for-loop work-stealing. In
principle, this methodology facilitates scaling up to the point
where the number of elements of an independent set is equal
to the number of available threads.
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