
Abductive Logic Programming with CIFF

Ulle Endriss1, Paolo Mancarella2, Fariba Sadri1, Giacomo Terreni2, and Francesca Toni1,2

1 Department of Computing, Imperial College London
Email: {ue,fs,ft}@doc.ic.ac.uk

2 Dipartimento di Informatica, Università di Pisa

Email: {paolo,terreni,toni}@di.unipi.it

1 Introduction

Abduction has found broad application as a powerful tool
for hypothetical reasoning with incomplete knowledge,
which can be handled by labelling some pieces of informa-
tion as abducibles, i.e. as possible hypotheses which can be
assumed to hold, provided that they are consistent with
the given knowledge base. Abductive Logic Programming
(ALP) [4] combines abduction with logic programming
enriched with integrity constraints to further restrict the
range of possible hypotheses.

We introduce a new proof procedure for abductive logic
programming which we call CIFF. Our procedure extends
the IFF procedure of Fung and Kowalski [3] by integrat-
ing abductive reasoning with constraint solving. Another
feature of our approach is that we do not attempt to pro-
vide a static characterisation of the class of allowed inputs
on which the procedure can operate correctly, but rather
check allowedness dynamically during a derivation. This
allows us to cover a larger class of inputs.

2 Abductive Logic Programming

An abductive logic program is a pair 〈Th, IC〉 consisting of
a theory Th and a finite set of integrity constraints IC. A
theory is a set of so-called iff-definitions:

p(X1, . . . , Xk)↔ D1 ∨ · · · ∨Dn

The predicate symbol p must not be a special predicate
(constraint predicates, =, > and ⊥) and there can be at
most one iff-definition for every predicate symbol. Each of
the disjuncts Di is a conjunction of literals. Negative lit-
erals are written as implications (e.g. q(X,Y)→ ⊥). The
variables X1, . . . , Xk are implicitly universally quantified
with the scope being the entire definition. Any other vari-
able is implicitly existentially quantified, with the scope
being the disjunct in which it occurs. A theory may be
regarded as the (selective) completion of a normal logic
program [2]. Any predicate that is neither defined nor
special is called an abducible.

The integrity constraints in the set IC are implications
of the following form:

L1 ∧ · · · ∧ Lm → A1 ∨ · · · ∨An

Each of the Li must be a literal (with negative literals
again being written in implication form); each of the Ai
must be an atom. Any variables are understood to be
implicitly universally quantified with the scope being the
entire implication.

A query Q is a conjunction of literals. Any variables oc-
curring in Q are implicitly existentially quantified. These
variables are also called the free variables.

A theory provides definitions for certain predicates and
integrity constraints restrict the range of possible inter-
pretations. A query may be regarded as an observation
against the background of the world knowledge encoded
in a given abductive logic program. An answer to such a
query would then provide an explanation for this obser-
vation: it would specify which instances of the abducible
predicates have to be assumed to hold for the observa-
tion to hold as well. In addition, such an explanation
should also validate the integrity constraints. This intu-
itive account of the semantics of ALP may be formalised
as follows. A correct answer to a query Q with respect
to an abductive logic program 〈Th, IC〉 is a pair 〈∆, σ〉,
where ∆ is a finite set of ground abducible atoms and σ
is a substitution for the free variables in Q, such that:

Th ∪ Comp(∆) |= IC ∧Qσ

A suitable interpretation of the entailment operator |=
would the usual consequence relation of first-oder logic
with the restriction that constraint predicates have to be
interpreted according to the semantics of the chosen con-
straint system and equalities evaluate to true whenever
their two arguments are unifiable. Comp(∆) stands for
the completion of the set of abducibles in ∆, i.e. any
ground abducible atom not occurring in ∆ is assumed to
be false. If we have Th ∪ IC |= ¬Q (i.e. if Q is false for
all instantiations of the free variables), then we say that
there exists no correct answer to the query Q given the
abductive logic program 〈Th, IC〉.

3 The CIFF Procedure

We are now going to outline our CIFF proof procedure,
which integrates ALP with constraint solving. We assume
the availability of a sound and complete constraint solver
for the constraint predicates used. In principle, the ex-
act specification of the constraint language is independent
from the definition of the CIFF procedure, because we are
going to use the constraint solver as a black box compo-
nent. However, the constraint language has to include a
relation symbol for equality and it must be closed under
complements.

CIFF extends the IFF procedure of Fung and Kowal-
ski [3], which requires inputs to their proof procedure
to meet a number of allowedness conditions (essentially
avoiding certain problematic patterns of quantification)
to be able to guarantee the correct operation of the pro-
cedure. Unfortunately, it is difficult to formulate appro-
priate allowedness conditions that guarantee a correct exe-
cution of the proof procedure without imposing too many
unnecessary restrictions. This is a well-known problem,
which is further aggravated for languages that include con-
straint predicates. Our proposal is to tackle the issue of al-
lowedness dynamically, i.e. at runtime, rather than adopt-

ing a static and overly strict set of conditions. To this end,
the CIFF procedure includes a dynamic allowedness rule
which is triggered whenever the procedure encounters a
particular formula it cannot manipulate correctly due to
a problematic quantification pattern.

The input to the CIFF procedure consists of a theory
Th, a set of integrity constraints IC, and a query Q. There
are three possible outputs: (1) the procedure succeeds and
indicates an answer to the queryQ; (2) the procedure fails,
thereby indicating that there is no answer; and (3) the pro-
cedure reports that computing an answer is not possible,
because a critical part of the input is not allowed.

The CIFF procedure manipulates, essentially, a set of
formulas that are either atoms or implications. The the-
ory Th is kept in the background and is only used to unfold
defined predicates as they are being encountered. In addi-
tion to atoms and implications the aforementioned set of
formulas may contain disjunctions of atoms and implica-
tions to which the splitting rule may be applied, i.e. which
give rise to different branches in the proof search tree. The
sets of formulas manipulated by the procedure are called
nodes. A node is a set (representing a conjunction) of for-
mulas (atoms, implications, or disjunctions thereof) which
are called goals. A proof is initialised with the node con-
taining the integrity constraints IC and the literals of the
query Q. The proof procedure then repeatedly manipu-
lates the current node of goals by rewriting goals in the
node, adding new goals to it, or deleting superfluous goals
from it. We only sketch the most important proof rules:

• Unfolding: Replace any atomic goal p(~t), for which
there is a definition p(~X) ↔ L1 ∨ · · · ∨ Ln in Th, by
(L1∨· · ·∨Ln)[~X/~t]. There is a similar rule for defined
predicates inside implications.

• Splitting: Rewrite any node including a disjunctive
goal as a disjunction of nodes and apply CIFF to
each one of them.

• Propagation: Given goals of the form p(~t) ∧ A → B
and p(~s), add the goal (~t = ~s) ∧A→ B.

• Equality rewriting: Simplify equalities and present
them in a normal form (e.g. rewrite t = X as X = t).

• Substitution: Given a goal of the form X = t, apply
the substitution [X/t] to the entire node. There is a
similar rule for equalities inside an implication.

• Case analysis for constraints: Replace any goal of
the form Con ∧ A → B, where Con is a constraint
not containing any universally quantified variables,
by [Con ∧ (A → B)] ∨ Con. There is a similar case
analysis rule for equalities.

• Constraint solving: Replace any node containing an
unsatisfiable set of constraints (as atoms) by ⊥.

• Dynamic allowedness rule: Label nodes with prob-
lematic quantification patterns as undefined.

In addition, there are a number of logical simplification
rules as well as rules that reflect the interplay between
constraint predicates and the usual equality predicate.

A node containing ⊥ is called a failure node. If all
branches in a derivation terminate with failure nodes, then
the derivation is said to fail (the intuition being that there
exists no answer to the query in question). A node to

which no more proof rules can be applied is called a final
node. A final node that is not a failure node and which
has not been labelled as undefined is called a success node.

An extracted answer for a final success node N is a
triple 〈∆,Φ,Γ〉, where ∆ is the set of abducible atoms,
Φ the set of equalities and disequalities, and Γ the set of
constraint atoms in N . This in itself is not yet a correct
answer (according to the semantics of ALP), but it is pos-
sible to show that it does induce such a correct answer.
The basic idea is to first define a substitution σ that is
consistent with both the (dis)equalities in Φ and the con-
straints in Γ, and then to ground the set of abducibles ∆
by applying σ to it. The resulting set of ground abducible
atoms together with the substitution σ then constitutes a
correct answer to the query (so an extracted answer will
typically give rise to a whole range of correct answers).

We have shown that CIFF is sound: Whenever the pro-
cedure terminates successfully then it is possible to extract
an answer from the proof that is correct according to the
semantics of ALP with constraints (soundness of success);
and whenever it fails then there exists no such answer
(soundness of failure).

4 Implementation

We have implemented the CIFF procedure in Prolog. The
constraint solver used is the built-in finite domain solver
of Sicstus Prolog [1], but the modularity of the system
would also support the integration of a different solver.
The system is available at the following address:

http://www.doc.ic.ac.uk/∼ue/ciff/

Our implementation has been tested successfully on a
number of different examples. Most of these examples
are taken from applications of CIFF within the SOCS
project,which investigates the application of computa-
tional logic-based techniques to multiagent systems (e.g.
the implementation of an agent’s planning capability).

While these are encouraging results, it should be noted
that this is only a first prototype and more research into
proof strategies for CIFF as well as a fine-tuning of the
implementation are required to achieve satisfactory run-
times for larger examples.

Acknowledgements. This research has been sup-
ported by the European Commission as part of the SOCS
project (IST-2001-32530).

References

[1] M. Carlsson, G. Ottosson, and B. Carlson. An open-
ended finite domain constraint solver. In Proc. Pro-
gramming Languages: Implementations, Logics and
Programs, 1997.

[2] K. L. Clark. Negation as failure. In Logic and Data
Bases. Plenum Press, 1978.

[3] T. H. Fung and R. A. Kowalski. The IFF proof pro-
cedure for abductive logic programming. Journal of
Logic Programming, 33(2):151–165, 1997.

[4] A. C. Kakas, R. A. Kowalski, and F. Toni. The role of
abduction in logic programming. In Handbook of Logic
in Artificial Intelligence and Logic Programming, vol-
ume 5, pages 235–324. Oxford University Press, 1998.

