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Abstract. In recent years, within the planning literature there has been a de-
parture from approaches computingtotal plansfor given goals, in favour of ap-
proaches computingpartial plans. Total plans can be seen as (partially ordered)
sets of actions which, if executed successfully, wouldlead to the achievement
of the goals. Partial plans, instead, can be seen as (partially ordered) sets of ac-
tions which, if executed successfully, wouldcontributeto the achievement of the
goals, subject to the achievement of furthersub-goals. Planning partially (namely
computing partial plans for goals) is useful (or even necessary) for a number of
reasons: (i) because the planning agent is resource-bounded, (ii) because the agent
has incomplete and possibly incorrect knowledge of the environment in which it
is situated, (iii) because this environment is highly dynamic. In this paper, we
propose a framework to design situated agents capable of planning partially. The
framework is based upon the specification of planning problems via an abductive
variant of the event calculus.

1 Introduction
Conventional GOFAI planners and planning techniques (e.g. [1]) rely upon a number of
assumptions: (i) that the planning agent can devote as many resources as required to the
planning task, and thus it can keep on planning until atotal plan for some given goals
is obtained, (ii) that the knowledge of the agent is complete and correct at the planning
time, and (iii) that the environment in which the agent is situated will not change be-
tween the planning time and the time of execution of the plan, and thus the plan will be
directly executable, thus leading to achieving the goals it is meant to achieve. These as-
sumptions are unrealistic in most cases where planning is used, e.g. when the planning
agent is a robot in a dynamic physical environment.
A number of approaches have been proposed in the literature to cope with the limita-
tions of GOFAI planners, starting from early work on hierarchical planning. In this pa-
per, we present an approach to planning whereby the planning agent generates possibly
partial plans, namely (partially ordered) sets of actions which, if executed successfully,
would contributeto the achievement of the goals, subject to the achievement of further
sub-goals. A partial plan, like a hierarchical plan, is obtained by decomposition oftop-
level goals. A partial plan consists of sub-goals, that still need to be planned for, and
actions, that can be directly executed, subject to theirpreconditionsholding. Precon-
ditions are also part of partial plans, and they need planning for before the actions can
be executed. Within our approach, the decomposition of top-level goals, sub-goals and



preconditions into total plans is interleaved with the observation of the environment
in which the agent is situated, via asensingcapability of the agent. Sensed changes
in the environment are assimilated within the planning knowledge base of the agent.
Currently, this assimilation is done rather straightforwardly, by adding the sensed in-
formation to the planning knowledge base and, if inconsistent with it, by “dropping”
(implicitly) the existing beliefs in this knowledge base that lead to the inconsistency.
Thus, our approach relies upon full trust upon the sensing capability of the agent. Ob-
servations from the environment in turn might lead to the need to revise the currently
held partial plan, because as a consequence of the observations the agent notices that
some top-level goals, sub-goals or preconditions already hold, or that they need to be
re-planned for, or that they will never hold.
We adopt a novel variant of the event calculus [10], based upon abduction, to represent
the planning knowledge base of agents, which allows to perform partial planning and to
assimilate observations from the environment (in the simple manner described above).
We represent top-level goals, sub-goals, preconditions and actions in the language of the
event calculus. We impose atree structureover top-level goals, sub-goals, preconditions
and actions to support the revision of partial plans after observations and because of the
passage of time. We define the behaviour of the planning agent via asense− revise−
plan − execute life-cycle, which relies upon(state) transitions(for sensing, revision,
planning and action execution) andselection functionsto select intelligently top-level
goals, sub-goals and preconditions to plan for and actions to be executed. A variant
of the approach described here has been used withinKGP agents [7, 2] and realized
within the prototype implementationPROSOCS [19] of KGP agents.
The paper is organised as follows. In section 2 we give some background on abductive
logic programming with constraints, since the event calculus-based planning knowledge
base of agents we adopt is a theory in this framework. In section 3 we give the planning
knowledge base. In section 4 we define our partial plans and the cycle of planning
agents. In section 5 we define the individual transitions. In section 6 we define the
selection functions. In section 7 we give a simple example. In section 8 we evaluate our
approach against related work and conclude.

2 Background: abductive logic programming with constraints
We briefly recall the framework of Abductive Logic Programming (ALP) for knowledge
representation and reasoning [8], which underlies our planning technique. Anabductive
logic programis a triple〈P,A, I〉 where:

– P is a normal logic program, namely a set of rules (clauses) of the formH ←
L1, . . . , Ln with H atom,L1, . . . , Ln literals, andn ≥ 0. Literals can be positive,
namely atoms, or negative, namely of the formnotB, whereB is an atom. The
negation symbolnot indicatesnegation as failure. All variables inH, Li are im-
plicitly universally quantified, with scope the entire rule.H is called theheadand
L1, . . . Ln is called thebodyof a rule. Ifn = 0, then the rule is called afact.

– A is a set ofabducible predicatesin the language ofP , not occurring in the head
of any clause ofP (without loss of generality, see [8]). Atoms whose predicate is
abducible are referred to asabducible atomsor simplyabducibles.

– I is a set ofintegrity constraints, that is, a set of sentences in the language ofP . All
the integrity constraints in this paper will have the implicative formL1, . . . , Ln ⇒



A1 ∨ . . . ∨ Am (n ≥ 0,m > 1) whereLi are literals3, Aj are atoms (possibly
the special atomfalse). All variables in the integrity constraints are implicitly
universally quantified from the outside, except for variables occurring only in the
headA1 ∨ . . . ∨ Am, which are implicitly existentially quantified with scope the
head.L1, . . . , Ln is referred to as thebody.

Given an abductive logic program〈P,A, I〉 and a formula (query/observation/goal) Q,
which is an (implicitly existentially quantified) conjunction of literals in the language of
the abductive logic program, the purpose of abduction is to find a (possibly minimal) set
of (ground) abducible atoms∆which, together withP , “entails” (an appropriate ground
instantiation of)Q, with respect to some notion of “entailment” that the language ofP
is equipped with, and such that this extension ofP “satisfies”I (see [8] for possible
notions of integrity constraint “satisfaction”). Here, the notion of “entailment” depends
on the semantics associated with the logic programP (there are many different possible
choices for such semantics [8]). More formally and concretely, given a queryQ, a set of
(ground) abducible atoms∆, and a variable substitutionθ for the variables inQ, the pair
(∆, θ) is a(basic) abductive answerfor Q, with respect to an abductive logic program
〈P,A, I〉, iff P ∪∆ |=LPQθ, andP ∪∆ |=LP I, where|=LP is a chosen semantics for
logic programming. In this paper, we will not commit to any such semantics.
The framework of ALP can be usefully extended to handle constraint predicates in
the same way Constraint Logic Programming (CLP) [6] extends logic programming.
This extension allows to deal with non-ground abducibles, needed to support our plan-
ning approach. The CLP framework is defined over a particular structure< consisting
of domainD(<) and a set of constraint predicates which includes equality, together
with an assignment of relations onD(<) for each constraint predicate. The structure is
equipped with a notion of<-satisfiability. In this paper, the constraint predicates will
be<,≤, >,≤,=, 6=, but we will not commit to any concrete structure for their inter-
pretation. Given a (set of) constraintsC, |=< C will stand forC is <-satisfiable, and
σ |=< C, for some groundingσ of the variables ofC overD(<), will stand forC is
<-satisfied viaσ.
The rules of a constraint logic programP take the same form as the rules in conven-
tional logic programming, but with constraints occurring in the body of rules. Simi-
larly, P and I in an abductive logic program might have constraints in their bodies.
The semantics of a logic program with constraints is obtained by combining the logic
programming semantics|=LP and<-satisfiability [6]. Below, we will refer to such a
combined semantics as|=LP (<).
The notion of basic abductive answer can be extended to incorporate constraint han-
dling as follows. Given a queryQ (possibly with constraints), a set∆ of (possibly
non-ground) abducible atoms, and a setC of (possibly non-ground) constraints, the
pair (∆,C) is an abductive answer with constraintsfor Q, with respect to an ab-
ductive logic program with constraints〈P,A, I〉, with the constraints interpreted on
<, iff for all groundingsσ for the variables inQ,∆,C such thatσ |=< C then, (i)
P ∪∆σ |=LP (<) Qσ, and (ii)P ∪∆σ |=LP (<) I.
In the sequel, we will use the following extended notion of abductive answer. Given an
abductive logic program (with constraints)〈P,A, I〉, a queryQ (with constraints), an

3 If n = 0, thenL1, . . . , Ln represents the special atomtrue.



initial set of (possibly non-ground) abducible atoms∆0 and an initial set of (possibly
non-ground) constraint atomsC0, anabductive answerforQ, with respect to〈P,A, I〉,
∆0, C0, is a pair(∆,C) such that∆ ∩∆0 = {}, C ∩C0 = {}, and(∆ ∪∆0, C ∪C0)
is an abductive answer with constraints forQ, with respect to〈P,A, I〉.
In abductive logic programming (with constraints), abductive answers are computed
via abductive proof procedures, which typically extend SLD-resolution, providing the
computational backbone underneath most logic programming systems, in order to check
and enforce integrity constraint satisfaction, the generation of abducible atoms, and the
satisfiability of constraint atoms (if any). There are a number of such procedures in the
literature, e.g. CIFF [4, 3]. Any such (correct) procedure could be adopted to obtain
a concrete planning system based upon our approach. WithinKGP agents [7, 19] we
have adopted CIFF to perform the planning tasks along the lines described in this paper.

3 Representing a planning domain
In our framework, a planning problem is specified within the framework of the event
calculus (EC) for reasoning about actions, events and changes [10], in terms of an ab-
ductive logic program with constraintsKBplan = 〈Pplan, Aplan, Iplan〉 and an ordi-
nary logic programKBpre. The EC allows to represent a wide variety of phenomena,
including operations with indirect effects, non-deterministic operations, and concurrent
operations [15]. A number of abductive variants of the EC have been proposed to deal
with planning problems. Here, we propose a novel variantKBplan, somewhat inspired
by theE-language of [9], to allow situated agents to generate partial plans in a dy-
namic environment. In a nutshell, the conventional EC allows to write meta-logic pro-
grams which ”talk” about object-level concepts offluents, operations, andtime points.
We allow fluents to be positive, indicated e.g. asF , or negative, indicated e.g. as¬F .
Fluent literals will be indicated e.g. asL. The main meta-predicates of the formalism
are:holds at(L, T ) (a fluent literalL holds at a timeT ), clipped(T1, F, T2) (a flu-
entF is clipped - from holding to not holding - between a timeT1 and a timeT2),
declipped(T1, F, T2) (a fluentF is declipped - from not holding to holding - between a
timeT1 and a timeT2), initially(L) (a fluent literalL holds at the initial time, say time
0), happens(O, T ) (an operation/actionO happens at a timeT ), initiates(O, T, F )
(a fluentF starts to hold after an operationO at timeT ) andterminates(O, T, F ) (a
fluentF ceases to hold after an operationO at timeT ). Roughly speaking, in a planning
setting the last two predicates represent the cause-effects links between operations and
fluents in the modelled world. We will also use a meta-predicateprecondition(O,L)
(the fluent literalL is one of the preconditions for the executability of the operation
O). In our novel variant we also useexecuted andobserved predicates to deal with
dynamic environments and theassume holds predicate to allow for partial planning.
We now giveKBplan. Pplan consists of domain-independent and domain-dependent
rules. The basicdomain-independent rules, adapted from the original EC, are:

holds at(F, T2)← happens(O, T1), initiates(O, T1, F ),
T1 < T2,¬ clipped(T1, F, T2)

holds at(¬F, T2)← happens(O, T1), terminates(O, T1, F ),
T1 < T2,¬ declipped(T1, F, T2)

holds at(F, T )← initially(F ), 0 < T,¬ clipped(0, F, T )



holds at(¬F, T )← initially(¬F ), 0 < T,¬ declipped(0, F, T )
clipped(T1, F, T2)← happens(O, T ), terminates(O, T, F ), T1 ≤ T < T2

declipped(T1, F, T2)← happens(O, T ), initiates(O, T, F ), T1 ≤ T < T2

The domain-dependent rulesdefine theinitiates, terminates, and initially predi-
cates. We show a simple example for such rules within theblocks-worlddomain.

Example 1.The domain dependent rules for themv(X,Y ) operation in the block world
domain, whose effects are to move blockX onto blockY , are the following:

initiates(mv(X,Y ), T, on(X,Y ))
terminates(mv(X,Y ), T, clear(Y ))
terminates(mv(X,Y ), T, on(X,Z))← holds at(on(X,Z), T ), Y 6= Z
initiates(mv(X,Y ), T, clear(Z)) ← holds at(on(X,Z), T ), Y 6= Z

namely themv(X,Y ) operationinitiatesblockX to be on blockY andterminatesY
being clear. Moreover, if blockX was on a blockZ, the operationmv terminatesthis
relation andinitiatesblockZ being clear. 2

The conditions for the rules defininginitiates andterminates can be seen as precon-
ditions for the effects of the operation ( e.g.mv in the earlier example) to be established.
Conditions for the executability of operations are specified withinKBpre, which con-
sists of a set of rules defining the predicateprecondition.

Example 2.The preconditions for the executability of operationmv(X,Y ) are that
bothX andY are clear, namely:

precondition(mv(X,Y ), clear(X)) precondition(mv(X,Y ), clear(Y ))
2

In order to accommodate (partial) planning we will assume that the domain-independent
part inPplan also contains the rules:

happens(O, T )← assume happens(O, T )
holds at(L, T ) ← assume holds(L, T )

i.e. an operation can be made to happen and a fluent can be made to hold simply by
assuming them, whereassume happens andassume holds are the only predicates in
Aplan in KBplan. This supports partial planning as follows. We will see that actions in
our specification amount to atoms in the abducible predicateassume happens: thus,
abducing an atom in this predicate amounts to planning to execute the corresponding
action. Moreover, as yet unplanned for, sub-goals in our specification of partial plans
amount to atoms in the abducible predicateassume holds(L, T ): abducing an atom in
this predicate indicates that further planning is needed for the corresponding sub-goal.
Iplan in KBplan contains the following domain-independent integrity constraints:

holds at(F, T ), holds at(¬F, T )⇒ false
assume happens(A, T ), not executed(A, T ), time now(T ′)⇒ T > T ′

namely a fluent and its negation cannot hold at the same time and when assuming (plan-
ning) that an action will happen, we need to enforce it to be executable in the future.
As we will see in section 4, a concrete planning problem is influenced (amongst other
things) by anarrativeof events, which, unlikeKBplan andKBpre, changes over the
life-cycle of the agent. We refer to the agent’s representation of this narrative asKB0.
We assume thatKB0 represents events via predicatesexecuted andobserved, e.g., the
KB0 of an agent in the blocks-world domain witha andb as two blocks, might contain:

executed(mv(a, b), 3) observed(¬on(b, a), 10) observed(ag,mv(c, d), 3, 5)



namely the agent hasexecutedamv(a, b) operation at time3, the agent hasobserved
that¬on(b, a) holds at time10 and the agent has observed at time5 that another agent
ag has moved blockc onto blockd at time 3. Observations are drawn, via specific
sensing capabilities of agents, from the environment in which they are situated, and are
recorded inKB0, as are records of actions executed by the agent itself. To allow agents
to draw conclusions, via the EC, from the contents ofKB0 the followingbridge rules
are also contained in the domain independent rules ofPplan:

clipped(T1, F, T2) ← observed(¬F, T ), T1 ≤ T < T2

declipped(T1, F, T2)← observed(F, T ), T1 ≤ T < T2

holds at(F, T2) ← observed(F, T1), T1 ≤ T2,¬ clipped(T1, F, T2)
holds at(¬F, T2) ← observed(¬F, T1), T1 ≤ T2,¬ declipped(T1, F, T2)
happens(O, T ) ← executed(O, T )
happens(O, T ) ← observed(A,O, T ′, T )

Note that we assume that the value of a fluent literal is changed according to observa-
tions only from the moment the observations are made, and actions by other agents have
effects only from the time observations are made that they have been executed, rather
than from the execution time itself. These choices are dictated by the rationale that
observations can only have effects from the moment the planning agent makes them.

4 Representing planning problems and the life-cycle of agents
Given a planning domain and a set of (top-level) goalsGoals held by the agent, each of
the formholds at(L, T ), we represent apartial plan for Goals as a triple〈Strategy,
Parent, TC〉, where

– Strategy is a set ofsubgoalsandpreconditions, each of the formholds at(L, T ),
and ofactions, each of the formassume happens(L, T ); eachT of goals, sub-
goals, preconditions and actions is existentially quantified in the context of the goals
and the partial plan; each suchT is unique as we shall see in section 5; thus, such
time variable uniquely identifies goals, subgoals, preconditions and actions;

– Parent is a function fromStrategy toGoals∪Strategy, inducing atree structure
over theGoals and theStrategy; the root of this tree is the special symbol⊥, its
children are all the goals inGoals, and the children of any other node in the tree is
the set of all subgoals/preconditions/actions which are mapped, viaParent, onto
the node; as we shall see in section 5, preconditions can only be children of actions,
whereas subgoals and actions can be children of goals, subgoals or preconditions;

– TC is a set oftemporal constraintsover the times of goals, subgoals, preconditions
and actions inStrategy, namely constraint atoms in the language ofKBplan.
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Above we show a simple tree structure (where a Gn represents a goal, an SGn repre-
sents a subgoal and an An represents an action) for the blocks world domain, for the
example given later in Section 7, to which we remand for details.

In the sequel, we will refer to any of goals, subgoals, preconditions and actions as
nodes. Moreover, with an abuse of notation, we will represent nodesN in Goals
andStrategy as pairs〈holds at(L, T ), P t〉 and〈assume happens(O, T ), P t〉, where
Pt = Parent(N), and we will omit mentioningParent in partial plans.
Given a planning domain, we represent a concrete planning problem, at a certain time
τ (to be interpreted as the current time), via a notion ofstatedefined below. Then, the
planning process amounts to a sequence of such states, at incremental times, corre-
sponding to the agent’s life-cycle.

Definition 1. An agent’sstateat timeτ is a tuple〈KB0, Σ,Goals, Strategy, TC〉,
where

– KB0 is the recorded set of observations and executed operators (up untilτ );
– Σ is the set of all bindingsT = X, whereT is the time variable associated with

some action recorded as having been executed by the agent itself withinKB0, with
the associated execution timeX;

– Goals is the set of (currently unachieved) goals, held by the agent at timeτ ;
– 〈Strategy, TC〉 is a partial plan forGoals, held by the agent at timeτ ;

Below, by the tree corresponding to a state we mean the tree corresponding to theGoals
andStrategy in the state, and to a node of the tree to indicate an element ofStrategy∪
Goals, thus excluding⊥.
We now introduce the concepts ofinitial stateandfinal state. An initial state is a state
of the form〈{}, {}, Goals, {}, TC〉, whereTC are the given temporal constraints for
Goals. The treeTrS corresponding to an initial stateS is a two-level tree with root⊥
and all the goals inGoals as the children of⊥. A final state can be either asuccess
stateor a failure state. A success state is a state of the form〈KB0, Σ, {}, {}, TC〉. A
failure state is a state of the form:〈KB0, Σ,�, {}, TC〉, where the symbol� indicates
that there is no way to achieveoneof the initial goals.4

In our framework, an agent which wants to plan in order to achieve its goals behaves
according to alife-cyclewhich is an adaptation of the classicalsense - plan - execute
cycle. Concretely, such a life-cycle can be seen as the repetition of a sequence of steps

sense− revise− plan− execute
starting from an initial state until a final state is reached. In the next section we show the
specification of the various steps, in the form ofstate transitions. Thus, the life-cycle of
the planning agent can be equated to a sequence of states, each at a specific timeτ . The
corresponding tree varies during the life-cycle of the agent, by inserting and deleting
nodes, as specified in the next section.
We will use the following notation. Given a stateS, with its corresponding treeTrS :

– the set ofsiblingsof a nodeN ∈ TrS of the form〈 , P t〉 is the set
Siblings(N,TrS) = {N ′ ∈ TrS | N ′ = 〈 , P t〉}.

4 This is an arbitrary decision, and we could have defined a failure state as one where there is no
way to achieve all the goals, and a success state as one where at least one goal can be achieved.



– the set ofpreconditionsof an actionA of the form〈assume happens(O, T ), P t〉
is the setPre(A, TrS) = {P ∈ TrS | P = 〈 , A〉}.

5 Transitions specification

Here we give the specification of the state transitions determining the life-cycle of the
planning agent. We refer to these transitions as thesensing transition, theplanning tran-
sition, theexecution transition, and therevision transition. The planning and execution
transitions take inputs that are computed viaselection functions, defined in section 6.

5.1 Sensing Transition

Given a stateS = 〈KB0, Σ,Goals, Strategy, TC〉 at a timeτ , the application of a
sensing transition atτ leads to a stateS′ = 〈KB′0, Σ,Goals, Strategy, TC〉, where
KB′0 is obtained fromKB0 by adding any observations on fluent literals atτ and any
observations atτ that an operation has been executed by another agent (at an earlier
time). These observations are obtained by calling thesensing capabilityof the agent at
time τ which we refer to as|=τ

Env, which accesses the environment of the agent.

Definition 2. Given a stateS = 〈KB0, Σ,Goals, Strategy, TC〉 at a timeτ , if
|=τ
Env l1 ∧ . . . ∧ ln ∧ a1 ∧ . . . ∧ am

wheren + m ≥ 0, eachli is a fluent literal and eachaj is an operationoj executed
by agentagj at some earlier timeτj , then thesensing transitionleads to a stateS′ =
〈KB′0, Σ,Goals, Strategy, TC〉 where:

KB′0 = KB0 ∪{observed(l1, τ) ∪ . . . ∪ observed(ln, τ)}
∪{observed(ag1, o1, τ1, τ), . . . , observed(agm, om, τm, τ)}.

5.2 Planning Transition

The planning transition relies upon aplanning selection functionSelP (S, τ) which,
given as input a stateS at timeτ returns a (single) goal, subgoal or precondition to be
planned for. The extension whereby multiple goals, subgoals and preconditions are re-
turned by the selection function is straightforward. In this section, we assume that such
a selection function is given (a possible specification is provided in the next section).
We introduce the following useful notation which will be helpful in defining the plan-
ning transition. LetS = 〈KB0, Σ,Goals, Strategy, TC〉 be a state. Then:

– for any setX ⊆ Goals ∪ Strategy, by X(Σ) we denote the set obtained by
applying to each element ofX the instantiations provided byΣ;

– given a nodeG ∈ Goals ∪ Strategy, byRest(G) we denote the set
Rest(G) = Strategy(Σ) ∪Goals(Σ)−G(Σ);

– given a nodeN ∈ Goals ∪ Strategy, we denote byA(N) theabducible version
of N , namely

A(N) =
{
assume happens(O, T ) if N = 〈assume happens(O, T ), 〉
assume holds(L, T ) if N = 〈holds at(L, T ), 〉

This notation is lifted to any setX of nodes as usual, i.e.A(X) =
⋃

N∈X
A(N).



Intuitively, given a stateS = 〈KB0, Σ,Goals, Strategy, TC〉, the planning transition
builds a (partial) plan for a given goal, subgoal or preconditionG in terms of an abduc-
tive answer, as defined in section 2, and updates the state accordingly. More precisely,
an abductive answer is computed with respect to:

– the abductive logic program with constraintsKBplan, as defined in Section 3;
– the initial queryQ given byG;
– the initial set of abducibles∆0 given by the abducible version of the current tree

(except forG), namelyA(Rest(G));
– the initial set of constraintsC0 given by the current set of constraints in the state,

along with the instantiations inΣ, namelyTC ∪Σ.

Once such abductive answer, say(∆,C ′), is obtained, the planning transition leads
to a new stateS′ = 〈KB0, Σ,Goals, Strategy

′, TC ′〉 whereStrategy′ is Strategy
augmented with the actions, goals and preconditions derived from∆, andTC ′ is TC
augmented withC ′ and with suitable equalities on the time variables of the precondi-
tions of actions added to the state. We assume that the abducibles in∆ do not share
time variables5. This is formalised in the next definition.

Definition 3. Given a stateS = 〈KB0, Σ,Goals, Strategy, TC〉 at a timeτ and
the nodeG = SelP (S, τ), let (∆,C ′) be an abductive answer for the queryG with
respect to the abductive logic program (with constraints)KBplan, and initial sets
∆0 = A(Rest(G)) andC0 = TC ∪ Σ. Then, theplanning transitionleads to a state
S′ = 〈KB0, Σ,Goals, Strategy

′, TC ′〉 whereStrategy′ andTC ′ are obtained by
augmentingStrategy andTC as follows:

– for eachassume holds(L, T ) ∈ ∆, 〈holds at(L, T ), G〉 is added inStrategy′

– for eachassume happens(O, T ) ∈ ∆
• A = 〈happens(O, T ), G〉 is added inStrategy′, and
• for eachP such thatprecondition(happens(O, T ), P ) ∈ KBpre, letTp be a

fresh time variable; then:
〈holds at(P, TP ), A〉 is added inStrategy′, and
TP = T is added inTC ′

• C ′ is added inTC ′

Note that this transition enforces that preconditions of actions hold at the time of the
execution of the actions, by adding such preconditions toStrategy′ so that they will
need planning for. Note also that, when introducing preconditions, we need to make
sure that their time variable is new, and relate this, withinTC ′, to the time variable of
the action whose preconditions we are enforcing.

5.3 Execution Transition

Similarly to the planning transition, the execution transition relies upon anexecution
selection functionSelE(S, τ) which, given a stateS and a timeτ , returns a (single)
action to be executed (a possible specification of this selection function is provided in
the next section). The extension to the case of multiple actions is straightforward.

5 Notice that this is not a restrictive assumption, since shared variables can be renamed and
suitable equalities can be added to the constraints inC′.



Definition 4. Given a stateS = 〈KB0, Σ,Goals, Strategy, TC〉 at a timeτ and an
actionA of the form〈assume happens(O, T ), P t〉 such thatA = SelE(S, τ), then
theexecution transitionleads to a stateS′ = 〈KB′0, Σ′, Goals, Strategy, TC〉 where:

– KB′0 = KB0 ∪ {executed(O, τ)}
– Σ′ = Σ ∪ {T = τ}

Note that we are implicitly assuming that actions are ground except for their time vari-
able. The extension to deal with other variables in actions is straightforward.
Executed actions are eliminated from states by the revision transition, presented next.

5.4 Revision Transition

To specify the revision transition we need to introduce some useful concepts. A node is
said to beobsoletewrt a stateS at a timeτ for any of the following reasons:

– The node is a goal, subgoal or precondition node and the node itself is achieved.
– The parent of the node is obsolete wrtS andτ . Indeed, if a node is obsolete there

is no reason to plan for or execute any of its children (or descendants).
Thus, obsolete nodes amount to achieved goals, subgoals and preconditions and actions
that have been introduced for them (and thus become redundant).
Definition 5. Given a stateS = 〈KB0, Σ,Goals, Strategy, TC〉 at a timeτ , we
define the set ofobsolete nodesObsolete(S, τ) as the set composed of each node
N ∈ Strategy ∪Goals of the formN = 〈X,Pt〉 such that:

– Pt ∈ Obsolete(S, τ) or
– X = holds at(L, T )andPplan∪KB0 |=LP (<) Σ∧holds at(L, T )∧T ≤ τ ∧TC

A node istimed outwrt a stateS at a timeτ for any of the following reasons:
– It has not been achieved yet, and there is no way to achieve it in the future due to

temporal constraints.
– Its parent or one of its siblings is timed out wrtS andτ . Indeed, if either the parent

or a sibling of the node is timed out, there is no reason to keep the node for later
planning. This condition is not imposed if the node is a top-level goal because top-
level goals do not influence each other (expect via possible temporal constraints on
their time variables).

Definition 6. Given a stateS = 〈KB0, Σ,Goals, Strategy, TC〉 at a timeτ , we de-
fine the set oftimed out nodesTimedOut(S, τ) as the set composed of each node
N ∈ Strategy ∪Goals of the form〈holds at(L, T ), P t〉 such that:

– N 6∈ Obsolete(S, τ) and 6|=< Σ ∧ TC ∧ T > τ or
– Pt ∈ TimedOut(S, τ) or
– N 6∈ Goals and there existsN ′ ∈ Siblings(N) such thatN ′ ∈ TimedOut(S, τ)).

Using the above definitions we now define the revision transition which, roughly speak-
ing, removes obsolete and timed out nodes.

Definition 7. Given a stateS = 〈KB0, Σ,Goals, Strategy, TC〉 at a timeτ , the
revision transitionleads to a stateS′ = 〈KB0, Σ,Goals

′, Strategy′, TC〉 where, for
eachN ∈ Strategy′ ∪Goals′:



– N 6∈ TimedOut(S, τ), and
– if N = 〈assume happens(O, T ), 〉 then it is not the case thatexecuted(O, τ ′) ∈
KB0 andT = τ ′ ∈ Σ, and

– if N ∈ Obsolete(S, τ) thenParent(N) = 〈assume happens(O, T ), 〉, and
– Parent(N) ∈ Goals′ ∪ Strategy′.

Intuitively, each timed out node, each obsolete node and each executed action has to be
eliminated from the tree. The only exception is represented by preconditions. Indeed,
obsolete precondition at revision time are not eliminated because they must hold at
execution time. If an obsolete preconditionp for an actiona is eliminated at revision
time due to the fact that it holds at that time, something could happen later on (e.g. an
external change or an action performed by some other agent or by the agent itself) that
invalidatesp so that it does not hold whena is executed. Note that we could also impose
for the temporal constraints to be simplified at revision time, but this is not necessary to
guarantee the correctness of our approach.

6 Selection functions

The planning and execution transitions require aselection functioneach. Here, we give
possible definitions for these functions. Note that we use the term function loosely, as
the selection randomly returns one of possibly several candidates.

6.1 Planning Selection Function

Given a stateS = 〈KB0, Σ,Goals, Strategy, TC〉 at a timeτ , the planning transition
needs aplanning selection functionSelP (S, τ) to select a goal, subgoal or precondi-
tionG belonging toGoals or Strategy, to be planned for. We defineSelP so thatG
satisfies the following properties:

– neitherG nor any ancestor or sibling ofG is timed out atτ ;
– neitherG nor an ancestor ofG is achieved atτ ; i.e.G is not obsolete and it does

not hold at the current time;
– no plan forG belongs toS.

Definition 8. Given a stateS = 〈KB0, Σ,Goals, Strategy, TC〉 at a timeτ , the
planning selection functionSelP (S, τ) returns a goal, a subgoal or a precondition
G = 〈holds at(L, T ), 〉 such that:

– G 6∈ TimedOut(S, τ);
– G 6∈ Obsolete(S, τ), and it is not the case that
Pplan ∪KB0 |=LP (<) holds at(L, T ) ∧ T = τ ∧ TC ∧Σ

– there exists noG′ ∈ Strategy such thatG = Parent(G′);

Clearly it may be possible that a number of goals, subgoals and preconditions in a state
satisfy the above properties and thus could be selected. We could further incorporate a
number of heuristics to restrict the number of candidatesG to be selected amongst.



6.2 Execution Selection Function
Given a stateS = 〈KB0, Σ,Goals, Strategy, TC〉 at a timeτ , the execution transition
needs anexecution selection functionSelE(S, τ) to select an actionA in Strategy to
be executed atτ . We defineSelE so thatA satisfies the following properties:

– neitherA nor any ancestor or sibling ofA is timed out atτ ;
– all preconditions (children) ofA are satisfied atτ ;
– no (goal, subgoal or precondition) ancestor ofA is satisfied atτ ;
– A has not been executed yet.

Definition 9. Given a stateS = 〈KB0, Σ,Goals, Strategy, TC〉 at a timeτ , theexe-
cution selection functionSelE(S, τ) returns an actionA = 〈assume happens(O, T ), 〉
such that:

– A 6∈ TimedOut(S, τ);
– for eachP = 〈holds at(P, T ′), A〉 ∈ Strategy, P ∈ Obsolete(S, τ);
– A 6∈ Obsolete(S, τ);
– there exists noτ ′ such thatexecuted(O, τ ′) ∈ KB0 andT = τ ′ ∈ Σ.

Again, heuristics could be incorporated within the execution selection function to re-
strict the number of selectable actions.

7 An example

In this section we show a simple example of life-cycle of an agent in the blocks-world
domain of examples 1 and 2. We assume to have three blocks,a, b, c, all on the table
initially. The formalisation of the initial configuration, using a special locationtable, is
as follows:

initially(on(a, table)), initially(on(b, table)), initially(on(c, table)),
initially(clear(a)), initially(clear(b)), initially(clear(c))

Our objective is to have a tower withc on b ona by time20. We can formalise this via
top-level goals:

G1 = 〈holds at(on(b, a), T1),⊥〉 G2 = 〈holds at(on(c, b), T2),⊥〉
whereTC0 = {T1 = T2, T1 ≤ 20}
The following is a possible life-cycle of the agent, achievingG1 andG2.

Initial State : S0 = 〈{}, {}, {G1, G2}, {}, TC0〉
Time 1 - Sensing Transition: |=1

Env {}
Resulting state: S1 = S0

Time 2 - Revision Transition: There is nothing to be revised at this point.
Resulting state: S2 = S1

Time 3 - Planning Transition: Assume thatSelP (S2, 3) = G1. Let (∆,C) be the
abductive answer wrtKBplan, ∆0 = {assume holds(on(c, b), T2)} andC0 = TC0,
where∆ = {assume happens(mv(b, a), T3)} andC = {T3 < T1}. Let

Strategy3 = { 〈assume happens(mv(b, a), T3), G1〉 = A1

〈holds at(clear(a), T4), A1〉
〈holds at(clear(b), T5), A1〉 }

TC3 = TC0 ∪ C ∪ {T4 = T3, T5 = T3}
Resulting state: S3 = 〈{}, {}, {G1, G2}, Strategy3, TC3〉



At this stage the tree structure is the one given earlier in the picture in Section 4.
Time 4 - Execution Transition: as the preconditions of actionA1 are both achieved at
this time due to theinitially rules inKBplan, thenA1 = SelE(S3, 4) (A1 is the only
action that can be selected at this time). Let

KB4
0 = {executed(mv(b, a), 3)

Σ4 = {T3 = 4}
Resulting state: S4 = 〈KB4

0 , Σ
4, {G1, G2}, Strategy3, TC3〉

Time 5 - Sensing Transition: Assume that the sensing capability of the agent forces
it to observe thatb is actually onc at this time and thata is clear, namely|=5

Env

{on(b, c),¬on(b, a),¬on(c, table),¬clear(c), clear(a)}. Basically, there has been ei-
ther a problem in the execution ofA1 or an interference by some other agent. Then,

KB5
0 = KB4

0 ∪ { observed(on(b, c), 5), observed(¬on(b, a), 5),
observed(¬on(c, table), 5), observed(¬clear(c), 5),
observed(clear(a), 5)}

Resulting state: S5 = 〈KB5
0 , Σ

4, {G1, G2}, Strategy3, TC3〉
Time 6 - Revision Transition: At this time the revision transition deletes from the
strategy the actionA1 and its preconditions asA1 has been executed.
Resulting state: S6 = 〈KB5

0 , Σ
4, {G1, G2}, {}, TC3〉

Time 7 - Planning Transition: Assume that the selected goal is againG1,SelP (S6, 7) =
G1. (Note thatG1 is again selectable as it is not achieved at time 7.) Similarly as for the
previous planning transition, let:

Strategy7 = { 〈assume happens(mv(b, a), T ′3), G1〉 = A′1
〈holds at(clear(a), T ′4), A′1〉
〈holds at(clear(b), T ′5), A′1〉 }

TC7 = TC3 ∪ {T ′3 < T1, T
′
4 = T ′3, T

′
5 = T ′3}

Resulting state: S7 = 〈KB5
0 , Σ

4, {G1, G2}, Strategy7, TC7〉
Time 8 - Execution Transition: as the preconditions of actionA1 are both achieved at
this time, due to theinitially rules inKBplan and to the observations inKB0, then
A′1 = SelE(S7, 8) (A′1 is the only action that can be selected at this time). Let

KB8
0 = {executed(mv(b, a), 8)

Σ8 = {T ′3 = 8}
Resulting state: S8 = 〈KB8

0 , Σ
8, {G1, G2}, Strategy7, TC7〉

Time 9 - Sensing Transition: |=9
Env {}

Resulting state: S9 = S8

Time 10 - Revision Transition: At this time the revision transition deletes from the
strategy the actionA′1 and its preconditions asA′1 has been executed.
Resulting state: S10 = 〈KB8

0 , Σ
8, {G1, G2}, {}, TC7〉

Time 11 - Planning Transition: Assume that the selected goal isSelP (S10, 11) =
G2. Note that at this timeG2 is the only goal that can be selected because goalG1 is
achieved. Similarly as for the previous planning transitions, let:

Strategy11 = { 〈assume happens(mv(c, b), T6), G2〉 = A2

〈holds at(clear(a), T7), A2〉
〈holds at(clear(b), T8), A2〉 }

TC11 = TC7 ∪ {T6 < T2, T7 = T6, T8 = T6}
Resulting state: S12 = 〈KB8

0 , Σ
8, {G1, G2}, Strategy11, TC11〉



Time 12 - Execution Transition: actionA2 is selected. Let
KB12

0 = KB8
0 ∪ {executed(mv(c, b), 12)

Σ12 = {T3 = 4, T ′3 = 8, T6 = 12}
Resulting state: S13 = 〈KB12

0 , Σ12, {G1, G2}, Strategy11, TC11〉
Time 13 - Sensing Transition: |=13

Env {}
Resulting state: S13 = S12

Time 14 - Revision Transition: At this time the revision transition deletes from the
strategy the actionA2 and its preconditions asA2 has been executed. Moreover as both
G1 andG2 are achieved, the revision transition deletes them from the goals leading to
a successful final state.
Resulting state: S14 = 〈KB12

0 , Σ12, {}, {}, TC11〉.

8 Related work and Conclusions

Planning has been a very active research and development area for some time. Systems
have been developed for a range of applications such as medical, robotics and web
services. Many approaches to planning have been proposed (e.g the STRIPS language
with its improvements and related state-of-the-art systems such as Graphplan [1]). Here
we concentrate on those closer to our work.
Our approach to planning is based on the abductiveevent calculus. It is thus closely
related to Shanahan’s abduction and event calculus planning work [14–18] and to the
approach based on thesituation calculus. The latter forms the basis of GOLOG [11], an
imperative language implemented in PROLOG incorporating macro-actions (as proce-
dures) and non-determinism. GOLOG has been shown to be suitable for implementing
robot programs as high-level instructions in dynamic domains.
The contribution of our paper is in describing a system that allows partial planning
and the interleaving of planning with sensing and executing actions. This integration is
particularly suitable for (possibly resource bounded) agents situated in dynamic envi-
ronments. Our partial plans, to some extent, have the flavour of thecompound actions
of Shanahan [16]. If well defined, both approaches allow us to find executable actions
quickly. However, our formalisation is simpler than [16] as we do not need to use com-
pound actions in our theories in order to achieve partial planning.
Compound actions are also exploited in the situation calculus, in particular [12] gives
formal characterisations of compound actions and their preconditions and postcondi-
tions. Investigating how to incorporate them in our framework is subject of future work.
An important feature of our approach is the revision of the plans obtained by the Re-
vision transition. The tree structure in theStrategy part of each agent state allows an
intelligent, selective way of revising the (partial) plan. This means that, if replanning
becomes necessary, it is done only for unachieved goals and subgoals, thus avoiding the
”replanning from scratch” method seen in [16].
There are issues that we have not addressed yet. These include ramification problems,
which are addressed in [17] where it is pointed out that thestate-constraintsformalisa-
tion of ramifications can lead to inconsistencies. State-constraints are of the form

holds at(P, T )← holds at(P1, T ), . . . , holds at(Pn, T )
This rule can cause inconsistencies if, at a timet, P1, . . . ,Pn and thusP hold. But at
an earlier time, sayt1, ¬P may hold and it is not clipped before the timet. As rules



of above form are needed to model subgoals, ramification is an important issue to be
addressed. One way to avoid the problem of inconsistency could be to add, for each
state constraint of the form above, another rule of the form

declipped(P, T )← holds at(P1, T ), . . . , holds at(Pn, T )
This approach is similar to the one that we have taken in thebridge rulesof Section 3,
but needs to be further investigated.
The Sensing transition, described in Section 5, is important for a situated agent, but
is rather simplistic. It simply adds the observation to the agent’s knowledge base and
the bridge rulesin the knowledge base perform some implicit conflict resolution. An
alternative approach is presented in [16]. This proposal is that, once an observation is
made, (possibly abductive) explanations of it are sought, thus avoiding some possible
inconsistencies and giving a richer account of causes and effects. This approach has
obvious disadvantages in cases where observations are such that the agent cannot be
expected to find explanations for. E.g., in a communication scenario, an agent could
observe that the network is down but has no way of knowing (or even guessing) why.
Another drawback of our Sensing transition is that it is random and passive. The agent
collects information from the environment as a passive observer. Anactive form of
sensing is described in [7, 2] where, as well as performing physical actions, the agent
can perform active knowledge-producing (or sensing) actions. Such active sensing ac-
tions do not affect the external environment but they affect the agent’s knowledge about
the environment. Such an active sensing action can be performed, for example, to seek
information from the environment about preconditions of actions before they are per-
formed or to seek confirmation that an executed action has had its desired outcome.
Active sensing actions are also addressed in [13] for imperative GOLOG programs
where they allow conditional plans whose conditions are checked at ”run-time”.
An issue related to observations is that ofexogenous actions. Our handling of obser-
vations combined with the Revision transition seem to be effective to capture both ex-
ogenous actions and their effects in the sense that, if our agent detects an action or a
fact which invalidate a plan or a subplan already executed, the revision procedure will
replan for that part (and only for that part). Another approach to exogenous (malicious)
actions is that in [5] where, if exogenous actions change the external environment, a re-
covery procedure is performed with which the agent is able to restore the state to the one
before the exogenous event occurred. With respect to our framework, drawbacks of that
approach are that a number of assumptions have been made, in particular that the agent
knows what kind of exogenous actions can be done and what their effects are. Also, this
approach does not take into account the possibility that an exogenous action can “help”
the agent to achieve its goals making certain subgoals and action unnecessary.
Finally, we remark that to properly evaluate our techniques, we are studying formal
results such as soundness and completeness and we are doing practical experimentation
with the CIFF system [4, 3] as the underlying abductive reasoner.
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