Planning partially for situated agents

Paolo Mancarells Fariba Sadfi, Giacomo Terreni, and Francesca Toht

L University of Pisa, Pisa, Italy
email: {paolo,terreni,toni }@di.unipi.it
2 Department of Computing, Imperial College London, UK
email:{fs,ft }@doc.ic.ac.uk

Abstract. In recent years, within the planning literature there has been a de-
parture from approaches computitagal plansfor given goals, in favour of ap-
proaches computingartial plans Total plans can be seen as (partially ordered)
sets of actions which, if executed successfully, wdelad to the achievement

of the goals. Partial plans, instead, can be seen as (partially ordered) sets of ac-
tions which, if executed successfully, wowdntributeto the achievement of the
goals, subject to the achievement of furteeb-goalsPlanning partially (namely
computing partial plans for goals) is useful (or even necessary) for a number of
reasons: (i) because the planning agent is resource-bounded, (ii) because the agent
has incomplete and possibly incorrect knowledge of the environment in which it
is situated, (iii) because this environment is highly dynamic. In this paper, we
propose a framework to design situated agents capable of planning partially. The
framework is based upon the specification of planning problems via an abductive
variant of the event calculus.

1 Introduction

Conventional GOFAI planners and planning techniques (e.g. [1]) rely upon a number of
assumptions: (i) that the planning agent can devote as many resources as required to the
planning task, and thus it can keep on planning untdtal planfor some given goals

is obtained, (ii) that the knowledge of the agent is complete and correct at the planning
time, and (iii) that the environment in which the agent is situated will not change be-
tween the planning time and the time of execution of the plan, and thus the plan will be
directly executable, thus leading to achieving the goals it is meant to achieve. These as-
sumptions are unrealistic in most cases where planning is used, e.g. when the planning
agent is a robot in a dynamic physical environment.

A number of approaches have been proposed in the literature to cope with the limita-
tions of GOFAI planners, starting from early work on hierarchical planning. In this pa-
per, we present an approach to planning whereby the planning agent generates possibly
partial plans namely (partially ordered) sets of actions which, if executed successfully,
would contributeto the achievement of the goals, subject to the achievement of further
sub-goalsA partial plan, like a hierarchical plan, is obtained by decompositidomf

level goals A partial plan consists of sub-goals, that still need to be planned for, and
actions that can be directly executed, subject to th@@conditionsholding. Precon-

ditions are also part of partial plans, and they need planning for before the actions can
be executed. Within our approach, the decomposition of top-level goals, sub-goals and

preconditions into total plans is interleaved with the observation of the environment
in which the agent is situated, viasgnsingcapability of the agent. Sensed changes

in the environment are assimilated within the planning knowledge base of the agent.
Currently, this assimilation is done rather straightforwardly, by adding the sensed in-
formation to the planning knowledge base and, if inconsistent with it, by “dropping”
(implicitly) the existing beliefs in this knowledge base that lead to the inconsistency.
Thus, our approach relies upon full trust upon the sensing capability of the agent. Ob-
servations from the environment in turn might lead to the need to revise the currently
held partial plan, because as a consequence of the observations the agent notices that
some top-level goals, sub-goals or preconditions already hold, or that they need to be
re-planned for, or that they will never hold.

We adopt a novel variant of the event calculus [10], based upon abduction, to represent
the planning knowledge base of agents, which allows to perform partial planning and to
assimilate observations from the environment (in the simple manner described above).
We represent top-level goals, sub-goals, preconditions and actions in the language of the
event calculus. We imposdm@e structureover top-level goals, sub-goals, preconditions
and actions to support the revision of partial plans after observations and because of the
passage of time. We define the behaviour of the planning agentsviasa — revise —

plan — execute life-cycle, which relies upoifstate) transitiongfor sensing, revision,
planning and action execution) asdlection functionso select intelligently top-level
goals, sub-goals and preconditions to plan for and actions to be executed. A variant
of the approach described here has been used witlif agents [7, 2] and realized
within the prototype implementatioRROSOC'S [19] of KG P agents.

The paper is organised as follows. In section 2 we give some background on abductive
logic programming with constraints, since the event calculus-based planning knowledge
base of agents we adopt is a theory in this framework. In section 3 we give the planning
knowledge base. In section 4 we define our partial plans and the cycle of planning
agents. In section 5 we define the individual transitions. In section 6 we define the
selection functions. In section 7 we give a simple example. In section 8 we evaluate our
approach against related work and conclude.

2 Background: abductive logic programming with constraints

We briefly recall the framework of Abductive Logic Programming (ALP) for knowledge
representation and reasoning [8], which underlies our planning techniqudadttive
logic programis a triple(P, A, I') where:

— P is anormal logic program namely a set of rules (clauses) of the fofin <
Ly,...,L, with H atom,L,..., L, literals, andn > 0. Literals can be positive,
namely atoms, or negative, namely of the fomar B, where B is an atom. The
negation symbohot indicatesnegation as failureAll variables inH, L; are im-
plicitly universally quantified, with scope the entire rulé.is called theheadand
Lq,... L, is called theébodyof a rule. Ifn = 0, then the rule is called fact

— Ais a set ofabducible predicates the language of’, not occurring in the head
of any clause ofP? (without loss of generality, see [8]). Atoms whose predicate is
abducible are referred to abducible atomsr simplyabducibles

— I is a set ointegrity constraintsthat is, a set of sentences in the languagg.dAll
the integrity constraints in this paper will have the implicative farm. .., L,, =

A1 V...V A, (n>0,m > 1)whereL; are literald, A; are atoms (possibly
the special atomyalse). All variables in the integrity constraints are implicitly
universally quantified from the outside, except for variables occurring only in the
headA; Vv ...V A,,, which are implicitly existentially quantified with scope the
head.Lq, ..., L, is referred to as theody.

Given an abductive logic prograf®, A, I') and a formulaquery/observation/goaly,

which is an (implicitly existentially quantified) conjunction of literals in the language of
the abductive logic program, the purpose of abduction is to find a (possibly minimal) set
of (ground) abducible atom4& which, together withP, “entails” (an appropriate ground
instantiation of), with respect to some notion of “entailment” that the languag® of

is equipped with, and such that this extensionfofsatisfies”I (see [8] for possible
notions of integrity constraint “satisfaction”). Here, the notion of “entailment” depends
on the semantics associated with the logic progfafthere are many different possible
choices for such semantics [8]). More formally and concretely, given a qiemyset of
(ground) abducible atom4, and a variable substitutighfor the variables ir), the pair

(4, 0) is a(basic) abductive answdor (), with respect to an abductive logic program
(P,A,I),iff PUA=LpQO, andP U A =1 pI, wherel=, p is a chosen semantics for
logic programming. In this paper, we will not commit to any such semantics.

The framework of ALP can be usefully extended to handle constraint predicates in
the same way Constraint Logic Programming (CLP) [6] extends logic programming.
This extension allows to deal with non-ground abducibles, needed to support our plan-
ning approach. The CLP framework is defined over a particular struitwensisting

of domain D(R) and a set of constraint predicates which includes equality, together
with an assignment of relations dn(R) for each constraint predicate. The structure is
equipped with a notion oR-satisfiability. In this paper, the constraint predicates will
be <, <, >, <, =, #, but we will not commit to any concrete structure for their inter-
pretation. Given a (set of) constrain@s = C will stand for C' is R-satisfiable, and

o E=x C, for some grounding of the variables of” over D(R), will stand forC'is
R-satisfied via.

The rules of a constraint logic prografmtake the same form as the rules in conven-
tional logic programming, but with constraints occurring in the body of rules. Simi-
larly, P and I in an abductive logic program might have constraints in their bodies.
The semantics of a logic program with constraints is obtained by combining the logic
programming semantics-; p and R-satisfiability [6]. Below, we will refer to such a
combined semantics &S p(x)-

The notion of basic abductive answer can be extended to incorporate constraint han-
dling as follows. Given a querg) (possibly with constraints), a set of (possibly
non-ground) abducible atoms, and a 6ebf (possibly non-ground) constraints, the
pair (A, C) is anabductive answer with constrainfser @, with respect to an ab-
ductive logic program with constrain{d, A, I), with the constraints interpreted on

R, iff for all groundingso for the variables inQ, A, C such thato =5 C then, (i)

PU Ao ':LP(§R) Qo,and (i) P U Ao ':LP(ER) 1.

In the sequel, we will use the following extended notion of abductive answer. Given an
abductive logic program (with constraint§y, A, I), a query@ (with constraints), an

%1f n=0,thenL,, ..., L, represents the special atdgmue.

initial set of (possibly non-ground) abducible atomg and an initial set of (possibly
non-ground) constraint atond%), anabductive answefior @, with respect tq P, A, I),

Ag, Cy, isapair(4, C) suchthatA N Ag = {}, CNCy = {}, and(AU Ay, C U Cp)

is an abductive answer with constraints f@rwith respecttq P, A, I).

In abductive logic programming (with constraints), abductive answers are computed
via abductive proof proceduresvhich typically extend SLD-resolution, providing the
computational backbone underneath most logic programming systems, in order to check
and enforce integrity constraint satisfaction, the generation of abducible atoms, and the
satisfiability of constraint atoms (if any). There are a number of such procedures in the
literature, e.g. CIFF [4, 3]. Any such (correct) procedure could be adopted to obtain
a concrete planning system based upon our approach. Withi# agents [7,19] we

have adopted CIFF to perform the planning tasks along the lines described in this paper.

3 Representing a planning domain

In our framework, a planning problem is specified within the framework of the event
calculus (EC) for reasoning about actions, events and changes [10], in terms of an ab-
ductive logic program with constraints Byian, = (Ppian, Apian: Ipian) and an ordi-
nary logic programk B,,.. The EC allows to represent a wide variety of phenomena,
including operations with indirect effects, non-deterministic operations, and concurrent
operations [15]. A number of abductive variants of the EC have been proposed to deal
with planning problems. Here, we propose a novel variaft,;,,,, somewhat inspired
by the £-language of [9], to allow situated agents to generate partial plans in a dy-
namic environment. In a nutshell, the conventional EC allows to write meta-logic pro-
grams which "talk” about object-level conceptsfhfents operations andtime points
We allow fluents to be positive, indicated e.g./asor negative, indicated e.g. ag.
Fluent literals will be indicated e.g. d&s The main meta-predicates of the formalism
are: holds_at(L,T) (a fluent literal L holds at a timeT’), clipped(T, F,Ts) (a flu-
ent I is clipped - from holding to not holding - between a tifig and a timeTs),
declipped (T, F,T») (a fluentF is declipped - from not holding to holding - between a
time T and a timeTy), initially(L) (a fluent literalL holds at the initial time, say time
0), happens(O,T) (an operation/actiol® happens at a tim&), initiates(O, T, F)
(a fluentF starts to hold after an operati@hat timeT) andterminates(O, T, F) (a
fluent ' ceases to hold after an operatiorat time7"). Roughly speaking, in a planning
setting the last two predicates represent the cause-effects links between operations and
fluents in the modelled world. We will also use a meta-predipateondition(O, L)
(the fluent literalL is one of the preconditions for the executability of the operation
0). In our novel variant we also usececuted andobserved predicates to deal with
dynamic environments and thesume_holds predicate to allow for partial planning.
We now giveK Bpan. Ppian cOnsists of domain-independent and domain-dependent
rules. The basidomain-independent ruleadapted from the original EC, are:

holds_at(F,Ty) « happens(O,Ty),initiates(O, T, F),

Ty < Ty, — clipped(Tl, F, Tg)
holds_at(—F, Ty) < happens(O,Ty), terminates(O, Ty, F),
T, < Ty, — declipped(Ty, F, T)
holds_at(F,T) « initially(F),0 < T, - clipped(0, F, T')

holds_at(—F,T) « initially(—F),0 < T, = declipped(0, F, T)
clipped(Th, F,Ts) < happens(O, T, terminates(O, T, F), Ty <T < Ty
declipped(Ty, F, Ts) < happens(O, T),initiates(O, T, F), Ty <T < Ty
The domain-dependent ruledefine theinitiates, terminates, andinitially predi-
cates. We show a simple example for such rules withirbtbeks-worlddomain.

Example 1.The domain dependent rules for the (X, Y') operation in the block world
domain, whose effects are to move blakkonto blockY’, are the following:
initiates(mu(X,Y), T,on(X,Y))
terminates(mv(X,Y), T, clear(Y"))
terminates(mv(X,Y), T,on(X, Z)) < holds_at(on(X, Z),T),Y # Z
initiates(mv(X,Y), T, clear(Z)) < holds_at(on(X, Z),T),Y # Z
namely themv(X,Y) operationinitiates block X to be on blockY” andterminatesy”
being clear. Moreover, if block” was on a blockZ, the operationnv terminateghis
relation andnitiatesblock Z being clear. O
The conditions for the rules definingitiates andterminates can be seen as precon-
ditions for the effects of the operation (ergv in the earlier example) to be established.
Conditions for the executability of operations are specified wikiii,,.., which con-
sists of a set of rules defining the predicatecondition.

Example 2.The preconditions for the executability of operation(X,Y") are that
both X andY are clear, namely:

precondition(mu(X,Y), clear(X)) precondition(mv(X,Y), clear(Y))

O

In order to accommodate (partial) planning we will assume that the domain-independent
partin P, also contains the rules:

happens(O,T) «— assume_happens(O,T)

holds_at(L,T) < assume_holds(L,T)
i.e. an operation can be made to happen and a fluent can be made to hold simply by
assuming them, whersssume_happens andassume_holds are the only predicates in
Apian in K Bpian. This supports partial planning as follows. We will see that actions in
our specification amount to atoms in the abducible predieatame_happens: thus,
abducing an atom in this predicate amounts to planning to execute the corresponding
action. Moreover, as yet unplanned for, sub-goals in our specification of partial plans
amount to atoms in the abducible predicateume_holds(L,T): abducing an atom in
this predicate indicates that further planning is needed for the corresponding sub-goal.
Ipian in K Bpqy contains the following domain-independent integrity constraints:

holds_at(F,T), holds_at(—F,T) = false

assume_happens(A,T),not executed(A,T), time-now(T') =T > T’
namely a fluent and its negation cannot hold at the same time and when assuming (plan-
ning) that an action will happen, we need to enforce it to be executable in the future.
As we will see in section 4, a concrete planning problem is influenced (amongst other
things) by anarrative of events, which, unlike< B, and K B,,.., changes over the
life-cycle of the agent. We refer to the agent’s representation of this narratifésgs
We assume that’ B, represents events via predicatescuted andobserved, e.g., the
K By of an agent in the blocks-world domain wittandb as two blocks, might contain:

executed(muv(a,b),3) observed(—on(b,a),10) observed(ag, mv(c,d),3,5)

namely the agent hasxecuteda muv(a, b) operation at time3, the agent hasbserved
that—on(b, a) holds at timel0 and the agent has observed at tifrthat another agent
ag has moved block onto blockd at time 3. Observations are drawn, via specific
sensing capabilities of agents, from the environment in which they are situated, and are
recorded ink By, as are records of actions executed by the agent itself. To allow agents
to draw conclusions, via the EC, from the contentddB, the followingbridge rules
are also contained in the domain independent rule3,Qf, :

clipped(Ty, F,Ty) « observed(—F,T), Ty <T < Ty

declipped(Ty, F,Ty) «— observed(F,T),Th <T < T4

holds_at(F,Ts) — observed(F,Ty), Ty < Ty, - clipped(Ty, F,Ts)

holds_at(—~F,Ty) < observed(—F,Ty),Ty < Ty, declipped(T}, F,T3)

happens(O,T) — executed(O,T)

happens(O,T) — observed(A,0,T',T)
Note that we assume that the value of a fluent literal is changed according to observa-
tions only from the moment the observations are made, and actions by other agents have
effects only from the time observations are made that they have been executed, rather
than from the execution time itself. These choices are dictated by the rationale that
observations can only have effects from the moment the planning agent makes them.

4 Representing planning problems and the life-cycle of agents

Given a planning domain and a set of (top-level) gaadals held by the agent, each of
the formholds_at(L,T), we represent partial planfor Goals as a triple{Strategy,
Parent, TC), where
— Strategy is a set osubgoalsandpreconditionseach of the formholds_at(L,T),
and ofactions each of the formussume_happens(L,T); eachT of goals, sub-
goals, preconditions and actions is existentially quantified in the context of the goals
and the partial plan; each su@his unique as we shall see in section 5; thus, such
time variable uniquely identifies goals, subgoals, preconditions and actions;
— Parentis afunction fromStrategy to GoalsUStrategy, inducing aree structure
over theGoals and theStrategy; the root of this tree is the special symhb] its
children are all the goals ioals, and the children of any other node in the tree is
the set of all subgoals/preconditions/actions which are mapped;astant, onto
the node; as we shall see in section 5, preconditions can only be children of actions,
whereas subgoals and actions can be children of goals, subgoals or preconditions;
— T'C'is a set otemporal constraintsver the times of goals, subgoals, preconditions
and actions irbtrategy, namely constraint atoms in the languageaB,,,, .

ROOT 1
G1 /\ G2
holds_at(on(a,b),T1) holds_at(on(b, c), T2)

Al
assume_happens(mv(a,b),T3)

SG1 SG2
holds_at(clear(a),Ts) holds_at(clear(b),Ts)

Above we show a simple tree structure (whererar@presents a goal, an $Gepre-
sents a subgoal and amAepresents an action) for the blocks world domain, for the
example given later in Section 7, to which we remand for details.

In the sequel, we will refer to any of goals, subgoals, preconditions and actions as
nodes Moreover, with an abuse of notation, we will represent noffesn Goals
andStrategy as pairgholds_at(L,T), Pty and{assume_happens(O,T), Pt), where

Pt = Parent(N), and we will omit mentioningParent in partial plans.

Given a planning domain, we represent a concrete planning problem, at a certain time
7 (to be interpreted as the current time), via a notiostatedefined below. Then, the
planning process amounts to a sequence of such states, at incremental times, corre-
sponding to the agent’s life-cycle.

Definition 1. An agent'sstateat timer is a tuple (K By, X', Goals, Strategy, TC'),
where

— K By is the recorded set of observations and executed operators (uprjntil

— X is the set of all bindingd” = X, whereT is the time variable associated with
some action recorded as having been executed by the agent itself Withjnwith
the associated execution timi&

— Goals is the set of (currently unachieved) goals, held by the agent attjme

— (Strategy, TC) is a partial plan forGoals, held by the agent at time

Below, by the tree corresponding to a state we mean the tree corresponding-taithe
andStrategy in the state, and to a node of the tree to indicate an eleméfitotegy U
Goals, thus excludingL.
We now introduce the concepts inftial state andfinal state An initial state is a state
of the form ({}, {}, Goals, {}, TC), whereT'C' are the given temporal constraints for
Goals. The tre€l'rg corresponding to an initial stateis a two-level tree with root
and all the goals irGoals as the children ofL. A final state can be either @uccess
stateor afailure state A success state is a state of the foffiBy, X, {}, {},TC). A
failure state is a state of the forfi By, X, @, {}, T'C'), where the symbab indicates
that there is no way to achieemeof the initial goals?
In our framework, an agent which wants to plan in order to achieve its goals behaves
according to dife-cyclewhich is an adaptation of the classicanse - plan - execute
cycle. Concretely, such a life-cycle can be seen as the repetition of a sequence of steps
sense — revise — plan — execute
starting from an initial state until a final state is reached. In the next section we show the
specification of the various steps, in the forrstdte transitionsThus, the life-cycle of
the planning agent can be equated to a sequence of states, each at a speaifit tiene
corresponding tree varies during the life-cycle of the agent, by inserting and deleting
nodes, as specified in the next section.
We will use the following notation. Given a sta$e with its corresponding tre€rg:
— the set ofsiblingsof a nodeN € T'rg of the form(_, Pt) is the set
Siblings(N,Trs) = {N' € Trg | N' = (_, Pt)}.

4 This is an arbitrary decision, and we could have defined a failure state as one where there is no
way to achieve all the goals, and a success state as one where at least one goal can be achieved.

— the set ofpreconditionsof an actionA of the form(assume_happens(O,T), Pt)
isthe setPre(A,Trs) ={P €Trs | P= (., A)}.

5 Transitions specification

Here we give the specification of the state transitions determining the life-cycle of the
planning agent. We refer to these transitions as#mesing transitiojtheplanning tran-
sition, theexecution transitionand therevision transition The planning and execution
transitions take inputs that are computedsédection functiongdefined in section 6.

5.1 Sensing Transition

Given a state5 = (K By, X, Goals, Strategy, TC') at a timer, the application of a
sensing transition at leads to a stat§’ = (K B|, X, Goals, Strategy, TC), where

K Bj, is obtained fromK By by adding any observations on fluent literals-a&nd any
observations at that an operation has been executed by another agent (at an earlier
time). These observations are obtained by callingstiresing capabilityf the agent at
time 7 which we refer to a$=%,,.,., which accesses the environment of the agent.

Definition 2. Given a state5 = (K By, X, Goals, Strategy, TC) at a timer, if

}:Emz ll/\.../\ln/\al/\..‘/\am
wheren 4+ m > 0, eachl; is a fluent literal and eacla; is an operationo; executed
by agentag; at some earlier time;;, then thesensing transitiofeads to a states’ =
(K B|, X, Goals, Strategy, TC') where:

K B{, = KBy U{observed(ly,7) U...U observed(l,,)}
U{observed(agi,01,T1,T), . . .,observed(agm, Om, Tm,T)}

5.2 Planning Transition

The planning transition relies uponpdanning selection functiosel P(.S,) which,

given as input a stat€ at timer returns a (single) goal, subgoal or precondition to be
planned for. The extension whereby multiple goals, subgoals and preconditions are re-
turned by the selection function is straightforward. In this section, we assume that such
a selection function is given (a possible specification is provided in the next section).
We introduce the following useful notation which will be helpful in defining the plan-
ning transition. LetS = (K By, X, Goals, Strategy, TC') be a state. Then:

— for any setX C Goals U Strategy, by X (X) we denote the set obtained by
applying to each element df the instantiations provided hy;
— given a nodes € Goals U Strategy, by Rest(G) we denote the set
Rest(G) = Strategy(X) U Goals(X) — G(X);
— given a nodeV € Goals U Strategy, we denote byd(NN) theabducible version
of N, namely
A(N) = {assume_happens(O,T) if N = (assume_happens(O,T),)
assume_holds(L,T) if N = (holds_at(L,T),_)

This notation is lifted to any seX of nodes as usual, i.d(X) = |J A(N).
NeX

Intuitively, given a state&s = (K By, X, Goals, Strategy, T'C), the planning transition
builds a (partial) plan for a given goal, subgoal or precondi€ioim terms of an abduc-

tive answer, as defined in section 2, and updates the state accordingly. More precisely,
an abductive answer is computed with respect to:

— the abductive logic program with constraiths5,,,..., as defined in Section 3;

— the initial query@ given byG;

— the initial set of abducibleg), given by the abducible version of the current tree
(except forG), namely A(Rest(G));

— the initial set of constraint€’y given by the current set of constraints in the state,
along with the instantiations i&', namely7’C U X.

Once such abductive answer, s@, C’), is obtained, the planning transition leads
to a new states’ = (K By, X, Goals, Strategy’, TC') whereStrategy' is Strategy
augmented with the actions, goals and preconditions derived fipend7T'C” is TC
augmented witlC” and with suitable equalities on the time variables of the precondi-
tions of actions added to the state. We assume that the abducibiesiinnot share
time variable®. This is formalised in the next definition.

Definition 3. Given a stateS = (K By, Y, Goals, Strategy, TC) at a timer and
the nodeG = SelP(S,7), let (A,C”) be an abductive answer for the quefywith
respect to the abductive logic program (with constrainf§B,;.,, and initial sets
Ag = A(Rest(G)) andCy = TC U X. Then, theplanning transitiodeads to a state
S" = (K By, X, Goals, Strategy’, TC") where Strategy’ and T'C’ are obtained by
augmentingStrategy andT'C' as follows:

— for eachassume_holds(L,T) € A, (holds_at(L,T),G) is added inStrategy’
— for eachassume_happens(O,T) € A
o A = (happens(0O,T),G) is added inStrategy’, and
o for eachP such thaprecondition(happens(O,T), P) € K By, letT, be a
fresh time variable; then:
(holds_at(P,Tp), A) is added inStrategy’, and
Tp =T is added inT’C’
e (s added inrc’

Note that this transition enforces that preconditions of actions hold at the time of the
execution of the actions, by adding such preconditionSttaitegy’ so that they will

need planning for. Note also that, when introducing preconditions, we need to make
sure that their time variable is new, and relate this, witA@Y, to the time variable of

the action whose preconditions we are enforcing.

5.3 Execution Transition

Similarly to the planning transition, the execution transition relies upoaxatution
selection functiorSel E(S, 7) which, given a state and a timer, returns a (single)
action to be executed (a possible specification of this selection function is provided in
the next section). The extension to the case of multiple actions is straightforward.

5 Notice that this is not a restrictive assumption, since shared variables can be renamed and
suitable equalities can be added to the constraint in

Definition 4. Given a stateS = (K By, X, Goals, Strategy, TC') at a timer and an
action A of the form(assume_happens(O,T), Pt) such thatd = SelE(S,), then
theexecution transitioteads to a stat&’ = (K B, X', Goals, Strategy, TC) where:

— KB}, = KBy U {executed(O,T)}
- Y =xXu{T=r}

Note that we are implicitly assuming that actions are ground except for their time vari-
able. The extension to deal with other variables in actions is straightforward.
Executed actions are eliminated from states by the revision transition, presented next.

5.4 Revision Transition

To specify the revision transition we need to introduce some useful concepts. A node is
said to beobsoletewrt a stateS at a timer for any of the following reasons:

— The node is a goal, subgoal or precondition node and the node itself is achieved.

— The parent of the node is obsolete Wrandr. Indeed, if a node is obsolete there

is no reason to plan for or execute any of its children (or descendants).

Thus, obsolete nodes amount to achieved goals, subgoals and preconditions and actions
that have been introduced for them (and thus become redundant).
Definition 5. Given a stateS = (K By, X, Goals, Strategy, TC) at a timer, we
define the set obbsolete node®bsolete(S,) as the set composed of each node
N € Strategy U Goals of the formN = (X, Pt) such that:

— Pt € Obsolete(S, T) or
— X = holds_at(L,T)andPp., UK By =1 p(w) X Aholds_at(L, T)ANT < TANTC

A node istimed outwrt a stateS at a timer for any of the following reasons:

— It has not been achieved yet, and there is no way to achieve it in the future due to
temporal constraints.

— Its parent or one of its siblings is timed out witandr. Indeed, if either the parent
or a sibling of the node is timed out, there is no reason to keep the node for later
planning. This condition is not imposed if the node is a top-level goal because top-
level goals do not influence each other (expect via possible temporal constraints on
their time variables).

Definition 6. Given a states = (K By, X, Goals, Strategy, TC) at a timer, we de-
fine the set oftimed out noded"imedOut(S, T) as the set composed of each node
N € Strategy U Goals of the form{holds_at(L,T), Pt) such that:

— N & Obsolete(S,) andpepn X ANTC AT > 7 0r

— Pt € TimedOut(S, T) or

— N ¢ Goals and there existd/’ € Siblings(N) suchthatN’ € TimedOut(S, 7)).
Using the above definitions we now define the revision transition which, roughly speak-
ing, removes obsolete and timed out nodes.

Definition 7. Given a stateS = (K By, X, Goals, Strategy, TC) at a timer, the
revision transitiorleads to a stateS’ = (K By, X', Goals’, Strategy’, TC) where, for
eachN e Strategy’ U Goals':

— N ¢ TimedOut(S, 7), and

— if N = (assume_happens(O,T), _) then itis not the case thatrecuted(O, ') €
KByandT =7’ € ¥, and

— if N € Obsolete(S, T) thenParent(N) = (assume_happens(O,T), _), and

— Parent(N) € Goals' U Strategy’.

Intuitively, each timed out node, each obsolete node and each executed action has to be
eliminated from the tree. The only exception is represented by preconditions. Indeed,
obsolete precondition at revision time are not eliminated because they must hold at
execution time. If an obsolete preconditiprior an actiona is eliminated at revision

time due to the fact that it holds at that time, something could happen later on (e.g. an
external change or an action performed by some other agent or by the agent itself) that
invalidates so that it does not hold whenis executed. Note that we could also impose

for the temporal constraints to be simplified at revision time, but this is not necessary to
guarantee the correctness of our approach.

6 Selection functions

The planning and execution transitions requisebection functioreach. Here, we give
possible definitions for these functions. Note that we use the term function loosely, as
the selection randomly returns one of possibly several candidates.

6.1 Planning Selection Function

Given a stateS = (K By, X, Goals, Strategy, TC') at a timer, the planning transition
needs glanning selection functiolsel P(S,) to select a goal, subgoal or precondi-
tion G belonging toGoals or Strategy, to be planned for. We defingel P so thatG
satisfies the following properties:

— neitherG nor any ancestor or sibling @f is timed out atr;

— neitherG nor an ancestor off is achieved at; i.e. G is not obsolete and it does
not hold at the current time;

— no plan forG belongs taS.

Definition 8. Given a stateS = (K By, X, Goals, Strategy, TC) at a timer, the
planning selection functiosel P(.S, T) returns a goal, a subgoal or a precondition
G = (holds_at(L,T), _) such that:

— G &€ TimedOut(S,T);
— G ¢ Obsolete(S,), and it is not the case that

Pyian U KBy Erpew) holds.at(L,T) AT =7 ATC A Y
— there exists n@"’ € Strategy such thati = Parent(G');

Clearly it may be possible that a number of goals, subgoals and preconditions in a state
satisfy the above properties and thus could be selected. We could further incorporate a
number of heuristics to restrict the number of candidétes be selected amongst.

6.2 Execution Selection Function

Givenastate = (K By, X, Goals, Strategy, TC) at atimer, the execution transition
needs arexecution selection functiosie/ E(.S, 7) to select an actiod in Strategy to
be executed at. We defineSel F so thatA satisfies the following properties:

— neitherA nor any ancestor or sibling of is timed out atr;

— all preconditions (children) ofl are satisfied at;

— no (goal, subgoal or precondition) ancestordofs satisfied at;
— A has not been executed yet.

Definition 9. Given a states = (K By, X, Goals, Strategy, TC') at atimer, theexe-
cution selection functiofel E(S,) returns an actiord = (assume_happens(O,T), _)
such that:

— A & TimedOut(S, T);

— foreachP = (holds_at(P,T"), A) € Strategy, P € Obsolete(S, T);

— A & Obsolete(S, T);

— there exists na’ such thatexecuted(O,7') € KBy andT =7/ € X.

Again, heuristics could be incorporated within the execution selection function to re-
strict the number of selectable actions.

7 Anexample

In this section we show a simple example of life-cycle of an agent in the blocks-world
domain of examples 1 and 2. We assume to have three blacks; all on the table
initially. The formalisation of the initial configuration, using a special locatiglie, is
as follows:
initially(on(a, table)), initially(on(b, table)), initially(on(c, table)),
initially(clear(a)), initially(clear(b)), initially(clear(c))
Our objective is to have a tower withon b on a by time20. We can formalise this via
top-level goals:
G1 = (holds_at(on(b,a),T1), L) Go = (holds_at(on(c,b),Ts), L)
whereTC? = {Ty = Ty, Ty < 20}
The following is a possible life-cycle of the agent, achieviiigandGs.

Initial State: Sp = ({}, {}, {G1, G2}, {}, TC")
Time 1 - Sensing Transition =L~ {}
Resulting state S; = Sy
Time 2 - Revision Transition: There is nothing to be revised at this point.
Resulting state S, = S
Time 3 - Planning Transition: Assume thatSelP(S2,3) = G;. Let (A, C) be the
abductive answer Wik Byjq,,, Ao = {assume_holds(on(c,b),Tz)} andCy = TCY,
whereA = {assume_happens(muv(b,a),Ts)} andC = {T3 < T, }. Let
Strategy® = { (assume_happens(mv(b,a),T3),G1) = A;
(holds_at(clear(a),Ty), Az)
(holds_at(clear(b),Ts), A1) }
TC3 = TCOUCU{T, =Ts,Ts = T3}
Resulting state S; = ({}, {}, {G1, Gz}, Strategy®, TC?)

At this stage the tree structure is the one given earlier in the picture in Section 4.
Time 4 - Execution Transition: as the preconditions of actiofy, are both achieved at
this time due to theénitially rules iNK Bpq,, thenAd,; = Sel E(Ss,4) (A; is the only
action that can be selected at this time). Let

K Bj = {executed(muv(b,a),3)

Yt= (T3 =4}
Resulting state S, = (K B§, X4, {G1, G2}, Strategy®, TC?)
Time 5 - Sensing Transition Assume that the sensing capability of the agent forces
it to observe thab is actually onc at this time and that is clear, namely=%,,,
{on(b, ¢), —on(b, a), —on(c, table), ~clear(c), clear(a)}. Basically, there has been ei-
ther a problem in the execution df, or an interference by some other agent. Then,

KBS = KB§ U { observed(on(b, c),5), observed(—on(b,a),5),

observed(—on(c,table),5), observed(—clear(c),5),
observed(clear(a),5)}

Resulting state S5 = (K B3, X4, {G1, G2}, Strategy®, TC?)
Time 6 - Revision Transition: At this time the revision transition deletes from the
strategy the actiod; and its preconditions a4, has been executed.
Resulting state S = (KB, X4, {G1, G2}, {}, TC?)
Time 7 - Planning Transition: Assume that the selected goal is agdin SelP(Sg, 7) =
G;. (Note that(z; is again selectable as it is not achieved at time 7.) Similarly as for the
previous planning transition, let:

Strategy” = { (assume_happens(mu(b,a),T4),G1) = A}

(holds_at(clear(a),Ty}), AY)
(holds_at(clear(b),T%), A}) }

TCT = TC*U{T} < T\, T} =T}, Ti = T4}
Resulting state S; = (KB, X4, {G1, G2}, Strategy”, TCT)
Time 8 - Execution Transition: as the preconditions of actiofy, are both achieved at
this time, due to thénitially rules in K B, and to the observations i By, then
A} = SelE(S7,8) (A} is the only action that can be selected at this time). Let

KB = {executed(muv(b, a),8)

8= {T,=8}
Resulting state Ss = (KBS, 8, {G1, G2}, Strategy”, TCT)
Time 9 - Sensing Transition =%, {}
Resulting state Sy = Sy
Time 10 - Revision Transition: At this time the revision transition deletes from the
strategy the actiorl)| and its preconditions a4} has been executed.
Resulting state S1o = (KB§, X%, {G1, G2}, {}, TCT)
Time 11 - Planning Transition: Assume that the selected goal9slP(S10,11) =
G». Note that at this timé&;, is the only goal that can be selected because Godb
achieved. Similarly as for the previous planning transitions, let:

Strategy! = { (assume_happens(muv(c,b),Tg), G2) = Aa

(holds_at(clear(a), T7), Az)
(holds_at(clear(b),Tg), A2) }

TCH = TC" U {TG <Ty,T7; =T, T = TG}

Resulting state S1o = (K B§, X8, {G1, G2}, Strategy't, TC)

Time 12 - Execution Transition: action A, is selected. Let

K B}? = KB§ U {executed(muv(c,b),12)

D12 = Ty =4,T;=8,Ts = 12}
Resulting state S13 = (K B§?, X2 {G1, G2}, Strategy'', TC*)
Time 13 - Sensing Transition =5, {}
Resulting state S13 = S1»
Time 14 - Revision Transition: At this time the revision transition deletes from the
strategy the actionl, and its preconditions a4, has been executed. Moreover as both
(G1 andG-, are achieved, the revision transition deletes them from the goals leading to
a successful final state.
Resulting state S14 = (K B§?, X2 {},{}, TC').

8 Related work and Conclusions

Planning has been a very active research and development area for some time. Systems
have been developed for a range of applications such as medical, robotics and web
services. Many approaches to planning have been proposed (e.g the STRIPS language
with its improvements and related state-of-the-art systems such as Graphplan [1]). Here
we concentrate on those closer to our work.
Our approach to planning is based on the abduaixent calculuslt is thus closely
related to Shanahan’s abduction and event calculus planning work [14-18] and to the
approach based on tk@uation calculusThe latter forms the basis of GOLOG [11], an
imperative language implemented in PROLOG incorporating macro-actions (as proce-
dures) and non-determinism. GOLOG has been shown to be suitable for implementing
robot programs as high-level instructions in dynamic domains.
The contribution of our paper is in describing a system that allows partial planning
and the interleaving of planning with sensing and executing actions. This integration is
particularly suitable for (possibly resource bounded) agents situated in dynamic envi-
ronments. Our partial plans, to some extent, have the flavour afampound actions
of Shanahan [16]. If well defined, both approaches allow us to find executable actions
quickly. However, our formalisation is simpler than [16] as we do not need to use com-
pound actions in our theories in order to achieve partial planning.
Compound actions are also exploited in the situation calculus, in particular [12] gives
formal characterisations of compound actions and their preconditions and postcondi-
tions. Investigating how to incorporate them in our framework is subject of future work.
An important feature of our approach is the revision of the plans obtained by the Re-
vision transition. The tree structure in tsérategy part of each agent state allows an
intelligent, selective way of revising the (partial) plan. This means that, if replanning
becomes necessary, it is done only for unachieved goals and subgoals, thus avoiding the
"replanning from scratch” method seen in [16].
There are issues that we have not addressed yet. These include ramification problems,
which are addressed in [17] where it is pointed out thastage-constraintformalisa-
tion of ramifications can lead to inconsistencies. State-constraints are of the form
holds_at(P,T) < holds_at(Py,T),. .., holds_at(P,,T)
This rule can cause inconsistencies if, at a tim#, ..., P, and thusP hold. But at
an earlier time, say;, =P may hold and it is not clipped before the timeAs rules

of above form are needed to model subgoals, ramification is an important issue to be
addressed. One way to avoid the problem of inconsistency could be to add, for each
state constraint of the form above, another rule of the form

declipped(P,T) «— holds_at(Py,T),...,holds_at(P,,T)
This approach is similar to the one that we have taken ibtltge rulesof Section 3,
but needs to be further investigated.
The Sensing transitiondescribed in Section 5, is important for a situated agent, but
is rather simplistic. It simply adds the observation to the agent’s knowledge base and
the bridge rulesin the knowledge base perform some implicit conflict resolution. An
alternative approach is presented in [16]. This proposal is that, once an observation is
made, (possibly abductive) explanations of it are sought, thus avoiding some possible
inconsistencies and giving a richer account of causes and effects. This approach has
obvious disadvantages in cases where observations are such that the agent cannot be
expected to find explanations for. E.g., in a communication scenario, an agent could
observe that the network is down but has no way of knowing (or even guessing) why.
Another drawback of our Sensing transition is that it is random and passive. The agent
collects information from the environment as a passive observeadtne form of
sensing is described in [7, 2] where, as well as performing physical actions, the agent
can perform active knowledge-producing (or sensing) actions. Such active sensing ac-
tions do not affect the external environment but they affect the agent’'s knowledge about
the environment. Such an active sensing action can be performed, for example, to seek
information from the environment about preconditions of actions before they are per-
formed or to seek confirmation that an executed action has had its desired outcome.
Active sensing actions are also addressed in [13] for imperative GOLOG programs
where they allow conditional plans whose conditions are checked at "run-time”.
An issue related to observations is thatexbgenous action©ur handling of obser-
vations combined with the Revision transition seem to be effective to capture both ex-
ogenous actions and their effects in the sense that, if our agent detects an action or a
fact which invalidate a plan or a subplan already executed, the revision procedure will
replan for that part (and only for that part). Another approach to exogenous (malicious)
actions is that in [5] where, if exogenous actions change the external environment, a re-
covery procedure is performed with which the agent is able to restore the state to the one
before the exogenous event occurred. With respect to our framework, drawbacks of that
approach are that a number of assumptions have been made, in particular that the agent
knows what kind of exogenous actions can be done and what their effects are. Also, this
approach does not take into account the possibility that an exogenous action can “help”
the agent to achieve its goals making certain subgoals and action unnecessary.
Finally, we remark that to properly evaluate our techniques, we are studying formal
results such as soundness and completeness and we are doing practical experimentation
with the CIFF system [4, 3] as the underlying abductive reasoner.

Acknowledgments

This work was partially funded by the IST programme of the EC, FET under the IST-2001-
32530 SOCS project, within the Global Computing proactive initiative. The last author was also
supported by the Italian MIUR programme “Rientro dei cervelli”.

References

10.

11.

12.
13.

14.

15.
16.

17.

18.

19.

. A. Blum and M. Furst. Fast planning through planning graph analyals.90:281-300,
1997.

. A. Bracciali, N. Demetriou, U. Endriss, A. Kakas, W. Lu, P. Mancarella, F. Sadri, K. Stathis,
G. Terreni, and F. Toni. The KGP model of agency for global computing: Computa-
tional model and prototype implementation.Rroc. of Global Computing 2004 Workshop
Springer Verlag, LNCS, 2004. To appear.

. U. Endriss, P. Mancarella, F. Sadri, G. Terreni, and F. Toni. Abductive logic programming
with CIFF: system description. IRroc. JELIAO4 2004. To appear.

. U. Endriss, P. Mancarella, F. Sadri, G. Terreni, and F. Toni. The CIFF proof procedure for
abductive logic programming with constraints.Rroc. JELIA04 2004. To appear.

. G. De Giacomo, R. Reiter, and M. Soutchanski. Execution monitoring of high-level robot
programs. IrProc. of KR'98 pages 453—-465, 1998.

. J. Jaffar and M.J. Maher. Constraint logic programming: a surdewrnal of Logic Pro-
gramming 19-20:503-582, 1994.

. A. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. The KGP model of agency. In
Proc. ECAI20042004.

. A. C. Kakas, R. A. Kowalski, and F. Toni. The role of abduction in logic programming. In
D. M. Gabbay, C. J. Hogger, and J. A. Robinson, editbiandbook of Logic in Artificial
Intelligence and Logic Programmingolume 5, pages 235-324. OUP, 1998.

. A. C. Kakas and R. Miller. A simple declarative language for describing narratives with

ations.Logic Programming31, 1997.

R. A. Kowalski and M. Sergot. A logic-based calculus of eveNesw Generation Comput-

ing, 4(1):67-95, 1986.

H. J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. B. Scherl. GOLOG: A logic pro-

gramming language for dynamic domaidsurnal of LR, 31(1-3):59-83, 1997.

S. Mcllraith and R. Fadel. Planning with complex actionsPioc. of NMR022002.

R. Scherl and H. J. Levesque. Knowledge, action, and the frame proAlgificial Intelli-

gence 144:1-39, 2003.

M. Shanahan. Event calculus planning revisitedrrbteedings 4th European Conference on

Planning pages 390—402. Springer Lecture Notes in Atrtificial Intelligence no. 1348, 1997.

M. ShanahanSolving the Frame ProblenMIT Press, 1997.

M. Shanahan. Reinventing shakeyWbrking Notes of the 1998 AAAI Fall Symposium on

Cognitive Roboticspages 125-135, 1998.

M. Shanahan. The ramification problem in the event calculu®rdn. of IJCAI99 pages

140-146. Morgan Kaufmann Publishers, 1999.

M. Shanahan. Using reactive rules to guide a forward-chaining plann@ro¢eedings 4th

European Conference on Plannirgpringer-Verlag, 2001.

K. Stathis, A. C. Kakas, W. Lu, N. Demetriou, U. Endriss, and A. Bracciali. PROSOCS: a

platform for programming software agents in computational logic. Inillleviand P. Petta,

editors,Proc. AT2AI-4 — EMCSR’2004 Session Wlenna, Austria, April 13-16 2004.

