
The KGP Model of Agency
Antonis Kakas 1 and Paolo Mancarella 2 and Fariba Sadri 3 and Kostas Stathis 4 and Francesca Toni 3

Abstract. This paper presents a new model of agency, called the
KGP (Knowledge, Goals and Plan) model. This draws from the
classic BDI model and proposes a hierarchical agent architecture
with a highly modular structure that synthesises various reasoning
and sensing capabilities of the agent in an open and dynamic en-
vironment. The novel features of the model include: its innovative
use of Computational Logic (CL) in a way that facilitates both the
formal analysis of the model and its computational realisability di-
rectly from the high-level specification of the agents (a first proto-
type for the development of KGP agents exists, based upon a cor-
rect computational counterpart of the model), the modular separa-
tion of concerns and flexibility afforded by the model in designing
heterogeneous agents and in developing independently the various
components of an agent, and the declarative agent control provided
through a context-sensitive cycle CL theory component that regu-
lates the agent’s operational behaviour, according to the current cir-
cumstances of operation, thus breaking away from the conventional
one-size-fits-all control of operation.

1 INTRODUCTION
Agents are situated autonomous entities that are expected to plan
and act to achieve their goals while they are alert and responsive
to the changes in their environments (see e.g. [24]). In this paper we
present a new model of agency called the KGP (Knowledge, Goals
and Plan) model. This provides a highly modular and hierarchical
specification of agents equipped with a variety of advanced reason-
ing features to allow intelligent decision making and behaviour. KGP
agents are particularly suited to open, dynamic environments where
they have to adapt to changes in their environment and they have to
function in circumstances where they have incomplete information.

KGP is motivated, on the one hand, by the existing gap between
modal logic specifications [20] of BDI agents [3] and their imple-
mentation (see issues raised by Rao in [19]) and, on the other, to
make available and extend many useful computational logic (CL)
[12] tools and techniques whose synthesis can produce executable
specifications of agents. For this purpose, the model synthesises Ab-
ductive Logic Programming (ALP) [13] and Logic Programming
with Priorities (LPP) [18], both extended to deal with constraint solv-
ing as in Constraint Logic Programming (CLP) [10].

CL is used in KGP to specify the individual state of the agent,
its reasoning capabilities, state transitions, and its control. Using

1 Department of Computer Science, University of Cyprus, Nicosia CY-1678,
Cyprus. email: antonis@cs.ucy.cy

2 Dipartimento di Informatica, Universita di Pisa, Pisa 56127, Italy. email:
paolo@di.unipi.it

3 Department of Computing, Imperial College, London SW7 2AZ, UK.
email: {fs,ft}@doc.ic.ac.uk

4 Department of Computing, City University, London EC1V 0HB, UK.
email: kostas@soi.city.ac.uk

these components, an agent maintains a view of the environment,
decides what its goals should be, depending on the current circum-
stances, plans (incrementally) for these chosen goals and interleaves
this with incremental execution of the plan, reacts to information re-
ceived from the environment or communication received from other
agents, re-evaluates previous decisions in the light of the new infor-
mation and adapts as necessary by changing or augmenting its goals
and plan. The control component of this complex behaviour is regu-
lated by a cycle theory, which also allows us to design agents with a
wide range of heterogeneous behaviour suitable for different practi-
cal applications.

As a consequence of the CL-based approach, the resulting declar-
ative model comes coupled with a fully specified and correct com-
putational model. We believe that the grounding of the declarative
and the computational models in CL also highly facilitates formal
verification of the different levels of the model and proof of various
properties. For the purposes of experimentation, a first prototype im-
plementation has already been completed successfully using SICStus
Prolog, Java, and JXTA [22].

The KGP model was developed as part of the EU (IST: FET
- Global Computing) research project, SOCS (Societies of Com-
putees) http://lia.deis.unibo.it/research/projects/socs. Details of the
declarative and computational models together with examples can
be found in the deliverables of this project [11, 14, 1].

The rest of the paper is structured as follows. We describe the or-
ganisation of the internal state of a KGP agent in section 2 and the
way reasoning capabilities access this state in section 3. In section
4 we summarise how transitions use capabilities to change the state
of the agent and in section 5 we explain how the cycle theory uses
transitions to control the behaviour of the agent. Finally, in section
6 we compare the KGP model with existing work and conclude in
section 7.

2 OVERVIEW OF THE KGP MODEL

As shown in Fig.1, the basis of the hierarchical KGP model is the
knowledge of the agent. This is accessed by a modular collection
of capabilities that enable the agent to plan or react, decide new
goals, reason temporally and sense the environment in order to check
whether goals or (for cautious agents) the preconditions of actions in
plans are satisfied. Capabilities are utilised in a collection of tran-
sitions that describe how the internal state of the agent changes.
Changes of state may also occur by the agent observing either ac-
tively, in order to test whether something holds in the environment,
or passively, as a result of being situated in a specific environment.
Changes may also result because of the agent choosing to execute
actions, sense the environment, introduce new goals or plans, revise
these goals and plans, or simply react to changes in the environment.
The transitions are integrated within dynamic and flexible cycle the-

ories that specify declaratively how the transitions are sequenced de-
pending on the environment and the required behaviour profile of the
agent (e.g. whether we want them to be cautious or careful).

The internal state of aKGP agent is a triple 〈KB,Goals, P lan〉.
The Knowledge Base (KB) describes the knowledge of the agent of
itself and its environment. It consists of separate modules support-
ing the different reasoning capabilities, for example, KBplan con-
tains knowledge that enables the agent to plan and KBGD contains
knowledge that enables the agent to decide which goals to adopt next.
One part of the KB, called KB0, holds the (dynamic) knowledge
of the agent about its external world, including what the agent has
observed, the actions it has executed, and communications it has re-
ceived from other agents. For example, we may express what the
agent has observed from the environment with assertions of the form
observed(l, t), where l is a fluent literal and t is a time constant. This
fact is added when the property l has been observed to hold at time
t. We assume that KB0 is the only part of the KB that changes over
time.

TRANSITIONS
 CAPABILITIES
 KNOWLEDGE
CONTROL

E

N

V

I

R

O

N

M

E

N

T

KB
0

KB
react

KB
plan

KB
GD

KB
TR

Identification of

Precondition

Sensing

Temporal

Reasoning

Goal Decision

Planning

Reactivity

Passive

Observation

Introduction

Active

Observation

Introduction

Sensing

Introduction

Goal

Introduction

Plan

Introduction

Reactivity

Action

Execution

Goal

Revision

Plan

Revision

CYCLE THEORY

Figure 1. The conceptual organisation of a KGP agent.

The Goals of an agent is a set of properties that the agent has
decided that it wants (desires) to achieve each at a given time, within
certain temporal intervals, specified by temporal constraints. Goals
are split into two types: mental goals, that can be planned for by the
agent, and sensing goals, that can only be sensed (to find out from
the environment whether they hold or not). As an example, consider
the goal holds at(have fuel, t) ∧ t < 10, meaning that the agent
will have to satisfy the property have fuel by time 10.

The Plan of an agent is a set of partially ordered (atomic) actions
by means of which the agent plans (intends) to satisfy its goals. Ac-
tions are split into three types: physical actions, that the agent can ex-
ecute to effect a change in the external world, communicative actions,
used by the agent to exchange information with other agents, e.g. to
make a request, and sensing actions, for getting information from the
environment. Actions are to be executed at given times, within tem-
poral intervals specified by temporal constraints (as for goals). As an
example, consider the action happens(fill up, t′)∧ t−2 < t′ < t,
meaning that the agent will have to execute the fill up action in the
temporal interval (t− 2, t). Actions that are to be added to the Plan

are identified by the capabilities of the agent, which we describe in
the next section. The associated time for goals and actions is either
ground or assumed to be existentially quantified over the whole state.

3 CAPABILITIES

As shown in Fig. 1, the KB of a KGP agent is used by a set of
reasoning capabilities that are specified in ALP and LPP. These ca-
pabilities enable the agent to perform different reasoning tasks while
adapting to its environment.

• A Planning capability usesKBPlan andKB0 to generate partial
plans, i.e. sets of actions and (sub)goals, for a given set of goals.
This allows the agent to be adaptable to changes in the environ-
ment without wasting planning effort.

• An Identification of Preconditions capability uses KBPlan to
identify the preconditions for the successful execution of given ac-
tions. This capability is needed for “cautious” agents which might
want to sense the environment prior to execution of actions to
make sure that the execution will be successful. In addition, by
means of this capability an agent may realise that the required pre-
conditions of some actions will never be satisfied, and thus those
actions may be dropped from the current Plan, thus allowing for
adaptability of agents.

• A Goal Decision capability uses KBGD and KB0 to determine
the top-level goals that the agent prefers to achieve under the cur-
rent circumstances according to its preference policy in KBGD .

• A Temporal Reasoning capability (which is also used within some
other capabilities and components of the model) uses KBTR and
enables the agent to reason from observations stored in KB0 and
make predictions about properties on the basis of these observa-
tions. It plays a fundamental role in rendering the agent adaptable
to changes in its environment by dealing appropriately with par-
tial information which evolves over time.

• A Reactivity capability allows the agent to react to changes in the
external environment. Reactivity usesKBreact andKB0 to iden-
tify which new actions and new goals should be added to the cur-
rent state of the agent in the light of the new observations per-
ceived in the environment.

To exemplify how a reasoning capability is specified, let us con-
sider Reactivity in more detail. The KBreact part of the knowledge
base of an agent contains an abductive event calculus [15] theory
Tec (which we omit here due to space limitations) along with some
conditions-action-like rules, called reactive rules of the form:

Conditions→ Reaction
where Reaction is either a goal or an action and Conditions is a
non-empty conjunction of conditions on the current state of the agent.
Conditions are typically checked inKB0 and the agent’s Goals and
Plan via Tec, and act as triggers which (may) fire the applicability of
the reactive rule. For example, the reactive rule:
holds at(drive home, t) ∧ observed(low fuel, t′) ∧ t′ < t→

assume holds(have fuel, t′′) ∧ t′ < t′′ < t.
states that if one of the agent’s current goals is to drive home at some
time point t, and the agent has observed that there is low fuel at an
earlier time point t′, then the new goal of having fuel at some time
point between t′ and t has to be added to the current set of goals. Here
the goals of the agent are formulated in the abductive event calculus
style: an atom of the form holds at(p, t) means that the proposition
p holds at some time point t. The predicate assume holds is the
abductive variant of holds at. Whereas atoms expressed by means

of holds at can be reasoned with through the event calculus back-
ground theory, atoms of the form assume holds can only be abduc-
tively assumed during the reasoning process. For Reactivity, these
abductive assumptions represent the new goals the agent should add
to its current state in order to satisfy its reactive rules.

As a further example, consider the following reactive rule:
holds at(have fuel, t)∧observed(out of money, t′)∧t′ < t→

assume happens(withdraw money, t′′) ∧ t′ < t′′ < t.
Such a rule forces the agent to execute the action of withdrawing
money if the goal of having fuel is in the current set of goals and
the agent has observed that it has run out of money. As for goals,
actions are represented here in the abductive event calculus style:
happens(a, t) means that the action represented by a has to be (or
has been) executed at time t. The predicate assume happens is the
abductive variant of happens, representing actions that need to be
added to the current Plan to fulfill the reactive rules.

The Tec background theory describes the causal relationships be-
tween events (actions) and fluents (goals) in the event calculus style.
KBreact is then Tec∪RR, where RR is a given set of reactive rules
as described above. Let S∗ denote theKB0, Goals, and Plan compo-
nents of an agent’s state S. Then the Reactivity capability yields a set
Gs of goals and a setAs of actions which are abductively entailed by
KBreact ∪S∗, along the lines sketched above. Thus, more formally,
we will write:
KBreact ∪ S∗ |=τ

react Gs,As
meaning that Gs,As is the result of the Reactivity capability at time
point τ in the state S. Note that the Reactivity capability ensures that
the new goalsGs and new actionsAs are consistent with the existing
Goals and Plan and that they are indeed achievable at some time in
the future of τ .

In addition to the reasoning capabilities and their example spec-
ification above, the agent is assumed to be equipped at the imple-
mentation level with a Sensing capability that links the agent with
the environment, by allowing it to observe properties holding in the
environment and be informed about actions being executed by other
agents, all of which are stored in KB0.

4 TRANSITIONS

As shown in Fig.1, the capabilities of a KGP agent described in
the previous section are used in transition rules whose application
changes the agent’s internal state, as outlined below.

• Passive Observation Introduction (POI) changes KB0 by intro-
ducing unsolicited information from the environment or commu-
nications from other agents. POI calls the Sensing capabability.

• Active Observation Introduction (AOI) changes KB0 by record-
ing the outcome of sensing actions for actively sought properties.
AOI calls the Sensing capabability.

• Sensing Introduction (SI) transition adds to the current Plan new
sensing actions for sensing the preconditions of actions already in
Plan, and uses the Sensing capability.

• Plan Introduction (PI) changes part of the Goals and Plan of
a state, according to the output of the Planning capability. This
transition uses also the Identification of Preconditions capability,
in order to equip each action A in the set computed by Planning,
with the set of preconditions for the successful execution of A.
However, this does not necessarily mean that such preconditions
will be checked at the time of the execution of the actions.

• Goal Introduction (GI) replaces the Goals of a state with goals of
highest priority that the Goal Decision capability generates.

• Reactivity (RE) updates the current state of the agent by adding the
goals and actions returned by the Reactivity capability. As with PI,
this transition uses the Identification of Preconditions capability to
equip each actionA in the set computed by Reactivity, with the set
of preconditions for the successful execution of A.

• Goal Revision (GR) revises Goals, e.g. by dropping goals that
have already been achieved or that have run out of time, by using
the Temporal Reasoning capability and by checking the temporal
constraints of the goals.

• Plan Revision (PR) revises Plan, e.g. by dropping actions that
have already been executed successfully or that have run out of
time, by checking the temporal constraints of the actions.

• Action Execution (AE) is responsible for executing all types of
actions, thus changing the KB0 part of KB by adding evidence
that actions have been executed. Calls the Sensing capability for
the execution of sensing actions.

To exemplify how a transition rule is specified, we show here how
the Reactivity transition rule is specified, by changing the goals and
plan of the agent at a time τ as follows:

(RE)
〈KB,Goals, P lan〉
〈KB,Goals′, P lan′〉 τ

where, given KBreact |=τ
react Gs,As, then Goals′ = Goals∪Gs

and Plan′ = Plan ∪As.

5 CYCLE THEORY
The operation of a KGP agent is controlled by a cycle theory, whose
role is not to provide fixed control on the operation of the agent but to
regulate it in a way that results in a desired pattern of behaviour. Cy-
cle theories are written in the framework of LPP, for which we adopt
the concrete framework of LPwNF [7] suitably extended to deal with
conditional, dynamic priorities [6]. Other frameworks for LPP (e.g.
[18]) or for the declarative specification of preference policies, (e.g.
[5]), can be used.

The LPwNF framework, as any other LPP framework, is equipped
with a notion of entailment, that we refer to as |=pr . Intuitively, given
a theory T , and a literal L, T |=prL means that L is entailed by a
sub-theory of T which is “preferred”, according to the strength of
the rules given by the priorities specified in T , over any sub-theory
of T that derives a conclusion incompatible with L. In this paper, we
will assume for simplicity that |=pr always entails one and only one
conclusion, namely there exists exactly one L such that T |=prL.

In presenting the cycle theory, we will assume that transitions are
represented as atoms, Ti(S,X, S′, τ), where S is the state of the
agent before the transition is applied and S ′ the state after the tran-
sition is applied, X is the input (possibly empty) taken by the transi-
tion, and τ is the time of application of the transition. The subscript
i is the name of the transition rule, i.e. it is an element from the set
I = {POI,AOI, SI, PI,GI,RE,GR,PR,AE}, applied in this
transition. We assume the existence of a clock (possibly external to
and shared by the agents) which marks the passing of time. In the
sequel, for simplicity, we may drop some of the parameters of the
transitions.

Given a cycle theory, Tcycle, the basic unitary operational step of
the agent is specified as follows:

Tcycle ∪ {Tm(Si−1, Xi, Si, τi)} |=pr Tn(Si, Xi+1, Si+1, τi+1)

where Tm(Si−1, Xi, Si, τi) is the last transition, executed at time τi
and Tn(Si, Xi+1, Si+1, τi+1) is the one to follow.

Concretely, a cycle theory consists of three components:

• A basic part that specifies the allowed unitary cycle-steps from
one transition to the next.

• An interrupt part that specifies the cycle-steps that can follow a
POI, i.e. an interrupt with new information. These are viewed as
(possible) re-initialisation steps for the cycle operation.

• A behaviour part that specifies priority rules on the alternatives
given in the basic and interrupt parts, and thus specifies the special
characteristics of the operation of the agent.

The basic part of any cycle theory consists of rules of the form:

ri|k(S′, X) : Tk(S′, X)← Ti(S, S
′), Ci|k(S′, X).

where Ti and Tk are any two transitions different from POI, i.e.
i, k 6= POI . Here ri|k(S′, X) is a term that names (the instances of)
this rule. Such a rule specifies that transition Tk might follow a tran-
sition Ti. We will assume that the step to the next transition depends
only on the current transition and not on the longer history of the
previous transitions. Note that this does not mean that information
from the past operations of the agent is not used as such information
is recorded and assimilated in the state of the agent.

The conditions Ci|k in such a cycle-step rule are called Enabling
Conditions as they determine when a cycle-step from Ti to Tk is al-
lowed or enabled. In particular, they determine the input X , if any is
required, of the ensuing transition Tk. Such input will be determined
by calls to appropriate Selection Functions, when required. For ex-
ample, the following cycle-step rule:

rPI|AE(S′, As) : TAE(S′, As)← TPI(S, S
′), CPI|AE(S′, As).

expresses the possibility that a PI transition can be followed by an AE
transition. The Enabling Conditions CPI|AE(S′, As) determine the
set of actionsAs that are to be executed by the ensuing AE transition.
These are given by a Core Action Selection function that selects only
actions that can be executed, e.g. actions that have not been timed out
and whose preconditions are not known to be currently false.

The interrupt component of the cycle theory is analogous, in syn-
tax, to the basic component. However, each rule in the interrupt the-
ory specifies what might follow a POI transition, which acts as an
interrupt. Concretely, an interrupt cycle-step rule is of the form:

rPOI|k(S′, X) : Tk(S′, X)← TPOI(S, S
′), CPOI|k(S′, X).

where k ∈ I and k 6= POI . For example, after a Passive Observa-
tion Introduction we may want to apply the Reactivity (RE) transi-
tion so that we can adapt the existing Plan to the new information
that the observation gives us. This is achieved by the simple interrupt
cycle-step rule:

rPOI|RE(S′, X) : TRE(S′, {})← TPOI(S, S
′).

The behaviour part of the cycle theory consists of priority relations
that encode locally the relative strength of the rules in the other
components of the cycle theory. These then are used to determine,
amongst all the enabled cycle-steps, which one is preferred under the
current circumstances. They have the form:

Rik|l : ri|k(S,Xk) > ri|l(S,Xl)← BCik|l(S,Xk, Xl)

where BCik|l are called Behaviour Conditions. These are conditions,
e.g. Heuristic Selection Functions, under which the cycle-step to
transition Tk with input Xk is preferred over that of Tl with input
Xl.

Through the behaviour part of the cycle theory we can encode dif-
ferent patterns of operation thus allowing heterogeneity of agents.
For example, by giving priority to the cycle-step rule of GR over any
other cycle-step rule, after a POI or AOI transition, we have a care-
ful pattern of behaviour whereby the agent examines and revises its
current commitments in the light of the new information obtained.
Similarly, by giving priority to cycle-steps of AOI on the effect of an
action after an AE transition, we have a cautious pattern of behaviour
where the agent attempts to get explicit confirmation of the result of
the execution of its actions.

A simple conventional or normal pattern of behaviour can be one
whereby an agent prefers to follow the pattern: introduce goals (GI),
plan for them (PI), execute the actions of the plan (AE), revise the
state (GR, PR), return to continue planning (PI) until all goals are
dealt with (successfully completed or revised away) and then return
to introduce new goals (GI). It is easy to see that we can get fixed
cycles of operation as a special case of cycle theories where only the
specified cycle-steps are enabled in the basic part of the cycle the-
ory and where the behaviour part is empty. Fixed cycles of operation
correspond to unconditional priority rules in the behaviour part of the
cycle theory. The conditional rules in the behaviour part thus gener-
alise the fixed cycle of operation of agents allowing a KGP agent
to be adaptable to the changing conditions of its environment as it
operates.

6 RELATED WORK

Many proposals for models and architectures of individual agents
exist. Some of these proposals are based on logic programming,
for example IMPACT [2], Minerva [16], GOLOG [17] , and In-
diGolog [8]. Other proposals are based on modal or first order logic
or are not logic based, for example the BDI model [3, 20], Agent0
[21], AgentSpeak [19] and its variants, 3APL [9], and DESIRE [4].

At a high level of comparison there are similarities in the objec-
tives of these models and the KGP model, in that they all aim at
specifying knowledge-rich agents with certain desirable behaviours.
There are also some similarities in the finer details of the KGP model
and some of the above related work, as well as differences.

A novel feature of the KGP model is its declarative and context-
sensitive specification of the control component of the agent. The
cycle theory of the KGP agent determines, at run time, depending on
the circumstances and the individual profile of the agents, what their
next step should be. The cycle theory is sensitive to both solicited and
unsolicited information that the agent receives from its environment.

Another distinguishing feature of the KGP model, in comparison
with other models, including those based on logic programming, is
its modular integration within a single framework of ALP, CLP, and
preference reasoning based on LPP, in order to support a diverse col-
lection of capabilities. Each one of these is specified declaratively
and equipped with its own provably correct computational counter-
part.

There is an obvious similarity between the KGP and the BDI mod-
els [3] given by the correspondence between KGP’s Knowledge,
Goals and Plan and BDI’s Beliefs, Desires and Intentions, respec-
tively. However, the BDI model is based on modal logic and the gap
between its specification and its practical realisation is much wider
than with KGP. The same difference exists between the KGP model
and Agent0 and its later refinement PLACA [23]. AgentSpeak(L)
[19] attempts to narrow the gap between the specification and exe-
cutable model of BDI and in that it shares one of the objectives of
the KGP. Two other differences between the KGP and Agent0 and

PLACA are the explicit links that exist in the KGP model amongst
the goals and between the goals and plans, and the richer theories
in the KGP that specify priorities amongst potential goals which are
not restricted to temporal orderings. These explicit links are exploited
when revising goals and plans, via the Goal Revision and Plan Re-
vision transitions, in the light of new information or because of the
passage of time.

MINERVA [16] has two main similarities with the KGP; it exploits
computational logic and it gives both declarative and operational se-
mantics to its agents. It has a number of differences, e.g. MINERVA
relies on Multidimensional Dynamic Logic Programming [16] and
uses explicit rules for updating its knowledge bases. IndiGolog [8] is
a high-level programming language for robots and intelligent agents
that supports, like KGP, on-line planning, sensing and plan execution
in dynamic and incompletely known environments. It is a member of
the Golog family of languages [17] that use a Situation Calculus the-
ory of action to perform the reasoning required in executing the pro-
gram. Instead in the KGP model we rely on ALP and LPP combined
with an Event Calculus approach to program an agent. Moreover, in
IndiGolog goals cannot be decided dynamically, whereas in the KGP
model they change dynamically via the Goal Decision capability.

There are features in some other approaches that are absent in the
KGP model. BDI and more so the IMPACT system [2] allow agents
to have in their knowledge bases representations of the knowledge
of other agents. These systems allow the agents both some degree
of introspection and ability to reason about other agents’ beliefs and
reasoning. IMPACT also allows the incorporation of legacy systems,
and has a richer knowledge base language allowing deontic con-
cepts (obligation, permission, etc) and probabilities. 3APL, based on
a combination of imperative and logic programming languages, in-
cludes an optimisation component absent from the KGP. This com-
ponent in 3APL includes rules that identify if the agent is pursuing a
suboptimal plan, and help the agent find a better one.

7 CONCLUSIONS
KGP is a logical model of agency based on a hierarchical, modu-
lar, and extensible agent architecture, which is characterised by the
innovative use of CL to facilitate the formal analysis and compu-
tational realisability of an agent from a high-level specification of
its knowledge, goals, and plans. The model identifies a set of rea-
soning capabilities, a set of transitions, and a context-sensitive cycle
theory that regulates an agent’s operational behaviour, according to
the current circumstances, and thus breaks away from traditional ap-
proaches of one-size-fits-all control of operation. The model is also
equipped with a computational counterpart, based upon an abductive
proof-procedure (for the ALP components) and an argumentation-
proof procedure (for the LPP components). A prototype implemen-
tation platform for the development of KGP agents already exists.

Future work includes extending the model to incorporate (i)
knowledge revision (e.g. by Inductive Logic Programming), (ii) in-
trospective reasoning and reasoning about the beliefs of other agents,
(iii) dealing with society expectations and deontic concepts (e.g. as
in IMPACT), (iv) further experimenting with the model via its imple-
mentation, (v) verifying formally a catalogue of behaviour properties
of agents equipped with different cycle theories.

ACKNOWLEDGEMENTS
This work was supported by the European Commission FET Global
Computing Initiative, within the SOCS project (IST-2001-32530).

REFERENCES
[1] M. Alberti, A. Bracciali, F. Chesani, N. Demetriou, U. Endriss, M. Ga-

vanelli, A.C. Kakas, W. Lu, K. Stathis, and Paolo Torroni, ‘SOCS pro-
totype’, Technical report, SOCS Consortium, (2003). Deliverable D9.

[2] K. A. Arisha, F. Ozcan, R. Ross, V. S. Subrahmanian, T. Eiter, and
S. Kraus, ‘IMPACT: a Platform for Collaborating Agents’, IEEE Intel-
ligent Systems, 14(2), 64–72, (March/April 1999).

[3] M.E. Bratman, D.J. Israel, and M.E. Pollack, ‘Plans and resource-
bounded practical reasoning’, Computational Intelligence, 4, (1988).

[4] F. M. T. Brazier, B. Dunin-Keplicz, J. Treur, and R. Verbrugge, ‘Mod-
elling internal dynamic behaviour of BDI agents’, in ModelAge Work-
shop, pp. 36–56, (1997).

[5] G. Brewka, ‘Reasoning with priorities in default logic’, in Proceedings
of AAAI-94, pp. 940-945, (1994).

[6] N. Demetriou and A. C. Kakas, ‘Argumentation with abduction’, in
Proceedings of the fourth Panhellenic Symposium on Logic, (2003).

[7] Y. Dimopoulos and A. C. Kakas, ‘Logic programming without nega-
tion as failure’, in Logic Programming, Proceedings of the 1995 Inter-
national Symposium, Portland, Oregon, pp. 369–384, (1995).

[8] G. De Giacomo, H. J. Levesque, and S. Sardia, ‘Incremental execution
of guarded theories’, ACM Transactions on Computational Logic, 2(4),
495–525, (October 2001).

[9] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J. Ch. Meyer, ‘Agent
programming in 3APL’, Autonomous Agents and Multi-Agent Systems,
2(4), 357–401, (1999).

[10] J. Jaffar and M. J. Maher, ‘Constraint logic programming: A survey’,
Journal of Logic Programming, 19/20, 503–581, (1994).

[11] A. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni, ‘A logic-based
approach to model computees’, Technical report, SOCS Consortium,
(2003). Deliverable D4.

[12] A. C. Kakas and F. Sadri (Eds), Computational Logic: Logic Program-
ming and Beyond, number 2407 and 2408 in LNAI, Springer-Verlag,
2002.

[13] A. C. Kakas, R. A. Kowalski, and F. Toni, ‘The role of abduction in
logic programming’, in Handbook of Logic in Artificial Intelligence
and Logic Programming, eds., D. M. Gabbay, C. J. Hogger, and J. A.
Robinson, volume 5, pp. 235–324. Oxford University Press, (1998).

[14] A. C. Kakas, E. Lamma, P. Mancarella, P. Mello, K. Stathis, and
F. Toni, ‘Computational model for computees and societies of com-
putees’, Technical report, SOCS Consortium, (2003). Deliverable D8.

[15] R. A. Kowalski and M. Sergot, ‘A logic-based calculus of events’, New
Generation Computing, 4(1), 67–95, (1986).

[16] J. A. Leite, J. J. Alferes, and L. M. Pereira, ‘MINERVA: A dynamic
logic programming agent architecture’, in Intelligent Agents VIII: 8th
International Workshop, ATAL 2001, Seattle, USA, volume 2333 of
LNAI, pp. 141–157, (2002).

[17] H. J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. B. Scherl,
‘GOLOG: A logic programming language for dynamic domains’, Jour-
nal of Logic Programming, 31(1-3), 59–83, (1997).

[18] H. Prakken and G. Sartor, ‘Argument-based extended logic program-
ming with defeasible priorities’, J. of Applied Non-Classical Logics,
7(1), (1997).

[19] A. S. Rao, ‘AgentSpeak(L): BDI agents speak out in a logical com-
putable language’, in Agents Breaking Away, 7th European Work-
shop on Modelling Autonomous Agents in a Multi-Agent World, MAA-
MAW’96, ed., Rudy van Hoe, volume 1038 of LNCS, pp. 42–55.
Springer-Verlag, (1996).

[20] A. S. Rao and M. P. Georgeff, ‘Modeling rational agents within a
BDI-architecture’, in Readings in Agents, eds., Michael N. Huhns and
Munindar P. Singh, 317–328, Morgan Kaufmann Publishers, San Fran-
cisco, CA, USA, (1997).

[21] Y. Shoham, ‘Agent-oriented programming’, Artificial Intelligence,
60(1), 51–92, (1993).

[22] K. Stathis, A. Kakas, W. Lu, N. Demetriou, U. Endriss, and A. Brac-
ciali, ‘PROSOCS: a platform for programming software agents in com-
putational logic’, in Proc. of “From Agent Theory to Agent Implemen-
tation”, AT2AI-4, eds., J. Müller and P. Petta, Austria, (2004).

[23] S. R. Thomas, ‘The PLACA agent programming language.’, in Intelli-
gent Agents, eds., M. J. Wooldridge and N. R. Jennings, Berlin, (1995).
Springer-Verlag.

[24] M. Wooldridge, An Introduction to Multiagent Systems, John Wiley and
Sons, 2002.

