Abstract Argumentation

ROBERT A. KOWALSKI and FRANCESCA TONI
Department of Computing, Imperial College of Science, Technology and Medicine, 180

Queen’s Gate, London SW7 2BZ, UK, {rak,ft}@doc.ic.ac.uk

5 September 1996

Abstract. In this paper we explore the thesis that the role of argumentation in practical
reasoning in general and legal reasoning in particular is to justify the use of defeasible
rules to derive a conclusion in preference to the use of other defeasible rules to derive a
conflicting conclusion. The defeasibility of rules is expressed by means of non-provability
claims as additional conditions of the rules.

We outline an abstract approach to defeasible reasoning and argumentation which
includes many existing formalisms, including default logic, extended logic programming,
non-monotonic modal logic and auto-epistemic logic, as special cases. We show, in particu-
lar, that the “admissibility” semantics for all these formalisms has a natural argumentation-
theoretic interpretation and proof procedure, which seem to correspond well with informal
argumentation.

In the admissibility semantics there is only one way for one argument to attack another,
namely by undermining one of its non-provability claims. In this paper, we show how other
kinds of attack between arguments, specifically how rebuttal and priority attacks, can be
reduced to the undermining of non-provability claims.

1. Introduction

The purpose of this paper is to outline a formal theory of argumentation,
which promises to have relevance for practical reasoning in general and for
legal reasoning in particular. We will argue that the role of argumentation
is to justify the use of certain defeasible rules deriving a conclusion in pref-
erence to the use of other defeasible rules deriving conflicting conclusions.
We explore the thesis that defeasible reasoning with rules of the form

Pif Q.
can be understood as “exact” reasoning with rules of the form

P if () and S can not be shown.

containing one or more defeasible “non-provability claims” of the form

S can not be shown, for some sentence S.




2 R.A. KOWALSKI AND F.TONI

In many cases, the sentence S is the “contrary”, not P, of the conclusion,
P, of the rule. In other cases, S may state that the rule itself is “defeated”
by another rule.

With this understanding of defeasibility, argumentation is a dialectic pro-
cess whereby a proponent presents an “exact” argument for a conclusion,
which is based, however, upon defeasible non-provability claims of the form
S can not be shown. Such a claim, and the argument it helps to support,
can be defeated if an opponent undermines the claim by presenting an argu-
ment for S. Like the proponent, the opponent can also base her /his argument
upon non-provability claims.

The argumentation process can be viewed, therefore, as a game in which
the proponent moves first. In the “credulous” version of the game, which
we study in this paper, by moving first, the proponent has the advantage
of being able to use his/her previously used claims of non-provability to
defeat the opponent’s counter-claims. Such credulous argumentation can be
used to justify more than one point of view. If the opponent moves first, the
opponent can use her/his previously used claims to defeat the proponent. In
the “sceptical” version of the game, which we do not explore in this paper,
the proponent can use only undisputed claims of non-provability to defeat
the opponent’s counter-claims.

A similar view of defeasible reasoning and argumentation has been put
forward by several authors, e.g. [16, 17, 9]. Our approach differs, however,
in several respects. The most important of these are:

1. Our approach to argumentation focuses on the acceptability of the non-
provability claims of an argument, rather than on the acceptability either
of the argument or of the conclusion of the argument. This concentrates
attention, therefore, on the contentious parts of the argument and avoids
being distracted by those parts of the argument that are beyond dispute.

2. We reduce all forms of defeasibility to that of non-provability claims. As
a consequence, the only way to defeat an argument is by undermining
one of its claims, namely by presenting an argument for a sentence S
which is claimed to be unprovable. Indirect defeat (also called “rebut-
ting” [16, 17] or “reductio-ad-absurdum” [5]), showing that a rule

Pif Q.

leads to contradiction, is transformed into undermining defeat, by rewrit-
ing the rule in the “exact” form

P if Q) and not P can not be shown.

making explicit in the conditions of the rule that the contrary, not P, of
its conclusion, P, can not be shown.

ai-law96.tex; 10/10/2004; 10:54; no v.; p.2



ABSTRACT ARGUMENTATION 3

3. Our semantics is credulous rather than sceptical. A sceptical semantics
can be obtained from credulous semantics by regarding a conclusion as
justified if and only if it can be derived from any credulously “acceptable”
set of claims.

4. Our methodology deals with priorities between rules by introducing
explicit rule names into the language and adding conditions to the rules
expressing that the rules are not defeated by other higher priority rules.
This approach avoids the need to deal with priorities in the semantics.

5. Our approach does not require the introduction of a new language or
of a new semantics. On the contrary, we base our formalisation upon
a variant of an abstract approach to defeasible reasoning [1] which has
been shown to include many existing formalisms, including (extended)
logic programming, default logic [19], non-monotonic modal logic [14]
and autoepistemic logic [15] as special cases. Thus the approach taken in
this paper is abstract and can be formalised in any one of these and other
formalisms. Although all these formalisms use the “stability” semantics,
we argue that the “admissibility” semantics is more adequate.

The paper is organised as follows. In section 1, we illustrate our approach
by means of examples which are used elsewhere in the paper. In section 3,
we describe the abstract framework for defeasible reasoning, and present
the stability semantics. In section 4, we show how default logic, extended
logic programming, non-monotonic modal logic, and auto-epistemic logic
can all be considered special cases of the framework. Thus our approach
to defeasible reasoning and argumentation can be formulated in any one of
these and other formalisms for default reasoning. In section 5, we define the
admissibility semantics and its argumentation proof procedure. In section 6,
we show how our approach reduces rebutting attacks to undermining attacks.
In section 7, we show how the approach reduces priorities to non- provability
conditions. In section 8, we conclude.

We assume the reader is already familiar with the general subject of argu-
mentation and its relevance to legal reasoning. In particular, we recommend
the article by Prakken and Sartor in this issue [18] for an overview of related
work.

The framework we use in this paper is a variant of one we have developed
elsewhere [1]. The reader will find formal definitions and results in [1]. The
main technical contribution of this paper, therefore, is the methodology we
present for eliminating rebuttal attacks and priorities from the semantics.
The main general contribution is our use of the methodology for argumen-
tation which is abstract and language-independent.

ai-law96.tex; 10/10/2004; 10:54; no v.; p.3



4 R.A. KOWALSKI AND F.TONI

2. Examples!

EXAMPLE 2.1. Consider the following statement of the principle that, by
default, a person accused of a crime should be assumed innocent unless the
person can be shown to be not innocent.

(1) A person is innocent of a crime
if the person is accused of committing the crime

and it can not be shown that the person is not innocent of the crime. 2

The inclusion in the rule of the explicit non-provability condition trans-
forms a defeasible rule

(1) A person is innocent of a crime
if the person is accused of committing the crime.

which might be subject to argument, into an “exact” rule, which is beyond
dispute. Any dispute about the defeasible rule is transformed, instead, into
a dispute about the non-provability condition.

In contrast, the “exact” rule

(2) A person is not innocent of a crime
if the person was observed committing the crime.

does not contain any non-provability conditions and consequently does not
represent a defeasible rule.
Suppose now that we are given the fact

(3) John is accused of thefft.

We can justify the conclusion that John is innocent by the following argu-
ment.

Proponent: John is innocent of theft,
because (although John is accused of theft)
it can not be shown that John is not innocent of theft.

The proponent’s claim, it can not be shown that John is not innocent of
theft, is upheld, because the only way to defeat it, by using rule (2), fails to
apply, given the lack of any “fact” (“exact” rule) recording an observation
of his having committed the crime. The claim can be defeated, however,
if such information becomes available at a later time. It is because of this
that such logic is often said to be “non-monotonic”, in contrast to the case

ai-law96.tex; 10/10/2004; 10:54; no v.; p.4



ABSTRACT ARGUMENTATION )

in “monotonic” logic, where once a conclusion is established it continues to
hold no matter what further information is added.

Although the two rules, (1) and (2) above, are both “exact”, the inclusion
of the extra condition in (1) can be understood as giving the defeasible
rule, (1’), that (1) represents, a lower priority than (2). We shall argue
more generally, in section 7, that priorities involving defeasible rules can be
represented by explicit non-provability conditions of “exact” rules.

EXAMPLE 2.2. Consider the two defeasible rules

A person inherits an estate

if he/she is the beneficiary of a valid will.
A person does not inherit an estate

if he/she murders the owner of the estate.

and the facts

John is the beneficiary of Henry’s valid will.
John has murdered Henry.

Everything else being equal, in a credulous approach to defeasible reason-
ing, there are two equally “acceptable” arguments: one concluding that John
inherits Henry’s estate because he is the beneficiary of Henry’s valid will; the
other that he does not inherit the estate because he has murdered Henry. In
a sceptical approach (which we do not discuss in this paper, but which we
do discuss in [1]) neither conclusion holds.

In this paper, we will consider two kinds of “acceptable” arguments,
namely “stable” (section 3) and “admissible” (section 5). The two argu-
ments above, one concluding that John inherits Henry’s estate and the oth-
er concluding that he does not inherit the estate, are “acceptable” in both
senses.

In our analysis of defeasibility and argumentation, we justify the credu-
lous reasoning of this example in the following way:

To say that the first two rules are defeasible is to say that they have
implicit conditions to the effect that the contrary of their conclusions can
not be shown. We make these conditions explicit by rewriting the rules in
the “exact” form

A person inherits an estate

if he/she is the beneficiary of a valid will

and it can not be shown that the person does not inherit the estate.
A person does not inherit an estate

if he/she murders the owner of the estate

ai-law96.tex; 10/10/2004; 10:54; no v.; p.5



6 R.A. KOWALSKI AND F.TONI

and it can not be shown that he/she inherits the estate.

We can now justify the conclusion that John inherits the estate by the
following dialogue game.

Proponent: John inherits the estate,
because John is the beneficiary of a valid will
and because
it can not be shown that John does not inherit the estate.

Opponent: On the contrary,
it can be shown that John does not inherit the estate
because John murdered the owner of the estate
and because
it can not be shown that John inherits the estate.

Proponent: But, on the contrary,
it can be shown that John inherits the estate,
as I have already argued.

The rules of the game are designed to be liberal about the arguments that are
“admissible”. An argument is “admissible” if its non-provability claims can
be defended against any counter-claims of an opponent. By being the first
player, the proponent has the advantage of being able to use his/her earlier
claims to defeat the opponent’s counter-claims. This enables the proponent,
in this example, to have the last word and to win the argument. If the
opponent is allowed to move first, then the opponent’s argument will be
equally “admissible”.

It is also possible to design a conservative version of the game, which is
sceptical about what conclusions can be established.

EXAMPLE 2.3. (Adapted from [17])
Consider the following general principle of European Community law:

A product can be sold in a country
if the country is part of the EC
and the product can be sold in another country
and the other country is part of the EC
and it can not be shown that
the selling of the product in the country endangers public health

and it can not be shown that

the selling of the product in the country prejudices the consumer.

This principle potentially conflicts with the following rule of Italian law:

ai-law96.tex; 10/10/2004; 10:54; no v.; p.6



ABSTRACT ARGUMENTATION 7

A product can not be sold in Italy
if the product is called “pasta”
and the product is not made of durum wheat.

The potential conflict becomes real, when we are given only the following
facts:

Ttaly is part of the EC.

BDR is part of the EC.

alpha is sold in BDR.

alpha is called “pasta’”.

alpha is not made of durum wheat.

If the two rules above are understood as “exact” rules, then it is possi-
ble to derive the inconsistent conclusion that alpha can be sold in Italy and
alpha can not be sold in Italy. This derivation is based upon the two non-
provability claims of the first rule, neither of which can be undermined, using
the given rules and facts.

However, if the two rules are understood as defeasible, then in our method-
ology for representing defeasibility we would transform them into “exact”
rules by adding extra non-provability conditions to both, rewriting them as:

A product can be sold in a country
if the country is part of the EC
and the product can be sold in another country
and the other country is part of the EC
and it can not be shown that
the selling of the product in the country endangers public health
and it can not be shown that
the selling of the product in the country prejudices the consumer
and it can not be shown that
the product can not be sold in the country.
A product can not be sold in Italy
if the product is called “pasta”
and the product is not made of durum wheat
and it can not be shown that the product can be sold in the country.

As in example 2.2, it would now be possible to construct two separate
“admissible” arguments, each of which undermines the other, rather than
one “admissible” argument with an inconsistent conclusion.

However, if, as is the case, we want to give higher priority to European
Community law than to Italian law, then we would simply retain the orig-

ai-law96.tex; 10/10/2004; 10:54; no v.; p.7



8 R.A. KOWALSKI AND F.TONI

inal formulation of the European Community law, without an extra non-
provability condition, following the lead of example 2.1.

Thus, by adding appropriate non-provability conditions to rules, expressing
that the contrary of their conclusions can not be shown, we obtain the same
result as Prakken and Sartor [17], who, in addition to using undermining
attacks, also employ indirect rebutting attacks and deal with priorities in the
semantics. We will see later in section 7 that the treatment of priorities in
this example can be seen as an optimised version of a more general approach
that can handle more complex priorities, like those of Prakken and Sartor
[17], which can be defined by means of rules. This approach is illustrated by
the following example.

EXAMPLE 2.4. (Adapted from [10])
Consider the principles:
r1: Except as provided for by ro, all thieves should be punished.
ro: Except as provided for by r3, thieves who are minors should be reha-
bilitated and not punished.
rg: Any thief who is violent should be punished.
These can be represented by the defeasible rules

r1: A person should be punished
if the person is a thief.
ro: A person should not be punished
if the person is a thief
and the person is a minor.
r3: A person should be punished
if the person is a thief
and the person is violent.

where rule r3 has higher priority than rule ro, and ro higher priority than
rule 71 (r3 > ro and o > r1).

Given the facts

fi: John is a thief.
fo: John is a minor.

rules 1 and ro conflict. Intuitively, the priority ro > r1 can be used to
derive the conclusion John should not be punished of the second rule, in

preference to the conclusion of the first. If we are given the additional fact

f3: John is violent.

ai-law96.tex; 10/10/2004; 10:54; no v.; p.8



ABSTRACT ARGUMENTATION 9

then rules 71, 9 and r3 now conflict. Intuitively, the priority r3 > 79 can be
used to derive the conclusion John should be punished of the third rule.

In the previous example 2.3 we used a simple method to represent defea-
sible rules as “exact” rules while taking into account the priorities between
them. The method consists of adding non-provability conditions, that the
contrary of their conclusions can not be shown, to defeasible rules with lower
priority, without adding similar conditions to the higher priority rules. This
method can not be used in this example, since rule ro has higher priority
than rule r; but lower priority than rule rj.

In such an example, we need to distinguish the different ways a conclu-
sion can be established, and add non-provability conditions to defeasible
rules with lower priority stating that no higher priority rule applies. In this
way, using this more refined methodology, we obtain the following represen-
tation of the example.

A person should be punished
if the person is a thief
and it can not be shown that r1 is defeated for the person.

r1 1s defeated for a person
if the person is a thief
and the person is a minor
and it can not be shown that ro is defeated for the person.

A person should not be punished
if the person is a thief
and the person is a minor
and it can not be shown that ro is defeated for the person.

ro is defeated for a person
if the person is a thief
and the person is violent
and it can not be shown that r3 is defeated for the person.

A person should be punished
if the person is a thief
and the person is violent
and it can not be shown that r3 is defeated for the person.

Now, given the facts f; and f2, there is only one “admissible” argument for
the conclusion John should not be punished, supported by the non-provability
claim it can not be shown that ry is defeated for John. However, given the
facts f1, fo and f3, there is only one “admissible” argument for the con-

ai-law96.tex; 10/10/2004; 10:54; no v.; p.9



10 R.A. KOWALSKI AND F.TONI

clusion John should be punished, supported by the non-provability claim
it can not be shown that r3 is defeated for John. This argument undermines
the conflicting claim it can not be shown that 7o is defeated for John, sup-
porting the conclusion that John should not be punished.

3. An abstract framework for representing defeasibilty

All the examples above have been formulated in a form of English which
can be represented directly in many existing (and also in many presently
uninvestigated) formalisms for default reasoning. Indeed, to formalise such
examples, we need only to choose a logic of “exact” (i.e. monotonic, non-
defeasible) reasoning (such as classical first-order logic) and extend it, if
necessary, by adding a non-provability operator. We then need to define a
semantics and proof theory for the extended language, which appropriate-
ly interprets the intended meaning of the non-provability operator. More
precisely
1. We assume an underlying monotonic (or exact) logic with a logical
connective representing implication (to which modus ponens applies)
and a universal quantifier (to which universal quantifier elimination
applies).
2. We extend the language of the underlying logic, if necessary, by means
of a non-provability operator, to express statements of the form

S can not be shown

where S names a sentence of the language of the underlying logic. We
restrict the occurrence of these non-provability statements to conditions
of implications.

3. Defeasible rules can then be represented in the extended language by
transforming them into (exact) universally quantified implications with
non-provability conditions.

4. Defeasible reasoning from a set 7' (called a theory) of sentences in the
extended language, is reduced to exact reasoning in the underlying logic,
from an extended set of sentences T'U N, where N is an “acceptable”
set of non-provability claims of the form

S can not be shown.

Since, in most cases 3, the underlying language does not contain non-provability
formulae, we have to explain how, in such cases, the underlying logic can be
used to derive conclusions from the extended theory T'UN. For this purpose,
we assume that sentences in IV are treated as atomic propositions. We also

ai-law96.tex; 10/10/2004; 10:54; no v.; p.10



ABSTRACT ARGUMENTATION 11

assume that instantiation can be applied to universally quantified implica-
tions representing defeasible rules, obtaining instantiated implications with
atomic non-provability conditions. Modus ponens can then be applied to
such instantiated implications and sentences in N, obtaining sentences of
the original underlying language.

It remains to specify, given a theory T, when a set of non-provability
claims N is “acceptable”. Almost all existing logics for default reasoning
solve this problem in the same way, by means of a requirement that N be
“stable”, i.e.

A candidate set N of sentences of the form S can not be shown is said
to be stable if and only if for every S in the underlying language,

S can not be shown is in N if and only if

S is not derivable from T'U N in the underlying logic.

Different logics for default reasoning formulate this stability requirement in
different ways, which are all, nonetheless, equivalent [1]. 4

Despite its being the dominant semantics for default reasoning, stability
semantics has a number of drawbacks, the most obvious being that to verify
the acceptability of a claim S can not be shown necessitates determining
an entire stable set N to show that S is not derivable from 7°U N. This
is computationally infeasible in most interesting cases. There are also cases
where a stable set does not exist because of local paradoxical sentences in
T, but where an intuitively acceptable argument can be constructed from
other parts of T" which are not affected by the paradox.

Consider again the theory 7' consisting of the set of sentences (1), (2) and
(3) of example 2.1. Intuitively, the set N consisting of the single sentence

(4) John is not innocent of theft can not be shown

is acceptable, because there is no way to show, given only T and N that
John was observed committing theft.

The conclusion that John is innocent of theft then follows from T"U N in
the underlying logic, by instantiating (1), obtaining the variable-free impli-
cation

John is innocent of theft
if John is accused of theft
and it can not be shown that John is not innocent of theft.

and then applying modus ponens, using (3) and (4).

Intuitively, in this example it is unnecessary to consider the set of all
sentences unprovable from 7T"U N to be convinced that the single sentence
in N is unprovable. Similarly, even if T is extended to a much larger set

ai-law96.tex; 10/10/2004; 10:54; no v.; p.11



12 R.A. KOWALSKI AND F.TONI

of sentences T”, the same argument presented above continues to hold, pro-
vided T" does not contain any new sentences which can be used to derive
either that John was observed committing theft or to derive more directly
that John is not innocent of theft. Even a paradoxical sentence of the form

P if P can not be shown

in 7" need not affect the correctness of the argument.

In section 5, we will show that these drawbacks of the stability seman-
tics can be overcome by means of the more liberal “admissibility” seman-
tics [4], which has an argumentation-theoretic interpretation, as illustrated
informally already in examples 2.1 and 2.2. The “admissibility” semantics
is compatible with stability semantics, in the sense that whenever a stable
extension exists it is “admissible”. Moreover, in many cases an “admissible”
set can be extended to a stable set [1].

First, we show how a number of existing formalisms for default reasoning
can be understood as instances of the abstract framework.

4. Special instances
4.1. DEFAULT LOGIC

1. The underlying logic is first-order classical logic, augmented with domain-
specific inference rules. These inference rules can equivalently be formu-
lated as sentences of the form

P if Q1 and ...and Q.

where P, Q1, ..., Q, are all first-order formulae of the underlying lan-
guage, n > 0, and if is a new implication sign, for which the inference
rule of modus ponens applies. Notice that in this formulation there are
two logical connectives for implication, the new implication symbol and
the material implication of classical logic.

Any variables in these new implications which are not explicitly quanti-
fied are implicitly universally quantified, with scope the entire implica-
tion. The rule of instantiation applies to such variables.

2. Non-provability is expressed by means of a logical operator, M, where
the intended meaning of M P, where P is a sentence of first-order logic,
is that the contrary of P, namely not P, can not be shown. M P can be
interpreted equivalently as expressing that P is consistent.

3. Thus defeasible rules are expressed in default logic by translating them
into exact sentences of the form

ai-law96.tex; 10/10/2004; 10:54; no v.; p.12



ABSTRACT ARGUMENTATION 13

Pif Q and ...and @, and M Py and ...and M Pp,.

where n > 0, m > 0 and apparently free variables are implicitly univer-
sally quantified. Statements of the form M P are interpreted as atoms
in the underlying first-order language.

4. The standard semantics of default logic [19] has been shown [1] to be a
special case of the stable semantics defined in the previous section for
abstract frameworks in general.

4.2. EXTENDED LOGIC PROGRAMMING

1. The underlying language consists of implications of the form
P if Q1 and ...and Q,.

where P, Q1, ..., @, are literals, i.e. atomic formulas A or the “classi-
cal” negation not A of an atomic formula, n > 0 and if is an implication
sign. Variables in implications are implicitly universally quantified with
scope the entire implication. The only inference rules are modus ponens
for if and instantiation for the implicit universal quantifiers.

2. Non-provability is expressed by means of a logical operator, naf (negation
as failure), where the intended meaning of naf P, where P is a literal,
is that P can not be shown. Therefore, naf not P expresses that the
contrary of P can not be shown, i.e. that P is consistent.

3. Thus defeasible rules are expressed in extended logic programming by
translating them into exact sentences of the form

P if @ and ...and @, and naf P, and ...and naf P,.

where n > 0, m > 0 and apparently free variables are implicitly univer-
sally quantified. Statements of the form naf P are interpreted as atoms
in the underlying language.

4. The answer set semantics of extended logic programming [8] has been
shown [1] to be a special case of the abstract stable semantics, where
the theory corresponding to an extended logic program is understood as
implicitly containing all implications of the form

P if @ and not Q.
where P is any literal and @ is any atomic formula of the underlying
language.

Normal logic programs can be understood as extended logic programs with-
out any occurrence of “classical” negative literals of the form not P. Normal

ai-law96.tex; 10/10/2004; 10:54; no v.; p.13



14 R.A. KOWALSKI AND F.TONI

logic programming is the minimal language that is an instance of the abstract
framework. The stable model semantics of normal logic programming [7] has
been shown [1] to be a special case of the abstract stable semantics.

As argued in [12, 20, 17], extended logic programming is better suited for
legal knowledge representation than normal logic programming, due to the
presence of both “classical” negation (not) and non-provability (naf).

4.3. NON-MONOTONIC MODAL LOGIC AND AUTOEPISTEMIC LOGIC

1. In non-monotonic modal logic, the underlying logic can be any modal
logic with a modal operator, L, which can be interpreted as represent-
ing provability. Clearly, some modal logics are not appropriate for this
purpose. However, all modal logics incorporate an inference rule, called
necessitation, which sanctions deriving L P from P.

One of the most frequently advocated modal logics for this purpose is
K45, which contains the axiom schemata

(K) Lo if (L(¢ if ¢) and L ¢).
(4) LL¢if Lo
(5) L not L¢ if not L¢

where if is material implication. Non-monotonic modal logic with K45
as underlying logic is equivalent to autoepistemic logic [21].

2. The underlying logic is already sufficiently expressive to represent non-
provability. Non-provability is represented by means of formulae of the
form not L P, expressing that P can not be shown. Therefore, not L
not P expresses that the contrary of P can not be shown, i.e. that P is
consistent. The first version of non-monotonic modal logic was defined
in terms of a modal operator M, standing for consistency. Obviously,
the two modal operators, L and M, are interdefinable.

3. Defeasible rules are expressed in non-monotonic modal logic by trans-
lating them into exact sentences of the form

Pif LQq and ...and L @, and not L P; and ...and not L P,.

prefixed by explicit universally quantified variables, where n > 0 and
m > 0.

4. The fixed point semantics of non-monotonic modal logics has been shown
[1] to be a special case of the abstract stable semantics defined in sec-
tion 3.

Arbitrary non-monotonic modal logics are more expressive than default log-
ic and extended logic programming, because they allow the expression of
complex modal sentences, with nested modal operators. However, Konolige

ai-law96.tex; 10/10/2004; 10:54; no v.; p.14



ABSTRACT ARGUMENTATION 15

[11] has shown that in propositional K45 any theory T can be reformulated
equivalently as a theory in which all sentences have the form

Pif LQq and ...and L Q, and not L P, and ...and not L P,.

where the @);, P; and P are non-modal, and n,m > 0.

5. Admissibility semantics and argumentation

Like the stability semantics, the admissibility semantics specifies that a con-
clusion C' follows from a theory 7' if and only if C' follows from T'U N
in the underlying logic, where N is an appropriate set of non-provability
claims. However, to be “admissible”, N need only contain enough non-
provability claims to derive C, supplemented by sufficiently many additional
non-provability claims needed to defend itself against any arguments which
attack it.

Thus, the admissibility semantics can be understood in argumentation-
theoretic terms. Given a theory 7', an argument is simply a derivation in
the underlying logic of some conclusion C' from T'U N, where N is some set
of non-provability claims. In such a case, we also say both that IV supports
the argument and that the argument is based on N. One argument,
based on N’, is said to attack (or undermine) another argument, based on
N, if, for some claim S can not be shown in IV, the first argument derives
the conclusion S. In such circumstances, we also say that N’ is an (under-
mining) attack against N and that N’ attacks (or undermines) the claim S
can not be shown.

A candidate set NV of non-provability sentences is said to be admissible
if and only if
for every (undermining) attack N’ against N, N attacks N'—N. 5

Thus, an argument is admissible if and only if it is based upon an admissible
set of non-provability claims.

Note that the stability semantics can also be understood in argumentation-
theoretic terms, i.e. a set of non-provability claims is stable if and only if it
does not attack itself and it attacks every non-provability claim it does not
contain [1].

The definition of admissibility is a semantics in the sense that it specifies
what is admissible, without indicating how such admissible sets of claims and
arguments are to be constructed. For this latter purpose, we have developed
an abstract proof procedure [22, 6], which applies to any instance of the
framework.

The proof procedure is initiated by a proponent presenting an argument
based upon sufficiently many non-provability claims Ny to derive a desired

ai-law96.tex; 10/10/2004; 10:54; no v.; p.15



16 R.A. KOWALSKI AND F.TONI

conclusion C. The proponent then needs to defend Ny against any attack N}
that an opponent might make. For this purpose, the proponent extends Ny
to a possibly larger set N7 which, for every such attack N{, attacks N} — Np.
The proponent then similarly needs to defend any new claims in N7 — Ny
against all attacks. The process continues with the proponent generating an
increasingly larger set of supporting claims Ny, Ny, ..., Ny.

The process terminates with a win for the proponent, with N = N,,, if N,
successfully counter-attacks all attacks by the opponent on the set of non-
provability claims N, — N,_1. It terminates with a win for the opponent,
if, for every sequence of moves Ny, N1,...,N,,... by the proponent, there
is an n for which the opponent has an attack against IV, — N, and the
proponent has no defence.

The formal definition of the proof procedure and a formal proof of its
correctness and completeness, relative to the admissibility semantics, are
given in [6].

6. Reduction of rebuttal attacks to undermining attacks

The abstract admissibility semantics and its dialectic proof procedure reduce
all attacks to undermining attacks. In contrast, starting from [16], a num-
ber of argumentation-based frameworks [5, 17] allow, not only undermining
attacks (“ground attacks” in [5]), but also

— rebutting attacks (“reductio-ad-absurdum attacks” in [5]), between

arguments which derive contradictory conclusions.

Examples of such contradictory conclusions are John is innocent of theft and
John is not innocent of theft in example 2.1 and John inherits Henry’s estate
and John does not inherit Henry’s estate in example 2.2.

Undermining and rebutting attacks do not have equal status: undercut-
ting attacks are stronger than rebutting attacks. Dung [5] motivates the
difference in status between the two kinds of attack by an example (exam-
ple 1 in [5]) which has the form of the following variant of our example 2.2.

EXAMPLE 6.1. Consider the following two rules:

r1: A person inherits an estate

if he/she is the beneficiary of a valid will

and it can not be shown that 1 is defeated for the person.
ro: A person does not inherit an estate

if he/she has murdered the owner of the estate

and it can not be shown that ro is defeated for the person.

The additional, third rule

ai-law96.tex; 10/10/2004; 10:54; no v.; p.16



ABSTRACT ARGUMENTATION 17

ry is defeated for a person
if it can not be shown that ro is defeated for that person.

expresses the priority of the second rule (r2) over the fisrt (7). This rule

might be justified, for example, by the general principle that no one should

benefit from committing a crime. (In the next section, 7, we will show how to

obtain this rule by compiling explicit priorities into non-provability claims.)
Suppose that, as in example 2.2, the facts

John is the beneficiary of a will.
John has murdered Henry.

are also given. Consider now the two conflicting arguments
Argy, based upon the set N consisting of the single claim

it can not be shown that r; is defeated for John,
deriving the conclusion John inherits an estate, and

Args, based upon the set No consisting of the single claim
it can not be shown that ry 4s defeated for John,
deriving the conclusion John does not inherit an estate.

Argi /Ny and Arge/No attack each other via a rebutting attack. In addi-
tion, Args/Ny attacks Arg;/N; via an undermining attack. If undermining
attacks were not stronger than rebutting attacks, then the two alternative
arguments would be equally admissible, and the priority given by the third
rule would fail to be taken into account. Instead, if undermining attacks are
stronger than rebutting attacks, then only Args is admissible.

In our argumentation framework only undercutting attacks are considered.
In this example 6.1 we obtain the same intuitively correct result, as the
more complicated frameworks, namely that only Args is admissible, since
there is no undermining attack against Args/Ns. On the other hand, Arg;
is defeated, not by Arge, but by the third rule using the claims Ny upon
which Args is based.

The viability of our reduction of rebutting attacks to undermining attacks
depends upon adopting a specific knowledge representation methodology,
which introduces explicit non-provability conditions into rules. We will describe
the full methodology, taking priorities into account, in the next section.

7. Reduction of priorities to non-provability conditions

Several authors, in particular Prakken and Sartor [17] and Dimopoulos
and Kakas [3], have investigated extended logic programming with prior-

ai-law96.tex; 10/10/2004; 10:54; no v.; p.17



18 R.A. KOWALSKI AND F.TONI

ity relations between rules. Other authors, such as Brewka [2], have studied
the problem of assigning priorities to default rules more generally. Here,
we present a methodology for dealing with priorities by adding extra non-
provability conditions to rules, without changing the semantics. This method-
ology has been illustrated already, in condensed form, in examples 2.4 and
6.1.

For every rule which might be defeated by other rules we introduce a new
predicate, which can be understood as naming the rule. The new predicate
can also be interpreted as introducing a new concept standing for the way
in which the rule establishes its conclusion.

For example, given several rules all of which imply that a particular
person is a British citizen, the methodology introduces new predicates for
each such rule. These new predicates can be thought of as representing
new concepts, such as British citizenship by acquisition at birth, British
citizenship by descent, or British citizenship by naturalisation, associated
with different rules, all of which imply British citizenship. Arguably, the
introduction of such predicates simply enables a more exact statement of
the meaning of the originally given rules.

Thus each defeasible rule of the form

P(X) if Q.
where X is a tuple of variables, is rewritten as two exact rules

P(X) if holds(rule(X)).
holds(rule(X)) if @ and defeated(rule(X)) can not be shown.

where rule(X) can be understood both as the name of the original rule
and as a more precise name for the conclusion of the rule.

Notice that if we do not need to establish separate conclusions of the
form holds(rule(X)), then the two rules can be condensed into one

P(X) if Q and defeated(rule(X)) can not be shown.

as in examples 2.4 and 6.1.
A rule is defeated if there is a conflicting rule which holds and has higher
priority:

defeated(R1(X))
if Ro(Y) > R (X)
and con flicting(R1(X), R2(Y"))
and holds(Ra(Y)).

ai-law96.tex; 10/10/2004; 10:54; no v.; p.18



ABSTRACT ARGUMENTATION 19

The priority relation can be defined by means of facts or by means of rules
such as

T‘1(X) > TQ(Y) if R.

Similarly, the predicate conflicting can be defined by means of facts or
by means of rules

conflicting(R1(X), R2(X))
if conclusion(R1(X), P(X))
and conclusion(Rz(X), not P(X))

=

conflicting(R1(X,Y), R2(X,Y))
if conclusion(R1(X,Y), R3(X) > R4(Y))
and conclusion(Ra(X,Y), Ra(Y) > R3(X)).

where conclusion(R, P) holds when R is a rule of the form P if Q.
Notice that, given two rules

ri(X): P if Q.
ro(X): not P if R.

with priority
9 (X ) > (X )
the definition of de feated can be simplified to

defeated(r1(X)) if R and defeated(r2(X)) can not be shown.

as in examples 2.4 and 6.1.
Our treatment of priority is illustrated by the following example, adapted
from [17].

EXAMPLE 7.1.
Consider the following set of defeasible rules, including priority defining
rules, before our transformation:

r1(X): X'’s exterior may not be modified if X is a protected building.
ro(X): X'’s exterior may be modified if X needs restructuring.
r3(X,Y): Ri(X) > Ra(Y) if R1(X) concerns artistic buildings

and Ry (YY) concerns town planning.

ai-law96.tex; 10/10/2004; 10:54; no v.; p.19



20 R.A. KOWALSKI AND F.TONI
T(X,Y): Ri(X) > Ra2(Y) if Ri(X) is later than Ry(Y').

and the following facts/exact rules:

r1(X) concerns artistic buildings.
ro(X) concerns town planning.
ro(X) is later than ri(X).
r3(X,Y) is later than T(X,Y).

villa is a protected building.
villa needs restructuring.

After the transformation, and after simplifying the transformed rules by
eliminating (using modus ponens) conditions that match the facts, we obtain

villa’s exterior may not be modified if holds(ry(villa)).
villa’s exterior may be modified if holds(ra(villa)).
r1(villa) > ro(villa) if holds(rs(villa, villa)).

ro(villa) > 1 (villa) if holds(T (villa,villa)).

r3(X,Y) > T(X,Y) if holds(T'((X,Y),(X,Y))).

holds(ry(villa)) if defeated(ri(villa)) can not be shown.
holds(ra(villa)) if defeated(re(villa)) can not be shown.
holds(rs(villa, villa)) if defeated(rs(villa,villa)) can not be shown.
holds(T(mlla mlla)) if defeated(T (villa,villa)) can not be shown.
holds(T((X,Y),(X,Y)))

if d efeated(T((X, Y),(X,Y))) can not be shown.

Using these rules, the definition of de feated can be simplified first to

de feated(ri(villa)) if holds(rq(villa)) and holds(T (villa,villa)).
de feated(ra(villa)) if holds(ry(villa)) and holds(rs(villa,villa)).
de feated(T (villa, villa))

if holds(rs(villa,villa))

and holds(T((villa,villa), (villa,villa))).

After further simplification, eliminating the predicate holds, the original
problem reduces to:

villa’s exterior may not be modified

if de feated(ri(villa)) can not be shown.
villa’s exterior may be modified

if de feated(ra(villa)) can not be shown.

ai-law96.tex; 10/10/2004; 10:54; no v.; p.20



ABSTRACT ARGUMENTATION 21

de feated(ri(villa))
if de feated(T (villa,villa)) can not be shown
and defeated(r2(villa)) can not be shown.
de feated(ra(villa))
if de feated(rs(villa,villa)) can not be shown
and defeated(r(villa)) can not be shown.
de feated(T (villa, villa))
if de feated(T'((villa,villa), (villa,villa))) can not be shown
and de feated(rs(villa,villa)) can not be shown.

We can now justify the conclusion that villa’s exterior may not be mod-
ified by the following dialogue game.

Proponent: villa’s exterior may not be modified
because de feated(rq(villa)) can not be shown.

Opponent: On the contrary, de feated(ri(villa)) can be shown
because de feated(T (villa,villa)) can not be shown
and because defeated(ry(villa)) can not be shown.

Proponent: But, on the contrary, de feated(ry(villa)) can be shown
because de feated(rs(villa,villa)) can not be shown
and because de feated(r(villa)) can not be shown,
as I have already argued.

Alternatively, de feated(T (villa,villa)) can be shown
because

de feated(T ((villa, villa), (villa, villa))) can not be shown
and because defeated(rs(villa,villa)) can not be shown.

Note that the proponent has two alternative ways to defeat the opponent.
The second argument is “more conclusive” than the first because it does not
rely on its own claims to defeat the opponent. This argument can also be
shown to be justified via a sceptical semantics as defined in [1].

The general methodology presented in this section applies also to the case of
rules having contradictory conclusions where priorities are not given explic-
itly, as in example 2.2. In such cases, we treat each rule as having higher
priority than every other rule with a contradictory conclusion. Applying the
general transformation and simplifying the transformed rules in the manner
of the discussion of this section, we obtain the same result as that illustrated
in example 2.2.
For example, given the two defeasible rules

ai-law96.tex; 10/10/2004; 10:54; no v.; p.21



22 R.A. KOWALSKI AND F.TONI

with contradictory conclusions, the general transformation introduces rule
names, say r1(X) and ro(X), for the two rules and replaces the defeasible
rules by four exact rules

P(X) if holds(ri1(X)).

holds(r1(X)) if Q and defeated(r1(X)) can not be shown.
not P(X) if holds(ra(X)).

holds(r2(X)) if R and defeated(r2(X)) can not be shown.

Using the two priorities

T‘l(X) > TQ(X).
ro(X) > ri(X).

the definition of defeated simplifies to

defeated(r1(X)) if holds(ra2(X)).
de feated(ro(X)) if holds(ri(X)).

Further simplifying, by removing some of the holds conditions, we obtain

P(X) if @ and defeated(r1(X)) can not be shown.
holds(r1(X)) if @ and defeated(r1(X)) can not be shown.
not P(X) if R and defeated(r2(X)) can not be shown.
holds(ra(X)) if R and defeated(r2(X)) can not be shown.
defeated(r1(X)) if holds(ra(X)).

defeated(ra(X)) if holds(r1(X)).

But now the conclusions holds(r1(X)) and P(X) are interchangeable, as
are holds(re(X)) and not P(X). Therefore, rewriting holds(r1(X)) as P(X)
and holds(r2(X)) as not P(X), we obtain

P(X) if Q and defeated(ri1(X)) can not be shown.
not P(X) if R and defeated(r2(X)) can not be shown.
defeated(r1(X)) if not P(X).

defeated(ro( X)) if P(X).

Eliminating the predicate defeated gives

P(X) if @ and not P(X) can not be shown.

ai-law96.tex; 10/10/2004; 10:54; no v.; p.22



ABSTRACT ARGUMENTATION 23

not P(X) if R and P(X) can not be shown.

which is exactly the result of the simplified transformation needed to convert
defeasible rules into exact rules, when no priorities are explicitly given. This
simplification can be generalised to the general case where there are several
rules having conclusion P(X) or not P(X).

In all the examples considered up until now, we obtain the same results
as those obtained by Prakken and Sartor [17] (but we employ a credulous
semantics while they employ a sceptical one). In general, however, our treat-
ment of priorities gives different results from those of Prakken and Sartor
[17], as illustrated by the following example.

EXAMPLE 7.2. (Taken from [17])
Consider the defeasible rules

T1214.
Tgilgiffl
r3: not A if B can not be shown.

with 73 > r1. Then, according to [17], the derivation consisting of 1 and ro
is a justified argument, while the derivation consisting of r3 and the claim
B can not be shown is not justified. Therefore, they derive A but not not
A. Instead, our method produces three admissible arguments:

Arg; concluding A,
based upon the set of claims N; consisting of
de feated(r1) can not be shown and defeated(r2) can not be shown,

Args concluding not A,
based upon the set of claims No consisting of
B can not be shown and de feated(rs) can not be shown,

Args concluding not A,

based upon the set of claims N3 consisting of

B can not be shown, de feated(rs) can not be shown and
de feated(ry) can not be shown.

Note that our approach takes into account the given priority, while their
approach does not.

ai-law96.tex; 10/10/2004; 10:54; no v.; p.23



24 R.A. KOWALSKI AND F.TONI

8. Conclusion

We have argued that our abstract framework for defeasible reasoning, with
the admissibility semantics and its dialectic proof procedure, is adequate for
the formalisation of many aspects of practical reasoning. We have outlined a
methodology for transforming inexact, defeasible rules into exact rules with
explicit non-provability conditions; and we have argued that this transforma-
tion eliminates the need for rebuttal attacks and for dealing with priorities
in the semantics. Our transformation is an elaboration of transformations
[13, 23] we have developed earlier.

Because our approach is abstract, it can be formalised in any one of the
many formalisms, including default logic, extended logic programming, non-
monotonic modal logic, and auto-epistemic logic, which are special cases of
our framework.

It needs to be noted, however, that our representation of priorities uses
meta-predicates, such as “holds” and “defeated”, in the manner of meta-logic
programming. In this respect, our approach bears many resemblances to that
of Hage [10], who uses similar meta-predicates. However, his approach differs
form ours in his introduction of a new formalism for this purpose, while our
approach can be employed with many existing formalisms. Moreover, as we
saw in several examples and in one general case, in our simple use of them,
these meta-predicates can generally be eliminated in favour of simpler non-
provability conditions.

In this paper, we focussed entirely on the credulous admissibility seman-
tics. However, as has been shown elsewhere [1], the abstract framework also
admits sceptical semantics and proof procedures.

Although we have given several examples to show how our methodology
eliminates the need for rebuttal attacks and for dealing with priorities in the
semantics, we do not have any formal results proving that the methodology
is always adequate. This remains to be done for future work.

Acknowledgements

This research was partially supported by Fujitsu Research Laboratories.
The authors are grateful to Phan Minh Dung and Henry Prakken for many
helpful discussions, and to the referees and Henry Prakken for helpful sug-
gestions.

Notes

1 These and all other examples in this paper can easily be formalised using the tech-
niques described in [12].

2 We use the phrases “S can not be shown” and “it can not be shown that S” inter-
changebly.

ai-law96.tex; 10/10/2004; 10:54; no v.; p.24



ABSTRACT ARGUMENTATION 25

3 As we will see later, non-monotonic modal logic and autoepistemic logic are excep-
tions.

4 In non-monotonic modal logic and autoepistemic logic, non-provability sentences not
in N may be derivable from 7"U N. In such cases, for N to be stable, N must also be
closed in the sense that it contains all non-provability sentences derivable from T'U N.

5 In nonmonotonic modal logic and some other logics, where non-provability sentences
not in N may be derivable from T'U N, the sets N and N’ in the definition of admissibility
should be closed (see footnote 4).

References

1. A. Bondarenko, P. M. Dung, R. A. Kowalski, F. Toni, An abstract, argumentation-
theoretic framework for default reasoning. To appear in Artificial Intelligence, Elsevier.

2. G. Brewka, Preferred subtheories: an extended logical framework for default reason-
ing. Proceedings of the 11th International Joint Conference on Artificial Intelligence,
Detroit, Mi (1989) Morgan Kaufmann (N. Sridharan, ed.) 1043-1048

3. Y. Dimopoulos, A.C. Kakas, Logic programming without negation as failure. Proceed-
ings of the International Logic Programming Symposium, Portland, Oregon (1995)
MIT Press (J. Lloyd, ed.) 369-384

4. P.M. Dung, The acceptability of arguments and its fundamental role in non-monotonic
reasoning and logic programming. Proceedings of the 13th International Joint Confer-
ence on Artificial Intelligence, Chambery, France (1993) Morgan Kaufmann (R. Bajc-
sy, ed.) 852-857

5. Dung, P.M., An argumentation semantics for logic programming with explicit nega-
tion. Proceedings of the 10th International Conference on Logic Programming, Paris
(1993) MIT Press ( K. Furukawa, ed.)

6. P.M. Dung, R.A. Kowalski, F. Toni, Argumentation-theoretic proof procedures for
non- monotonic reasoning. Proc. 6th Logic Programming Synthesis and TRansforma-
tion (1996) (J. Gallagher ed.)

7. M. Gelfond, V. Lifschitz, The stable model semantics for logic programming. Proceed-
ings of the 5th International Conference on Logic Programming, Washington, Seattle
(1988) MIT Press (K. Bowen and R.A. Kowalski, eds.) 1070-1080

8. M. Gelfond, V. Lifschitz, Logic programs with classical negation. Proceedings of the
7th International Conference on Logic Programming, Jerusalem (1990) MIT Press
(D.H.D. Warren and P. Szeredi, eds.) 579-597

9. T.F. Gordon, The pleadings game: an exercise in computational dialectics. Artificial
Intelligence and Law 2(4), Kluwer Academic Publishers (1993-1994) 239-292

10. J. Hage, Teleological reasoning in reason-based logic. Proceedings of the 5th Interna-
tional Conference on Artificial Intelligence and Law, College Park, MD (1995) ACM
Press, 11-20

11. K. Konolige, Autoepistemic logic. Handbook of Logic in Artificial Intelligence and
Logic Programming 3, Oxford University Press (1994) (D. Gabbay, C. Hogger, J.A.
Robinson, eds.)

12. R.A. Kowalski, Legislation as logic programs. Informatics and the Foundations of
Legal Reasoning, Kluwer Academic Publishers (1995) (Z. Bankowski et al., eds.) 325—
356

13. Kowalski, R.A., Sadri, F., Logic programs with exceptions. Proceedings of the 7th
International Conference on Logic Programming, Jerusalem (1990) MIT Press (D.H.D.
Warren and P. Szeredi, eds.) 598-613

14. D. McDermott, Nonmonotonic logic II: non-monotonic modal theories. Journal of
ACM 29(1) (1982) 33-57

15. R. Moore, Semantical considerations on non-monotonic logic. Artificial Intelligence
25, Elsevier (1985) 75-94

16. J.L. Pollock, Defeasible reasoning. Cognitive Science, 11 (1987) 481-518

ai-law96.tex; 10/10/2004; 10:54; no v.; p.25



26

17.

18.

19.

20.

21.

22.

23.

R.A. KOWALSKI AND F.TONI

H. Prakken, G. Sartor, On the relation between legal language and legal argument:
assumptions, applicability and dynamic priorities. Proceedings of the 5th International
Conference on Artificial Intelligence and Law College Park, MD (1995) ACM Press,
1-10

H. Prakken, G. Sartor, A dialectical model of assessing conflicting arguments in legal
reasoning. In this issue.

R. Reiter, A logic for default reasoning. Artificial Intelligence 13, Elsevier (1980)
81-132

G. Sartor, The structure of norm conditions and non-monotonic reasoning in law.
Proceedings of the S3th International Conference on Artificial Intelligence and Law,
Oxford (1991) ACM Press, 155-164

G. Shvarts, Autoepistemic modal logics. Proc. 3rd Conference on Theoretical Aspects
of Rationality and Knowledge, Pacific Grove, CA (1990) Morgan Kaufmann (R.
Parikh, ed.) 97-110

F. Toni, A.C. Kakas, Computing the acceptability semantics. Proceedings of the
3rd International Workshop on Logic Programming and Non-monotonic Reasoning,
Springer Verlag LNATI 928 (1995) (V. Marek, A. Nerode, M. Truszczynski, eds.) 401—
415

F. Toni, R.A. Kowalski, Reduction of abductive logic programs to normal logic pro-
grams. Proceedings of the 12th International Conference on Logic Programming, Japan
(1995) MIT Press (Leon Sterling, ed.) 367-381

ai-law96.tex; 10/10/2004; 10:54; no v.; p.26



