

Abductive Logic Programming Agents with Destructive
Databases

Robert Kowalski and Fariba Sadri

Department of Computing, Imperial College London, 180 Queens Gate, London SW7 2AZ

{rak, fs}@doc.ic.ac.uk

Abstract. In this paper we present an agent language that combines agent functionality
with a state transition theory and model-theoretic semantics. The language is based on
abductive logic programming (ALP), but employs a simplified state-free syntax, with an
operational semantics that uses destructive updates to manipulate a database, which
represents the current state of the environment. The language builds upon the ALP
combination of logic programs, to represent an agent’s beliefs, and integrity constraints,
to represent the agent’s goals. Logic programs are used to define macro-actions,
intensional predicates, and plans to reduce goals to sub-goals including actions. Integrity
constraints are used to represent reactive rules, which are triggered by the current state
of the database and recent agent actions and external events. The execution of actions
and the assimilation of observations generate a sequence of database states. In the case
of the successful solution of all goals, this sequence, taken as a whole, determines a
model that makes the agent’s goals and beliefs all true.

 Keywords – abductive logic programming, agent languages, model-theoretic semantics

1 Introduction
In this paper we present a Logic-based agent and Production System language, LPS
[13, 21]), which combines a declarative semantics based on abductive logic
programming (ALP) with an operational semantics inspired mainly by production
systems, but also by practical agent languages. The operational semantics performs
destructive updates on “beliefs” that represent the current state of the agent’s
environment. The declarative semantics identifies the purpose of the agent’s actions as
making the agent’s goals all true in the minimal model of the world associated with
the agent’s beliefs and the sequence of database states.
 The semantics of LPS is based on that of ALP (abductive logic programming)
agents [12], which represent observations and actions in a non-destructive database
and explicitly represent and reason about time or state, using a formal theory of
change. The theory uses explicit frame axioms to reason, for example, that a fact holds
in a given state of the database if it was initiated by an action or other event in an
earlier state and was not terminated by any event taking place between the earlier state
and the given state.
 Although formal theories of time and state change, such as the situation calculus
[14] and event calculus [20], solve the declarative frame problem of representing
change of state, they incur the computational frame problem of reasoning efficiently
about such changes. The usual way of reasoning with frame axioms in logic
programming is by reasoning backwards, to show that a fact holds in a given state by
finding the most recent earlier state in which it was initiated, and showing that the fact

has not been terminated in the meanwhile. The most obvious alternative way of
reasoning is by reasoning forwards, whenever an event takes place, to generate a new
copy of every fact that is not affected by the event. But no matter whether frame
axioms are used to reason backwards or forwards, their use often gives rise to
intolerable inefficiencies in practice.
 Production systems and most agent languages, including those inspired by the
BDI (Belief, Desire, Intention) model of agency [26], avoid the computational frame
problem by ignoring the frame axiom and by performing destructive database updates
instead. When an event takes place, due either to the agent’s action or to some
external agency, facts that are initiated by the event are added to the database and facts
that are terminated are deleted. Any fact that is neither initiated nor terminated simply
persists in the database without any need to reason that it persists. The persistence of
such unaffected facts is an emergent property of the destructive changes to the
database, rather than an operational procedure performed by reasoning with explicit
frame axioms. The price of such destructive updates is that it is difficult to provide
them with declarative semantics.
 The operational semantics of LPS uses destructive change of database states, as
in production systems and practical agent languages, but it obtains a declarative
semantics by associating a minimal model with the agent’s beliefs and the sequence of
database states. The minimal model constrains the agent’s actions to those that are
motivated by making its goals true in the model.
 The database in LPS is structured as a destructively changing, deductive
database, with extensional predicates that are represented explicitly by facts and with
intensional predicates that are represented implicitly by logic programs. Updates are
performed by means of a transition theory without frame axioms that specifies both
the preconditions of actions and the extensional facts initiated and terminated by
events. Whereas the extensional facts are updated explicitly, intensional predicates are
updated only implicitly as ramifications of the updates.
 The state transition theory in LPS determines the consequences of the agent’s
actions and other events, but it does not motivate or determine its actions. The agent’s
actions are motivated by its goals, represented by reactive rules, and its beliefs,
represented by the current state of the database, macro-actions definitions and
planning clauses. This separation of the transition theory that determines the
consequences of events from the beliefs that motivate the agent’s actions helps to
avoid the inefficiencies of planning from first principles.
 In planning from first principles, a transition theory, with or without frame
axioms, is used to construct plans of actions to achieve goals. Every consequence of
an action can be used to solve a goal, including goals that are preconditions of other
actions. This typically generates a large search space that is very inefficient to search.
 Planning from second principles avoids these inefficiencies by using plan
libraries (or plan schemata), which are precompiled abstract plans that solve typical
planning problems that occur commonly in the given problem domain. In LPS, these
abstract plans are represented by a combination of planning clauses and macro-action
definitions (or clauses). Planning clauses specify abstract plans to achieve goals that
have extensional predicates, and macro-action clauses define macro-actions in a
hierarchy of atomic actions and macro-actions. Macro-actions facilitate a hierarchical
style of planning, in which complex action goals are progressively decomposed into
simpler action goals, in the spirit of hierarchical task networks (HTNs) [24]. Macro-
action clauses are also similar to transaction definitions in Transaction Logic [2].

 The operational semantics of LPS is driven by reactive rules, which are like
production rules in production systems and event-condition-action rules in active
database systems. Whenever an instance of the conditions of a rule becomes true in a
database state, the operational semantics generates a goal to make the conclusion of
the instantiated rule true in future states. The resulting sequence of database states
generated both by external events and by the agent’s own actions is like a Kripke
possible world structure. However, in the semantics of LPS, the possible worlds are
combined in a single model with state arguments in the spirit of the situation calculus
and Golog [14].
 In the remainder of the paper, we present motivating examples and background,
and then the syntax, operational semantics and model-theoretic semantics of LPS. We
assume the reader is familiar with logic programming, SLD resolution and the
minimal model semantics of Horn clauses. This paper extends an earlier version [21].

1.1 Motivating Examples
In this section, we give examples in LPS. The language has two kinds of sentences:

reactive rules (or maintenance goals), which generalize both condition-action
rules in production systems and event-condition-action rules in active databases, and

beliefs, which include a deductive database, planning clauses, macro-action
clauses and a state transition theory, all represented by logic programming clauses.

The vocabulary of LPS includes predicates for fluents, events, and macro-actions, as
well as state-independent predicates. The state-independent predicates include such
predicates as ≤. Fluents are the state-dependent, extensional and intensional predicates
that define the state of the database. Events are either atomic actions that can be
performed by the agent or external events that are observable by the agent. Macro-
action predicates represent complex actions that are defined in terms of atomic actions
and other macro-actions. Atomic actions and macro-actions are also both referred to as
actions. In addition, the vocabulary includes the auxiliary predicates initiates,
terminates and possible, used in the state transition theory to specify the post-
conditions of events and the preconditions of atomic actions.
 The surface syntax of LPS does not have explicit state arguments. However, in
the semantics (or internal syntax), fluents P have an additional argument P(T) or
equivalently two identical arguments P(T, T), indicating that P holds in the state T (or
at the time T). Events and macro-actions A have two additional arguments A(T1, T2),
indicating that the A takes place from T1 to T2. If A is an event (atomic action or
external event) then T2 = T1 +1.
 In addition to ordinary conjunction ∧, the surface syntax of LPS has two other
conjunctions. The conjunction : stands roughly for at the same time or immediately
after, and ; stands for after. The surface syntax and semantics will be given more
formally in Section 4. But, in the meanwhile, the semantics of the two conjunctions in
the following examples can be understood as follows:

 P : Q means P(T1, T2) ∧ Q(T2, T3)
 P ; Q means P(T1, T2) ∧ Q(T3, T4) ∧ T2 ≤ T3.

Here P and Q can be fluents, events, actions, or even state-independent predicates if
we employ the convention that, if P is state-independent, then P(T, T), P(T) and just
plain P are all different ways of writing P. Throughout the paper, variables start in the
upper case, and constants start in the lower case.

Example 1.1: We start with a simple example that illustrates the syntax and the basic
features of the operational and model-theoretic semantics of LPS. We consider an
online shopping scenario, similar to the running example in the W3C RIF Working
Group document on rule interchange1

. Reactive rules are used to welcome a customer
when she logs in, and to take payment and issue confirmation when she checks out. ID
is a unique identifier associated with the login session.

 login(X) : customer(X) → welcome(X).
 checkout(X) : customer(X) : shop-cart(X, ID, Value) : Value > 0
 → take-payment(X, ID, Value) ; confirm(X, ID, Value).

The symbol → denotes logical implication. The forward arrow is used for reactive
rules, because they are used for forward reasoning: If an instance of the conditions of
a reactive rule (representing a maintenance goal) holds in the current state, then the
corresponding instance of the conclusion of the rule is added as a new achievement
goal to the agent’s existing achievement goals.
 In this example, the new goals generated by the reactive rules are solved by
macro-actions, in which a customer is welcomed with an appropriate offer. A new
customer is welcomed with an offer of a promotional item. A gold customer is
welcomed with an offer of a promotional item that is similar to an item recommended
by her profile:

welcome(X) ← status(X, new) : promotional-item(Y) : offer(X, Y).
welcome(X) ← status(X, gold) : promotional-item(Y) : profile(X, Z) :

 similar(Y, Z) : offer(X, Y).

Here the backward arrow ← also denotes logical implication, but is used for backward
reasoning. In general, the backward arrow is used for beliefs, all of which have the
semantics of logic programming clauses.
 The predicates login and checkout represent external events that can be observed
by the agent, welcome is a macro-action and offer, take-payment and confirm are
atomic actions that can be performed by the agent. The predicates similar and > are
state-independent. The predicates profile and status are either extensional predicates,
stored in the database explicitly, or intensional predicates, defined in terms of
extensional predicates. All other predicates are extensional predicates.
 Events, which include both external events and the agent’s own atomic actions,
are used to update the database. They do so by initiating and terminating extensional
predicates, as defined by a transition theory. For example, an observation of the
customer adding an item to the shop cart initiates a new value for the shop cart, and
the action of taking payment terminates the current value for the shop cart. An

1 http://www.w3.org/2005/rules/wiki/RIF_Working_Group visited in June 2011

http://www.w3.org/2005/rules/wiki/RIF_Working_Group�

observation of a customer checking out terminates the customer’s shop cart if the
value of the shop cart is 0:

initiates(add-to-shop-cart(X, ID, Value), shop-cart(X, ID, NewValue))
← shop-cart(X, ID, OldValue) : NewValue = Old Value + Value.
terminates(add-to-shop-cart(X, ID, Value), shop-cart(X, ID, OldValue))
← shop-cart(X, ID, OldValue).

initiates(take-payment(X, ID, Value), paid-shop-cart(X, ID, Value)).

 terminates(take-payment(X, ID, Value), shop-cart(X, ID, Value)).

 terminates(checkout(X), shop-cart(X, ID, Value)) ← Value = 0.

With the LPS operational semantics, when a customer logs in, forward reasoning with
the first reactive rule generates a new achievement goal to welcome the customer.
Backward reasoning with the macro-action definition generates a plan for solving the
welcome goal. First the status of the customer is checked, and if it is gold, for
example, the database is queried for a promotional item matching the customer’s
profile. If one is found, it is offered to the customer.
 The internal syntax (meaning or semantics) of the reactive rules, the macro-
action definitions and the transition theory is:

 login(X, T1, T2) ∧ customer(X, T2) → welcome(X, T3, T4) ∧ T2 ≤ T3.

checkout(X, T1, T2) ∧ customer(X, T2) ∧ shop-cart(X, ID, Value, T2) ∧ Value >0
→ take-payment(X, ID, Value, T3, T4) ∧ confirm(X, ID, Value, T5, T6) ∧
 T2 ≤ T3 ∧ T4 ≤ T5.

 welcome(X, T1, T2) ← status(X, new, T1) ∧ promotional-item(Y, T1) ∧

 offer(X, Y, T1, T2).
 welcome(X T1, T2) ← status(X, gold, T1) ∧ promotional-item(Y, T1) ∧

 profile(X, Z, T1) ∧ similar(Y, Z) ∧ offer(X, Y, T1, T2).

 initiates(add-to-shop-cart(X, ID, Value), shop-cart(X, ID, NewValue), T)
 ← shop-cart(X, ID, OldValue, T) ∧ NewValue = Old Value + Value.
 terminates(add-to-shop-cart(X, ID, Value), shop-cart(X, ID, OldValue), T)
 ← shop-cart(X, ID, OldValue, T).

 initiates(take-payment(X, ID, Value), paid-shop-cart(X, ID, Value), T).
 terminates(take-payment(X, ID, Value), shop-cart(X, ID, Value), T).

 terminates(checkout(X), shop-cart(X, ID, Value), T) ← Value=0.

All variables are implicitly universally quantified with scope the entire implication.
However, variables in the conclusion of a reactive rule that are not in the conditions
are implicitly existentially quantified with scope the conclusion. For example:

 login(X, T1, T2) ∧ customer(X, T2) → welcome(X, T3, T4) ∧ T2 ≤ T3.

stands for: ∀ X ∀T1 ∀T2 (login(X, T1, T2) ∧ customer(X, T2)
 → ∃T3 ∃T4 (welcome(X, T3, T4) ∧ T2 ≤ T3)).

The LPS operational semantics is an agent cycle that, given an initial state <W0, G0>
and a sequence of observations of external events Obi, generates a sequence of
database states Wi, goal states Gi and atomic actions ai interleaved with the input
observations:
 <W0, G0>, a0, Ob0, …, <Wi, Gi>, ai, Obi …

Suppose in this example that the initial goal state and initial action are both empty
(G0= {true}, a0 = φ) and the initial database is:

 W0 ={customer(john), customer(bill), status(john, new), status(bill, new),

promotional-item(iceTea), shop-cart(john, j1, 0), shop-cart(bill, b1, 0)}.

In practice when a customer logs in, a new ID is generated for the session and the
shop-cart is initialised with value 0. We ignore these details here.
 Suppose also that the agent makes the following observations:

 Ob0 = {login(john)}

Ob1 = {login(bill), checkout(john), add-to-shop-cart(bill, b1, 25)}
 Ob2 = {checkout(bill)}.

Then, depending upon the goal selection and search strategies, the operational
semantics may produce the following sequence of database states and atomic actions:

Database State Action
W0 a0 = φ
W1 = W0 a1 = offer(john, iceTea)
W2 = W1 – {shop-cart(john, j1, 0) } ∪

{shop-cart(bill, b1, 25)}
a2 = offer(bill, iceTea)

W3 = W2 a3 = take-payment(bill, b1, 25)
W4 = W3 - {shop-cart(bill, b1, 25)} ∪

{paid-shop-cart(bill, b1, 25)}
a4 = confirm(bill, b1, 25)

The set of beliefs consisting of this sequence together with the observations and the
macro-action definitions, all with explicit state parameters, is a Horn clause logic
program, with a unique minimal model, in which the reactive rules are all true.

Example 1.2: The following is a reformulation in LPS of an example in [4], which
involves buying a gift. According to the scenario in [4], the agent first checks what
gifts are available in Harrods, and forms a plan to go to Harrods and purchase the gift.
Then for some reason the agent does not succeed in going to Harrods, and a special
plan revision rule changes the plan to purchasing that same gift from Dell. In LPS, the

beliefs required for this scenario can be formalized without plan revision rules, by
means of the planning clauses:

have(Object)← sells(harrods, Object) ; goto(harrods) ;
 purchase(harrods, Object).

 have(Object)← sells(harrods, Object) ; online(Store) : sells(Store , Object) ;
 go-online(Store) ; purchase(Store, Object).

The extensional predicate have is initiated by the atomic action purchase:

 initiates(purchase(Store, Object), have(Object)).

Notice that purchase also initiates a reduction in the agent’s financial resources, as a
consequence of the action. But there is unlikely to be a planning clause or macro-
action having such a reduction as a motivation for purchasing an object.
 For simplicity, we assume goto and go-online are atomic actions, and all the
other predicates are extensional predicates. We can specify preconditions for the
action purchase(Store, Object), but we will ignore these here.
 The LPS operational semantics is neutral with respect to the search strategy used
to explore the search space and to select an action to execute. To obtain the behavior
of the scenario described in [4], the search strategy would need to try the planning
clauses in the order in which they are written, try the first action goto(harrods), and if
it fails, either re-attempt the action later or try an alternative plan, involving the action
go-online(dell).
 To illustrate this, consider the initial goal state G0 = {have(Object)}, and assume
the database W0 contains such facts as sells(harrods, laptop), sells(dell, laptop) and
online(dell). The example has no reactive rules. So the agent’s task is simply to
achieve the initial goal. It proceeds by reasoning backwards with the planning clauses,
resulting in a sequence of goal states G1, G2, ….. Each Gi represents a search space of
alternative (partial) solutions (we call each alternative a goal clause), and the search
strategy determines how Gi+1 is generated by SLD resolution using goal clauses in Gi
and the agent’s beliefs.
 In Section 4 we will see that the LPS cycle uses the internal syntax for goal
clauses. However, for simplicity, we can also represent goal clauses in the external
syntax. For example, expressed in the external syntax, G1 might contain the three goal
clauses:

{have(Object), sells(harrods,Object) : goto(harrods) ; purchase(harrods,Object),
goto(harrods)

; purchase(harrods,laptop)}.

At this stage the search strategy can attempt the action goto(harrods) underlined in the
third goal clause. If the action fails, the search strategy can explore other alternatives
in the search space, possibly generating G2 as:

G1 ∪ {sells(harrods,Object) ; online(Store) : sells(Store,Object) : go-online(Store) ;

purchase(Store,Object), go-online(dell) ; purchase(dell,laptop)}.

The search strategy can now attempt to execute the new action go-online(dell), or re-
attempt goto(harrods). If it decides to try the new action and succeeds (generating G3)
and then attempts purchase(dell, laptop) and succeeds, then it reaches a new goal state
G4 containing the goal clause true.
 The sequence of database states generated is W0 = W1 = W2 = W3, W4 = W3 ∪
{have(laptop)}. The agent’s initial goal G0 is true in the unique minimal model of the
Horn clause logic program corresponding to the internal representation of this
sequence of database states and successfully executed actions (with explicit state
parameters).

Example 1.3: The following example is a variant of the waste-collecting robot in [19]
and the vacuuming robots in [4] and [23]. In this example, whenever the robot
observes waste, she collects it in a bag, and whenever the bag is full, she empties the
bag into a bin.

Reactive Rules: waste-at(X) → goto(X) ; put-waste-in-bag-at(X).

 bag-full : bin-at(X) → goto(X) ; empty-bag-at(X).

Macro-action definitions:
 goto(X) ← robot-at(X).
 goto(X) ← robot-at(Y) : towards(Y, Z, X) : step(Y, Z, X) ; goto(X).

Here waste-at and bag-full are externally observed events, robot-at and bin-at are
extensional predicates, put-waste-in-bag-at, empty-bag-at and step are atomic actions,
and goto is a macro-action. The predicate towards is a state-independent predicate
(whose definition is not displayed). The intention is that Z is one step away from Y in
the direction of X.
 In this example, for simplicity, only the atomic action step updates the database.
The external events simply trigger the reactive rules, and the atomic actions put-
waste-in-bag-at and empty-bag-at simply change the external state of the world,
without affecting the database. The state transition theory specifies the effects of step:

 initiates(step(Y,Z,X), robot-at(Z)).
 terminates(step(Y,Z,X), robot-at(Y)).

The atomic actions step, put-waste-in-bag-at and empty-bag-at can be performed only
if their preconditions hold. The transition theory also specifies these preconditions:

 possible(step(Y,Z,X)) ← robot-at(Y).
 possible(put-waste-in-bag-at(X)) ← robot-at(X).
 possible(empty-bag-at(X)) ← robot-at(X).

We will see later that preconditions are automatically checked by the operational
semantics, to ensure that no action is chosen for execution unless its execution is
possible. This is necessary in this example with the actions put-waste-in-bag-at(X) and
empty-bag-at(X) because the sequential connective ; before these actions in the
reactive rules means that the robot might have moved away from the location X before

performing these actions. However, the automatic check is redundant in the case of
the action step(Y, Z, X) because the sequential connective : before this action in the
macro-action definition means that the precondition is guaranteed to hold when the
action is chosen for execution. The definition of preconditions is necessary only for
the agent’s own atomic actions, and not for external events, because the external
world ensures that external events occur only if they can occur.
 Notice that the sequential connective ; between the atomic action step(Y, Z, X)
and the macro-action goto(X) means that the macro-action of going to X can be
interrupted between steps. We will show this possibility in the following illustration of
the operational semantics.
 Suppose that the initial goal state and initial action are both empty (G0 = {true},
a0 = φ) and the initial database is W0 = { robot-at((0,0)), bin-at((0,2))}.

(1,0)

(1,1)

(1,2)

(0, 0)

(0,1)

(0,2)

Suppose also that the robot makes the following observations:

 Ob0 = {waste-at((0, 2))}
 Ob1 = {waste-at((0, 1))}
 Ob2 = {bag-full}

Then, depending upon the goal selection and search strategies, the operational
semantics may produce the following sequence of database states and atomic actions:

Database State Action
W1 = W0 a1 = step((0,0),(0,1),(0,2))
W2 = {robot-at((0,1)), bin-at((0,2))} a2 = put-waste-in-bag-at((0,1))
W3 = W2 a3 = step((0,1),(0,2),(0,2))
W4 = {robot-at((0,2)), bin-at((0,2))} a4 = empty-bag-at((0,2))
W5 = W4 a5 = put-waste-in-bag-at((0,2))

We will see later in Section 5 how the selection and search strategies can generate this
particular sequence of database states and actions. In the meanwhile, we note that the
robot has interrupted its original plan to pick up the waste at location (0, 2) when it
observes waste at (0, 1), taking advantage of the fact that it is already at (0, 1). It
further delays its original goal when it observes that the bag is full and needs
emptying. Finally, it returns to the first goal and picks up the waste at (0, 2).
 As in Example 1.1, in the internal syntax, the reactive rules are all true in the
unique minimal model of the Horn clause logic program consisting of the internal

representation of the agent’s beliefs including the sequence of database states, atomic
actions and observations.

2 Background

2.1 Informal comparison of Agent Languages and LPS
Practical agent languages can be regarded as an extension of production systems, in
which condition-action rules are generalised to trigger-guard-body rules. Both
production systems and agent languages manipulate a database of facts, which
represents the current state of the environment. The database is updated destructively
both by the agent’s observations and by the agent’s actions. The agent’s goals are
represented either as goal facts in the database, or in a separate stack of goals and
actions, which represents the agent’s intentions.
 Like condition-action rules in production systems, trigger-guard-body rules,
often called plans in agent languages, provide two main functions. Arguably their
primary function is as reactive rules, triggered by changes in the database, verifying
that the guard holds and adding the corresponding body either to the database or the
stack of goals. However, in practice they often function as goal-reduction rules,
triggered by a current goal, verifying the guard, and adding the body as a collection of
goals to the database or stack of intentions.
 LPS borrows from production systems and agent languages their state-free
syntax and their destructively updated database. It uses the database to represent the
current state of the environment, and represents goals (or alternative candidate
intentions) as a set of goal clauses, executing them as in SLD resolution. The search
strategy and selection function can treat the set as a stack in the same way that Prolog
implements a restricted version of SLD resolution. Alternatively, it can use the
selection function more freely to interleave planning with plan execution.
 The main difference between LPS and more conventional agent languages is that
LPS interprets and represents reactive plans and goal-reduction plans differently, and
this difference is exploited to provide LPS with a model-theoretic semantics. It
interprets goal-reduction plans as beliefs and represents them as logic programs. It
provides them with a backward reasoning operational semantics and a minimal model
declarative semantics. It interprets reactive plans as maintenance goals and represents
them as integrity constraints (as in abductive logic programming). It provides them
with a forward reasoning operational semantics and the model-theoretic semantics of
integrity constraints.
 Production systems and agent languages typically represent actions as additions
or deletions of facts in the database. LPS employs a more structured representation of
actions in the tradition of the situation calculus and event calculus [14, 20]. Additions
and deletions are consequences of a transition theory. However, instead of using frame
axioms, LPS uses destructive change of state to avoid the computational inefficiencies
of the frame problem.
 In production systems and agent languages, when the conditions of more than
one rule hold, a choice needs to be made between “firing” the different conclusions of
the rules. In production systems, this is made by means of a conflict resolution
strategy. In agent languages, it is made by selecting one of the conclusions as an
intention, and possibly repairing the resulting plan if the plan fails. It is partly because

there is no semantic constraint on conflict resolution that these languages do not have
a model-theoretic semantics.
 In contrast, the model theory of ALP and LPS imposes the constraint that for
every goal there needs to be some way of making the goal true. Therefore, when a
reactive rule is interpreted as a maintenance goal or integrity constraint, then the
conclusion of the rule becomes an (achievement) goal that must be made true,
whenever its conditions become true.
 To make an achievement goal true, the search strategy needs to find a collection
of beliefs and a set of actions, so that the goal is true if the beliefs are true and the
actions are executed successfully. Thus the analogue of conflict resolution in ALP and
LPS is the use of the search strategy to find a way to solve every goal.
 But different solutions can achieve their goals to different degrees. For example,
different ways of purchasing a gift cost more or less money, and involve more or less
effort. Different ways of collecting waste can involve more or fewer steps. Search
strategies for finding best solutions in the time available are a well-established area of
AI and Operations Research. By separating search spaces from search strategies, LPS
benefits not only from the model-theoretic semantics facilitated by this separation, but
also from the possibility of exploiting efficient search strategies, like A* and branch-
and-bound. In ALP agents, we have explored the use of Decision Theory for this
purpose [22].
 However, there is another kind of conflict resolution, called refraction, which is
not a matter of search strategy, and which also applies to LPS. In production systems,
refraction is used to trigger a condition-action rule only when its condition first
becomes true, preventing the rule from firing again if its condition remains true. In
LPS we deal with refraction as a matter of knowledge representation, by using events,
rather than fluents, to trigger reactive rules, as in Examples 1.1 and 1.3.

2.2 Abductive Logic Programming
LPS is based on abductive logic programming (ALP) [9] and abductive logic
programming agents (ALP agents) [12]. ALP extends logic programming (LP) by
allowing some predicates, Ab, the abducibles, to be undefined, in the sense that they
do not occur in the conclusions of clauses. Instead, they can be assumed, but are
constrained directly or indirectly by a set IC of integrity constraints.
 Thus an ALP framework <L, Ab, IC> consists of a logic program L, a set of
abducibles Ab, and a set of integrity constraints IC. The predicates in the conclusions
of clauses in L are disjoint from the predicates in Ab. An atom whose predicate is in
Ab is called abducible (or open). In LPS, the abducible atoms represent atomic
actions, and the integrity constraints represent reactive rules (or maintenance goals).
 In LPS, we represent reactive rules in the form condition → conclusion, where
condition and conclusion are conjunctions of atoms. For simplicitly, we restrict logic
programs to Horn clauses [11]. This has the advantage that Horn clauses have a
unique minimal model [5]. The restriction can be relaxed, as we will discuss later.

Definition 1. Given an ALP framework <L, Ab, IC> and a goal C that is a
conjunction of atoms (which can be empty, equivalent to true), a solution of the goal
is a set of atomic sentences ∆ in the predicates Ab, such that both C and IC are true in
the minimal model of L ∪ ∆. �

This semantics is one of several that have been proposed for ALP and for integrity
constraints more generally. It has the advantage that it provides a natural basis for the
semantics of LPS. Roughly speaking, in LPS, the analogue of L is the agent’s beliefs,
and the analogue of ∆ is the sequence of the agent’s actions. The analogue of C and IC
being true in the minimal model of L ∪ ∆ is G0 together with the reactive rules being
true in the minimal model determined by the agent’s beliefs, augmented by its actions
and observations.
 The ALP agent model [12] embeds the IFF [8] proof procedure for ALP in an
observation-thought-decision-action cycle, in which abducible atoms Ab represent
events, logic programs L represent the agent’s beliefs, and integrity constraints IC
represent the agent’s maintenance goals. Logic programs give the pro-active
behaviour of goal-reduction procedures, and integrity constraints give the reactive
behaviour of reactive rules. However, goals and beliefs also have a declarative
semantics, inherited from ALP. The ALP agent cycle generates a sequence of actions
in the attempt to make the initial goal and the maintenance goals true.
 In ALP agents, the agent’s environment is an external, destructively changing
semantic structure. The set ∆, on the other hand, is the agent’s internal representation
of its interactions with the environment. This internal representation is monotonic, in
the sense that observations and actions are time-stamped and state representations are
derived by a transition theory, such as the situation or event calculus. In contrast, in
production systems, in most agent systems and in LPS, the environment is simulated
by an internal, destructively changing database.
 In addition to the different internal representations of the environment in ALP
agents and in LPS, the other main difference is in the nature of their observations. In
LPS, observations are external events, which initiate and terminate extensional
predicates. But in ALP agents, observations also include fluents. The ALP agent
operational semantics uses backward reasoning with the IFF proof procedure to
generate alternative hypothetical events as abductive explanations of these fluent
observations. We have excluded this kind of abductive reasoning from LPS, because it
is much more complex than straight-forward assimilation of external events, and
because abduction is not a feature of practical production systems and BDI agents. Its
possible incorporation into LPS is a possible topic of research for the future.

3 LPS Language – Informal Description
In this section we give an informal description of the LPS language. In the next
section we define the language and its internal, state-based representation formally.

3.1 The Database
The LPS semantics is defined in terms of a minimal model associated with a sequence
of databases state transitions W0, a0, Ob0, …, Wi, ai, Obi … , where the Wi represent
the successive states of the database, the ai represent the agent’s actions, and the Obi
represent a set of observations.
 The databases Wi contain only the extensional predicates of a deductive
database, e.g. customer(john), spent-to-date(john, 500). Because the transition from
Wi to Wi+1 is implemented by destructive assignment, the facts in Wi are written
without state arguments. This means that facts that are not affected by the transition
persist without the inefficiencies of being copied explicitly from one state to the next.

 In addition to extensional predicates, which represent database states explicitly,
there are intensional predicates defined by clauses Lint. For example:

status(X, gold) ← spent-to-date (X, V) : 500 ≤ V.
status(X, new) ← spent-to-date (X, V) : V < 500.

Here spent-to-date is an extensional predicate, which changes directly as the result of
actions, such as take-payment, and status is an intensional predicate, which changes as
a ramification of changes to the predicate spent-to-date.
 The state-independent predicates are defined by logic programming clauses in
Lstateless. For example:

 similar(X, Y) ← cd(X) : dvd(Y).

3.2 The State Transition Theory
State transitions are defined by a set Tr of clauses of the form:

 initiates(e, p) ← init-conditions.

terminates(e, p) ← term-condition.
possible(a) ← pre-conditions.

where e is event, which is an atomic action or external event, a is an atomic action,
and p is an extensional predicate. The conditions init-conditions and term-conditions
are qualifying conditions, and together with pre-conditions are formulas that are
checked in the current state. In the case of events that are actions, the qualifying
conditions do not check whether an action is executable -pre-conditions does that - but
determine what the action initiates or terminates once it is executed.
 Not every event needs to initiate or terminate database facts. In particular, some
actions can be external actions, which have no direct impact on the database.
 In the operational semantics, the search strategy can choose an atomic action a
for execution only if it is executable, in the sense that it checks whether possible(a)
holds in the current state of the agent’s beliefs. We will define the notion that a
sentence holds with respect to a set of Horn clauses in Section 5.
 Because observations of external events happen only if they can happen, there is
no need to specify their preconditions in Tr. However, because we allow several
external events to be observed concurrently, we assume that concurrently observed
events are independent, in the sense that no event initiates a fluent that is concurrently
terminated by another.
 It is important to note that state transition theories are not used for planning, but
only to perform the state transitions associated with the agent’s actions and external
events. We use planning and macro-actions clauses for planning.

3.3 Goals
 In addition to the changing state of the database, the LPS operational semantics
maintains an associated changing goal state Gi, which is a set of goal clauses. Each
such goal clause can be regarded as a partial plan for achieving the initial
achievement goals G0 and the additional achievement goals generated by the reactive

rules. Both the initial goals and the additional goals are reduced to sub-goals by the
logic programs used to define intensional predicates, macro-actions, state-independent
predicates and planning clauses. Goals coming from different instances of reactive
rules can be solved independently and concurrently.
 The intended semantics of goals is that, for every Gi, one of the goal clauses in Gi
should be true in the model that is generated by the LPS cycle. G0 may contain only
the empty clause, which is equivalent to the sentence true, as is typical of production
systems. Informally speaking, the cycle succeeds in state n, if Gn contains the empty
clause (or true). However, the cycle does not terminate when it succeeds, because
future observations may trigger future goals.
 Initial goal clauses can contain actions, fluents, state-independent predicates, and
the logical connectives : and ; but not external events. For example, the following goal
clause requires that a promotional item is determined and discounted by 20%, and then
the item and its new price are advertised:

 promotional-offer(Item) : discount(Item, 20%, NewPrice) ; advertise(Item, NewPrice).

3.4 Reactive rules
The rules in the set R of reactive rules have the same form condition→ conclusion and
the same implicit quantification as ALP integrity constraints, where condition is a
conjunction of atoms and conclusion has the same form as a goal clause. Reactive
rules are executed by checking whether an instance of the condition holds in the
current state of the agent’s beliefs, and if it does, then the corresponding instance of
the conclusion is added to every goal clause in Gi.
 The condition can also include a single atom representing an atomic action
successfully executed in the last cycle and any number of atoms from the set of
current observations. Thus R can include the event-condition-action rules of active
databases. For example:

 take-payment(X, ID, Value) : Value ≥ 50 → issue-sport-voucher(X, ID).

3.5 Macro-actions
It would be possible to write agent programs using reactive rules alone, restricting the
conclusions of reactive rules to atomic actions, and to extensional and intensional
predicates that are checked in the current state as implicit consequences of the agent’s
actions or as serendipitous consequences of external events. Such reactive rules would
be sufficient for implementing purely reactive agents. However, macro-actions and
planning clauses in LPS make it possible to implement agents with more
deliberative/proactive capabilities.
 Macro-actions are complex actions defined in terms of simpler (atomic and
macro) actions, fluents and state-independent predicates. Macro-actions, defined by
the set of clauses Lmacro, are like hierarchical tasks in HTNs, transactions in TR Logic
and complex actions in Golog. Examples of macro-actions are the action welcome, in
Example 1.1, and the action goto in Example 1.3.

3.6 Planning clauses
Agent programs written using only reactive rules and definitions of macro-actions
achieve fluent goals only emergently and implicitly. Planning clauses allow

extensional fluent goals to be achieved explicitly. To ensure that the agent’s beliefs are
true with respect to the state transition theory, we impose the restriction that the last
condition in a planning clause is an atomic action that initiates the conclusion fluent, as
determined by the transition theory. Lplan represents such plans for achieving future
states of the database. For example:

have(Object) ← is-store(Store) : sells(Store, Object) :
 goto(Store) ; purchase(Store, Object).

Note that that the conclusions of plans represent the motivations of the agent’s actions,
in contrast with the transition theory, which represents all the consequences of its
actions.
 Thus the planning clauses, together with the macro-action clauses implement
planning from second principles, namely planning by using pre-compiled plan
schemata. However, planning clauses can also be used to implement planning from
first principles, by including a planning clause of the form:

 p ← pre-conditions : init-conditions : a

for every pair of clauses:
 initiates(a, p) ← init-conditions.
 possible(a) ← pre-conditions.

in the transition theory, where a is an atomic action.
 Whether the planning clauses are used for planning from first principles or
planning from second principles, they share with classical planning the repeated
reduction of fluent goals to fluent and action sub-goals. Because LPS is neutral with
respect to search and action selection strategies, different strategies for interleaving
planning and execution can be implemented. At one extreme, as in classical planning,
plans can be fully generated before they are executed. At the other extreme, actions
can be executed as soon as they are generated in a partial plan.

3.7 Goal Reduction
In the operational semantics, atomic goals in goal clauses are solved by performing
SLD resolution using the internal syntax for both goals and beliefs. These beliefs
include the clauses in Wi , Lint , Lplan , Lmacro , Lstateless and ai , but not the transition
theory Tr and not the observations in Obi.

3.8 Sequential Conjunction
The two sequential conjunctions : and ; are both used for sequencing, but : means “at
the same time as or immediately afterwards”, and ; means “anytime afterwards”. From
a practical point of view, the conjunction ; allows a sequence of goals and actions to be
interrupted and interleaved with the solution of other goals, whereas the conjunction :
forces the sequence to be solved and executed without interruption.
 For example, the goal clause open-fridge : get-drink ensures that the agent
will attempt to get a drink immediately after opening the fridge, minimizing the
possibility that the fridge will be closed (by the agent or an external event) between the
two actions. In contrast, the goal clause open-fridge ; get-drink allows the agent to try

to get a drink any time after opening the fridge. Thus it is more likely that the fridge
door may be shut between the two actions, and the open-fridge action will have to be
repeated. Thus the use of sequential conjunction : is related to transaction atomicity in
database systems. We will not pursue this relationship further in this paper.
 The connective : is required whenever we need to express that a conjunction of
fluents should hold simultaneously in the same state. For example, in the definitions
of intensional predicates, such as:

 above(X, Y) ← on(X, Z) : above(Z, Y).

or in the conditions of reactive rules, such as:

take-payment(X, ID, Value) : spent-to-date(X, Value) : Value ≥ 1000
→ issue-voucher(X, ID, 50).

The connective : is also needed in Lplan or Lmacro clauses when we want to ensure that
the qualifying conditions of an atomic action hold when the action is attempted, for
example:

 clear(X) ← on(Y, X) : move-to(Y, table).

In all other cases the programmer has a choice between using : and ; depending on
how much interleaving and how much flexibility with respect to temporal ordering is
desired. For example both clauses below are acceptable in Lplan, but can generate
different behaviour, as explained earlier:

 on(X, Y) ← clear(X) : clear(Y) : move-to(X, Y).
 on(X, Y) ← clear(X) ; clear(Y) ; move-to(X, Y).

Fluents can also be sequenced by ;. For example the goal clause:

 professor ; head-of-department ; dean

represents the ambitions of an agent first to become a professor, then head of
department, and then dean, but not necessarily without interruption. Similarly, actions
and fluents can also be sequenced by ;. For example:

 dean ; change-retirement-rules : retire.

4 LPS Language – Formal Description

The vocabulary of LPS is divided into fluent, event, macro-action, auxiliary and state-
independent predicates. The fluent predicates consist of extensional and intensional
predicates. The event predicates consist of atomic actions, and observations of external
events. The auxiliary predicates consist of predicates initiates, terminates, and possible
in the transition theory. The state-independent predicates include such predicates as ≤.
All these sets of predicates are mutually exclusive.

 The LPS framework employs a stateless surface syntax, which is syntactic sugar
for an underlying internal syntax with explicit state arguments (which specify the
semantics of the surface syntax). We use the internal syntax when describing the
operational and the model-theoretic semantics later in the paper. Here we describe both
the surface syntax and its semantics.
 The surface syntax of all LPS components is defined in terms of sequences of
atomic formulas (or atoms), where consecutive atoms are linked by : or ;. The syntax
of sequences is defined recursively. The base case is the empty sequence, which is also
the empty clause, written as true. If P is an atom and S is a sequence, then P : S and P ;
S are sequences.
 Below, where it is clear from the context, we use the terminology (fluent, state-
independent, atomic action, macro-action, event, extensional, intensional) predicate to
mean an atom with such a predicate symbol.
 The initial goal state G0 is a set of goal clauses, each of which is a sequence with
no observation atoms. Other goal states Gi, derived in the LPS cycle are sets of clauses
expressed in the internal syntax with state arguments. They do not appear in the
surface syntax.

Lstateless clauses have the form: P ← P1 : P2 :… : Pn, 0 ≤ n,
where P and each Pi are state-independent predicates.

Lint clauses have the form: P ← P1 : P2 :… : Pn, 1 ≤ n,
where P is an intensional predicate, each Pi is a fluent or state-independent predicate,
and at least one Pi is a fluent.

Lmacro clauses have the form: M ← S, where M is a macro-action predicate,
and S is a sequence containing at least one fluent or action predicate and no event.

Lplan clauses have the form: P ← S, where P is an extensional predicate,
and S is a sequence containing no event, and ending in an atomic action.

R reactive rules have the form: [Evt1 ∧ Evt2 ∧ …∧ Evtn ∧ A] : Q1 : Q2 :… : Qm → S
where S is a non-empty sequence, containing no event, and each Qi is a fluent or state-
independent predicate, A is an atomic action, and each Evti is an event. All Evti and A
may be absent, in which case 1 ≤ m, otherwise 0 ≤ m.

The conditions of reactive rules do not contain macro-actions, because the sequence of
states from T1 to T2 associated with the semantics M(T1, T2) of a macro-action M is not
accessible in the current state T of the database.
 The only place we use the connective ∧ in the external syntax is in the conditions
of reactive rules, where it is needed to refer to observations and the action executed all
at the same time in the current state. The alternative of using the connective : to
conjoin these events would mean that they occur in sequence rather than
simultaneously, which is not what is intended.
 In principle, it would be possible to keep a database of the history of past events
and to allow the conditions of reactive rules to refer to this history. This would require
an extension of the external syntax, but can be dealt with without extension in the
internal syntax because of its explicit representation of state.

Tr clauses have the forms: initiates(e, p) ← P1 : P2 :… : Pn
 terminates(e, p) ← P1 : P2 :… : Pn
 possible(a) ← P1 : P2 :… : Pn

where e is an event, a is an atomic action, p is an extensional fluent, each Pi is a
fluent or state-independent predicate, and 0 ≤ n.

The semantics of each formula F of LPS, including atomic formulas (atoms),
predicates, goals, rules, clauses and sequences, is denoted by F*. Every such formula
F* can be written in the form F*(T1, T2), where T1 and T2 are as explained below. The
semantics P* of an atomic formula P is given by:

 true is a state-independent formula, and true* is true.
 If P is a state-independent formula, then P* also written P*(T) and P*(T, T) is P.

If P is a fluent, then P* also written P*(T, T) is P(T).
If P is an event, then P* also written P*(T, T+1) is P(T, T+1).
If P is a macro-action, then P* also written P*(T1, T2) is P(T1, T2).

The semantics of sequences is defined recursively, with the empty sequence having the
semantics true.

Let P be an atom and S a sequence, with semantics P* and S* respectively.

Let F be P : S, where neither P nor S is state-independent.
Then F*(T1, T2) is P*(T1, T) ∧ S*(T, T2).

Let F be P ; S, where neither P nor S is state-independent.
Then F*(T1, T4) is P*(T1, T2) ∧ S*(T3, T4) ∧ T2 ≤ T3.

Let F be P : S or P ; S.
If both P and S are state-independent, then F* is P*∧ S* and state-independent.
If P is state-independent and S is not, then F*(T1, T2) is P* ∧ S*(T1, T2).
If S is state-independent and P is not, then F*(T1, T2) is P*(T1, T2) ∧ S*.

The semantics G0* of the initial goal state G0 is the semantics of its sequences.
Because all the Gi, for i > 0, are expressed only in the internal semantics, Gi * = Gi for
i > 0. All the variables in Gi and Gi*, for i ≥ 0, are existentially quantified.
 Hence, in the internal syntax, goal clauses are conjunctions of atoms, and the goal
states Gi* all represent disjunctions of goal clauses. These goal states have a search
tree structure, which is not apparent in the set representation. As in normal logic
programming, other representations, including search tree and and-or tree
representations are possible. For simplicity, we do not explore these other
representations in this paper.

The semantics of an Lstateless clause P ← P1 : P2 :… : Pn, 0 ≤ n is
 P ← P1 ∧ P2 ∧… ∧ Pn.
The semantics of an Lint clause P ← P1 : P2 :… : Pn is
 P(T) ← P1(T) ∧ P2(T) ∧…∧ Pn(T).
The semantics of an Lmacro clause M ← S is M(T1, T2) ← S*(T1, T2).

The semantics of an Lplan clause P ← S is P(T2) ← S*(T1, T2).

The semantics of a reactive rule [Evt1 ∧ Ev2 ∧ …∧ Evtn ∧ A] : Q1 : Q2 :… :Qm → S is
 [Evt1(T-1, T) ∧... ∧ Evtn(T-1, T) ∧ A(T-1, T)] ∧ Q1(T) ∧ Q2(T) ∧…∧ Qm(T) → S*
if S is state-independent, and [Evt1(T-1, T) ∧... ∧ Evtn(T-1, T) ∧ A(T-1, T)] ∧ Q1(T) ∧
Q2(T) ∧…∧ Qm(T) → S*(T1, T2) ∧ T ≤ T1 otherwise.

As already mentioned in Example 1.1, in all implications, all variables are implicitly
universally quantified with scope the entire implication, except for variables in the
conclusions of reactive rules that are not in their conditions, which are existentially
quantified with scope the conclusions. These existentially quantified variables
contribute to the existentially quantified variables of goal clauses.

The semantics of Tr clauses:

initiates(e, p) ← P1 : P2 : …: Pn is initiates(e, p, T) ← P1(T) ∧ P2(T) ∧…∧ Pn(T)
terminates(e, p) ← P1 : P2 : …: Pn is terminates(e, p, T) ← P1(T) ∧ P2(T) ∧…∧ Pn(T)
possible(a) ← P1 : P2 : …: Pn is possible(a, T) ← P1(T) ∧ P2(T) ∧...∧ Pn(T)

Finally if S is a set of formulas then S* is the set of all F* for F in S.

Note that all fluents in clauses of Lint* contain the same state variable. Consequently
the connective : in the surface syntax of Lint could be replaced by logical conjunction
∧. Similarly, the connective : in Lstateless clauses could also be replaced by ∧.
 Notice also that the syntax and semantics impose the restriction that no two actions
(whether an atomic action or a macro-action) have the same pair of state arguments in
the conditions of the same clause or the conclusion of the same reactive rule. This is
because, for simplicity, the LPS operational semantics executes at most a single
atomic action in each cycle/state. Because the operational and model-theoretic
semantics of LPS are both defined for the internal semantics, it is possible to define
other surface syntaxes and to mix state-based and stateless syntaxes. The syntax
chosen for this paper can be extended in several ways, but has the advantage of
simplicity.

5 The Operational Semantics
The operational semantics manipulates the database by adding and deleting facts with
extensional predicates. However, the model-theoretic semantics interprets the facts in
state Wi as containing the implicit state argument i. We use the notation Wi* to refer to
facts containing explicit state arguments: Wi* = {p(i) : p ∈ Wi}.
 Events, together with the state transition theory, update the database from one
state to the next, as specified in the LPS cycle below. However, for the execution of
an action a to be attempted all of its preconditions must hold in the current state of the
database Wi.

Definition 2. An atomic action a is executable in state Wi if and only if possible(a)
holds in Wi * ∪ Lint* ∪ Lstateless ∪ Tr* . �

In the model theory, a sentence S holds in a set H of Horn clauses if and only if S is
true in the minimal model of H. In the operational semantics, S holds if S can be

proved from H. However, truth in an arbitrary minimal model is not in general
recursively enumerable. Nonetheless in many practical cases it can be determined by
such proof procedures as SLD resolution. The operational semantics defined below is
neutral with respect to how holds is determined.
 The LPS cycle checks if an action is executable before choosing it for execution.
This is to avoid wasting time trying to execute an action if the agent does not believe
that its preconditions actually hold. The programmer can ensure that the preconditions
of actions hold by writing the clauses in Lplan and Lmacro in such a way that atomic
actions immediately follow (conjoined by the connective :) their explicitly represented
preconditions or other actions that initiate their preconditions. If the programmer does
not do this, the cycle performs the check automatically. (However, it does not
automatically make the preconditions hold.)
 In the LPS cycle, when an atomic action is chosen for execution, all of its
arguments (other than state arguments) need to be variable-free (a safety requirement).
In addition, the selection function and search strategy need to be timely.

Definition 3. A selection function is safe if and only if, when it selects an atomic
action, the action is ground (except possibly for state variables). A selection function
is timely if and only if, when it selects an atomic action a(t, t+1) in a goal clause C,
then C contains no other atom which needs to be evaluated earlier in C. The term t can
be a variable T, or a constant i instantiated in the previous cycle. A search strategy is
timely if and only if, when it resolves an extensional atom in a goal clause C with the
database, then C contains no other atom that needs to be evaluated earlier in C. �

Informally speaking, an atom in a goal clause C needs to be evaluated earlier than an
atomic action a(t, t+1) if the execution of a(t, t+1) in C would make it impossible to
solve the atom afterwards, because its state arguments would be in the past.
Timeliness is not needed for soundness, but it makes LPS more complete.
 Note that the selection function is not restricted to selecting atomic goals in the
sequence in which they are written. Atoms can be selected and resolved, so that
planning and execution are interleaved. However, to ensure the existence of safe
selection functions, LPS frameworks need to be range-restricted (defined after the
LPS cycle).
 The internal syntax of LPS includes inequalities between states. For the model-
theoretic semantics we need a theory Ltemp that defines this inequality relation. This
theory is not needed for the operational semantics, because timeliness and range-
restriction ensure that if all other goals in a goal clause succeed, then all the
inequalities between states in the goal clause are also true. So for implementation
purposes we can assume that these inequalities are deleted from the clauses and rules.
This is equivalent to resolving these inequalities with clauses in Ltemp, which always
succeeds.
 The operational semantics is a potentially non-terminating cycle in which the
agent repeatedly observes events in the environment, updates the database to reflect
the changes brought about by those events, performs a bounded number of inferences,
and selects an atomic action to execute. If there is no such action that can be executed
within the bound or if the action is attempted and fails, then an empty action is
generated. Similarly, if there is no observation available at the beginning of a cycle
then the set of observations is empty.

Definition 4. LPS cycle: Let Max be a bound on the number of resolution steps to be
performed in each iteration of the cycle. Given a range-restricted LPS framework
<W0 , G0, Tr, R, Lint , Lstateless , Lmacro , Lplan >, a safe and timely selection function s, a
timely search strategy ∑, and a sequence of sets of observations Ob0, Ob1,…., the LPS
cycle determines a sequence of state transitions <W0, G0>, a0, Ob0, …, <Wi, Gi>, ai,
Obi …. The transition from <Wi, Gi>, ai, Obi to <Wi+1, Gi+1>, ai+1 is given by the
following steps:

LPS0. If ai is a non-empty action that has been successfully executed, then let Ei =

Obi ∪ {ai}. Otherwise let Ei = Obi. Then:
 Wi+1 = (Wi – {p: e∈ Ei and terminates(e, p, i) holds in Wi* ∪ Tr* ∪ Lint* ∪

Lstateless }) ∪ {p: e∈ Ei and initiates(e, p, i) holds in Wi* ∪ Tr* ∪ Lint* ∪
Lstateless}. We assume that if action ai has been successfully executed then it is
independent of the observations Obi, in the sense that no observation in Obi
terminates a fluent that ai initiates and vice versa. Note also that ai* is a(i, i+1).

LPS1. For every instance condition σ → conclusion σ of a rule in R* such that

condition σ holds in Wi+1* ∪ Ei
* ∪ Lint* ∪ Lstateless add conclusion σ to every

clause in Gi. Let GRi
 be the resulting set of goal clauses.

LPS2. Using the selection function s and search strategy ∑, let Gi+1 be a set of goal

clauses, starting from GRi, derivable by SLD-resolution using the clauses in Wi+1*
∪ Lint* ∪ Lplan* ∪ Lmacro* ∪ Lstateless ∪ {ai*} such that one of the following holds:

 LPS2.1 No goal clause containing an executable action is generated within the

maximum number, Max, of resolution steps. This includes the case of an empty
clause being generated. Then ai+1 is the empty action φ (an action that will always
succeed, but has no effect on the database). Cycle will proceed into further rounds
because further observations are possible. (An agent cycle must be perpetual; it
never stops, because there can always be observations.)

LPS2.2 At least one goal clause whose selected atom is an executable action is
generated within the maximum number, Max, of resolution steps. Then one such
action a(t, t’) in a goal clause in Gi+1 is chosen for execution by the search strategy
∑. Note that a(t, t’) might have been generated and selected in an earlier cycle, but
not have been executable before. Moreover, even if it was selected and executable
before, the search strategy might have chosen some other action. Furthermore, it
might have been executed and failed. It might even have been executed before and
succeeded, but might need to be executed again, because later goals, dependent
upon it, have failed. Note t can be i+1 or a variable. If the action succeeds, then in
effect ai+1 is observed in the next cycle. �

The specification of the LPS cycle given above is an operational semantics, not an
efficient proof procedure. However, there are many refinements that would make it
more efficient. These include the deletion of subsumed clauses (including all other
goal clauses, once the empty goal clause has been generated), as well as the deletion
of clauses containing fluents or actions whose state argument is instantiated to a state
earlier that the current state.

Definition 5. The cycle succeeds in state n if and only if Gn contains the empty
clause. �

Example 5.1: We return to Example 1.3 of Section 1.1. Here the purpose is to
illustrate the sequence of goals generated by the operational semantics. To simplify the
example, we employ obvious abbreviations for the predicate symbols and their
arguments (omitting parentheses where it is unambiguous to do so). Also, we extend
the external syntax defined earlier for clauses in G0 to all goal clauses in Gi. Also we
do not present the entire set of goal clauses in each goal state, but only the goal clauses
selected by the search strategy to generate the sequence of actions in Example 1.3. This
is the same set of goal clauses that would be generated by employing depth-first search
implemented by means of a stack, as in Prolog and most BDI languages.
 For simplicity, we ignore the definition of the state-independent predicate toward
(t below). This is equivalent to assuming it is defined by facts, not displayed in the
database. Assume, as before, that the initial state and sequence of observations is:

 W0 = {r(0,0), b(0,2)} G0 = {true} a0 = φ
 Ob0 = {waste-at(0, 2) }
 Ob1 = {waste-at(0, 1)}
 Ob2 = {bag-full}

Then, depending upon the goal selection and search strategies, the operational
semantics may produce the following sequence of state transitions. Atoms selected
and resolved upon are underlined. New sequences of subgoals that are added by
reactive rules are conjoined to all existing goal clauses using the connective ∧, to
indicate that the different sequences in the same goal clause are temporally
independent of one another.

 W1 = W0 GR0 = {g(0,2)
 G1 includes in addition to GR0 also the two goal clauses:

 ; p(0,2)}

 r(Y) : t(Y, Z, (0,2))

 : s(Y, Z, (0,2)) ; g(0,2) ; p(0,2)
s((0,0), (0,1), (0,2))

 a1 = s((0,0),(0,1),(0,2))
 ; g(0,2) ; p(0,2)

W2 = {r(0,1), b(0,2)} GR1 is obtained by adding the new goal sequence
g(0,1) ; p(0,1) to every goal clause in G1.
Therefore G2 includes the goal clause: (g(0,1) ; p(0,1))

 a2 = p(0,1)
 ∧ (g(0,2) ; p(0,2))

W3 = W2 GR2 is obtained by adding the new goal sequence
g(0,2) ; e(0,2) to every goal clause in G2.
Therefore G3 includes the three goal clauses (g(0,2) ; e(0,2))∧(g(0,2) ; p(0,2))
(r(Y) : t(Y, Z, (0,2)) : s(Y, Z, (0,2)) ; g(0,2) ; e(0,2)) ∧ (g(0,2) ; p(0,2))
(s((0,1), (0,2), (0,2))

 a3 =s((0,1),(0,2),(0,2))
 ; g(0,2) ; e(0,2)) ∧ (g(0,2) ; p(0,2))

 W4 = {r(0,2), b(0,2)} GR3 = G3.

 G4 includes the goal clause: (g(0,2) ; e(0,2))
 a4 = e(0,2)

 ∧ (g(0,2) ; p(0,2))

W5= W4 GR4 = G4.
G5 includes the goal clause: g(0,2) ;
a5 = p(0,2)

p(0,2)

W6 = W5 GR5 = G5 . G6 includes true.

As mentioned earlier, range-restriction ensures the existence of safe selection
functions. It also ensures that the implicit existential quantification of variables in the
conclusions of reactive rules is dealt with correctly.

Definition 6. An LPS framework <W0, G0, Tr, R, Lint, Lstateless, Lmacro, Lplan> is
range-restricted if and only if all rules in R and all clauses in Tr, Lint, Lstateless, Lmacro,
Lplan and G0 are range-restricted, where:

 A sequence S is range-restricted if and only if every variable in an atomic
action in S occurs earlier in the sequence.
 A clause conclusion ← conditions in Lint , Lstateless , Lmacro , Lplan is range-
restricted if and only if conditions is range-restricted and every variable in
conclusion occurs in conditions.
 A clause conclusion ← conditions in Tr, where conclusion is initiates(e, p) or
terminates(e, p), is range-restricted if and only if every variable in p occurs either
in conditions or in e.
 A clause possible(a) ← preconditions in Tr, is range-restricted, because
possible(a) is checked only when a is ground, to verify the executability of a.
 A rule condition → conclusion in R is range-restricted if and only if every
variable occurring in an atomic action a in conclusion, occurs either in the
condition or in an atom earlier than a in the conclusion. �

6 Model-theoretic Semantics
The model-theoretic semantics requires a Horn clause definition Ltemp of the inequality
relations. Any correct definition will serve the purpose including, for example:

0 ≤ T S +1 ≤ T +1 ← S ≤ T.

Every set Sn of sentences W0* ∪ …∪ Wn* ∪ {a0*, …, an-1*}∪ Ob0
* ∪…∪ Obn-1

* ∪
Lstateless ∪ Lint* ∪ Ltemp ∪ Lmacro* is a Horn clause logic program. Therefore, Sn has a
unique minimal model Mn. This model is like a Kripke structure of possible worlds Mi

(minimal model of Wi ∪ Lstateless ∪ Lint) embedded in a single model Mn, where the
actions and observations {(Ob0, a0), …, (Obn-1, an-1)} determine the accessibility
relation from one possible world to another. The macro-action definitions can be
regarded as determining paths between possible worlds, like transactions in TR Logic.

6.1 Soundness
To prove the soundness of the LPS cycle, Lplan needs to be compatible with the
transition theory Tr. Compatibility ensures that the clauses in Lplan* are true in all Mn.

Definition 7. Lplan is compatible with Tr if every clause in Lplan is of the form
p ← S : P1 : P2 : …: Pn : a or p ← S ; P1 : P2 : …: Pn : a,
where S is any sequence, and there exists an instance of a clause in Tr of the form
initiates(a, p) ← P1 : P2 : …: Pn. �

It is easy to satisfy this condition, and all the examples in this paper, if done in full
will have this property. However, the notion of compatibility that is required for the
soundness of LPS can be extended to allow a more liberal syntax of Lplan clauses, for
example one that would allow macro-actions as well as atomic actions as the last
action in their conditions.

Theorem. Given a range-restricted LPS framework <W0 , G0, Tr, R, Lint, Lstateless,
Lmacro, Lplan>, a safe and timely selection function s, a timely search strategy ∑, and a
sequence of sets of observations Ob0, Ob1,…., Obn-1, if Lplan is compatible with Tr and
the cycle succeeds in state n, then some clause C0 in G0* is true in Mn and all the rules
in R* are true in Mn.

Sketch of proof: If the cycle succeeds in state n, then Gn contains the empty clause.
The proof of this empty clause can be traced backwards to a sequence of goal clauses
C0 ,…,Ci, ….,Cm = true, where C0 is in G0* and Ci+1 is obtained from Ci in one of two
ways:

1. In LPS1, Ci+1 is Ci conjoined with conclusion σ for every instance
condition σ → conclusion σ of a rule in R* such that condition σ holds in
Wi+1* ∪ Ei

* ∪ Lint* ∪ Lstateless.
2. Ci+1 is obtained by SLD-resolution between Ci and some clause C in Wi+1*

∪ Lint* ∪ Lplan* ∪ Lmacro* ∪ Lstateless ∪ {ai*} in LPS2 or by implicit
resolution of inequalities with clauses in Ltemp.

It suffices to prove the lemma: All the Ci are true in Mn. The lemma implies that C0
and all the rules in R* are true in Mn.

Proof of lemma: The lemma follows by induction, by showing the base case Cm =
true is true in Mn and the induction step if Ci+1 is true in Mn, then Ci is true in Mn. The
base case is trivial. For the induction step, there are two cases: In case 1 above, if Ci+1
is true in Mn, then Ci is true in Mn, because if a conjunction is true then so are all of its
conjuncts.
 In case 2 above, the clauses Ci+1 and Ci are actually the negations of clauses in
ordinary resolution. So, according to the soundness of ordinary resolution, ¬Ci+1 is a
logical consequence of ¬Ci and C. Therefore, if both C and Ci+1 are true in Mn, then Ci
is true in M. But any clause C in Wi+1* ∪ Lint* ∪ Lmacro* ∪ Lstateless ∪ Ltemp ∪ {ai*}
is true in Mn by the definition of Mn. It suffices to show that all clauses in Lplan* are
also true in Mn. But this follows from the compatibility of Lplan with Tr. �

This theorem is restricted in two ways. First, it considers only the first n sets of
observations. Second, it considers only the case in which the actions needed to solve
all the goals in G0 and introduced by the reaction rules are successfully executed by
state n. Both of these restrictions can be liberalised, mainly at the expense of
complicating the statement of the theorem, but the proofs are similar. We omit the
theorems and their proofs for lack of space. However, it is worth noting that to deal
with potentially non-terminating sets of observations, we need minimal models Mω
determined by the potentially infinite Horn clause program W0* ∪ …∪ Wn* ∪ …{a0*,
…, an*,…} ∪ Ob0

* ∪…∪ Obn
∪… Lstateless ∪ Lint ∪ Ltemp ∪ Lmacro*.

 Note also that LPS can be extended to include negation in both the conditions
and conclusions of reaction rules and in the conditions of clauses. The most obvious
such extension is to the case of locally stratified programs with their perfect models.

6.2 Completeness
Because of the completeness result for the IFF proof procedure [8] for ALP, it might
be expected that a similar completeness result holds for LPS: Given a minimal model
M of some clause C0 in G0 and of all the rules in R, it might be expected that there
exists some search strategy ∑ that together with the LPS cycle could generate some
related model M’, possibly determined by a subsequence of the actions of M. But this
is not always possible. Like production systems and BDI agents, LPS can only
generate models that make reactive rules true by performing actions after their
conditions have been made true. In particular, it cannot generate models that make
rules true by making their conditions false. For example:

Example 6.1:

R: debit-transaction(Amount) : account-balance(B) : B < Amount
 → pay-penalty(Amount-B)

Tr: initiates(pay-into-account(Amount), account-balance(New))
 ← account-balance(Old) : New = Old + Amount
 terminates(pay-into-account(Amount), account-balance(Old))
 ← account-balance(Old)

W0 = {account-balance(0)} G0 = {true} a0 = φ
Ob0 = { } Ob1 = { debit-transaction(100)}

Here debit-transaction is an observation and pay-penalty and pay-into-account are
atomic actions.

In LPS the only models that can be generated to make R true are ones that
include the action pay-penalty(100). But there are many other models that make R true,
and that do not include the action pay-penalty(100), but include instead an action a1*
where a1 = pay-into-account(amount) where amount ≥ 100.

Similarly, LPS cannot make rules true by deliberately making their conclusions
true before their conditions are true. It is interesting to note that both the IFF proof
procedure and the ALP proof procedure of [13] and [22] will generate the minimal
models needed in both kinds of situations.

7 Related Work

7.1 Relationship with the situation calculus and event calculus
The minimal model M generated by LPS is both like a Kripke possible worlds
semantic structure and like a minimal model of a logic program including the
transition theory Tr and the situation calculus. In LPS, the situation calculus axioms
are true in M, but are not used to generate M. They are, instead, an emergent property
of the way the transition theory generates the sequence of database states. It is easy to
see that the following variant of the situation calculus axioms are true in M:

 P(T+1) ← E(T, T+1) ∧ initiates(E, P, T)
 P(T+1) ← P(T) ∧ ¬ ∃ E (E(T, T+1) ∧ terminates(E, P, T))

where P is an extensional predicate and E is an event. The second of these axioms is a
variant of the frame axiom in second-order logic. It can be reformulated as a first-
order, meta-logical axiom in the standard way. Reasoning explicitly, whether forwards
or backwards, with these axioms is computationally explosive, and is an aspect of the
frame problem that is often overlooked.
 The situation calculus ontology of global states (or situations) has a natural
correspondence with the database states of LPS. However, the event calculus axiom:

 P(T2) ← E(T, T+1) ∧ initiates(E, P, T) ∧
 ¬ ∃ E, T’ (E(T’, T’+1) ∧ terminates(E, P, T’) ∧ T ≤ T’∧ T’ ≤ T2)

is also an emergent property of the LPS operational semantics. This follows from the
fact that, in the special case in which time is identified with global states, the situation
calculus and event calculus represent the same fluent relationships [25].
 The use of destructive assignment, as in LPS, to implement the frame axiom as an
emergent property, can be exploited for other applications, such as planning, provided
only one state is explored at a time. In particular, for classical planning applications,
the LPS approach can be generalised to store the complete history of actions and
events leading up to a current database state. The database can be rolled back to
reproduce previous states, and rolled forward to generate alternative databases states.
However, these possibilities are topics of research for the future.

7.2 Other Related Work
LPS provides an agent framework that combines a model-theoretic semantics with a
state-free syntax and a database maintained by destructive assignment. To the best of
our knowledge, this combination is novel. Most agent frameworks have an operational
semantics, but no declarative semantics. Some logic-based frameworks like Golog,
ALP agents and KGP [10] have a model-theoretic semantics, but represent the
environment using time or state and manipulate the representation using the situation
or event calculus. Metatem [6], on the other hand, is a logic-based agent language
with a Kripke semantics for modal logic sentences resembling production rules.
Because of the Kripke-like semantics of LPS, it would be interesting to explore a
similar modal syntax and semantics for LPS.
 Costantini and Tocchio [3] also employ a logic programming approach with a
similar model-theoretic semantics, in which external and internal events transform an
initial agent program into a sequence of agent programs. The semantics of this

evolutionary sequence is given by the associated sequence of models of the sequence
of programs. In LPS, this sequence is represented by a single model.
 FLUX [15] is a logic programming agent language with several features similar
to LPS, including the use of destructive assignment to update states. In FLUX, these
states are not stored in a database as in LPS, but in a reified, list-like structure. FLUX
employs a sensing and acting cycle, which it uses to plan and execute plans for
achievement goals.
 Thielscher [17] provides a declarative semantics for AgentSpeak by defining its
cycle and procedures by means of a meta-interpreter represented as a logic program.
Like LPS, the resulting agent language incorporates a formal transition theory.
However, unlike LPS, the language does not distinguish between different kinds of
procedures, according to their different functionalities. LPS, in contrast, distinguishes
between reactive rules, planning clauses, macro-actions and ramifications,
representing different kinds of AgentSpeak-like procedures in different ways. On the
other hand, the agent architecture of Hayashi et al. [18] separates the representation of
reactive rules and planning clauses, as in LPS.
 There is also related work, combining destructive assignment and model-
theoretic semantics in other fields, not directly associated with agent programming
languages. EVOLP [1], in particular, gives a model-theoretic semantics to evolving
logic programs that change state destructively over the course of their execution.
Several other authors, including [7, 16] obtain a model-theoretic semantics for event-
condition-action rules in active database systems, by translating such rules into logic
programs with their associated model theory.
 Perhaps the system closest to LPS is Transaction Logic [2], which employs a
destructive database and gives a Kripke-like semantics for transactions (which are
similar to macro-actions), represented in a state-free syntax. TR Logic also gives a
semantics to reactive rules, which involves translating them into transactions. In LPS,
the Kripke-like semantics is transformed into a single situation-calculus-like model, in
the spirit of Golog. This transformation makes it possible to apply the general-purpose
semantics of ALP to the resulting minimal model. In contrast, the semantics of TR
Logic and Golog are defined specifically for those languages.

8 Future Work
Because LPS is based on the ALP agent model and the ALP model is more powerful
than LPS, it would be interesting to extend LPS with some additional ALP agent
features. These features include: partially ordered plans, more complex constraints on
when actions should be performed and when fluent goals should be achieved,
concurrent actions, conditionals in the conditions of clauses, active observations, a
historical database of past actions and observations, abduction to explain observations
that are fluents rather than events, and integrity constraints that prohibit actions rather
than generate actions.
 It would also be useful to study more closely the relationship between LPS and
other agent models with a view to using the LPS approach to provide those languages
with model-theoretic semantics. In addition, because the LPS cycle can be viewed as a
model generator, which makes the reactive rules true, it would be interesting to
explore the relationship with model checking and model generation in other branches
of Computing.

Acknowledgments. We are grateful to Ken Satoh, Luis Moniz Pereira, Harold Boley,
Thomas Eiter and Keith Stenning for helpful discussions, and to the anonymous
reviewers for their helpful comments.

References
1. Alferes, J., Leite, J., Pereira, L.M., Przymusinska, H. & Przymusinski, T.:Dynamic Updates

of Non-Monotonic Knowledge Bases, J. of Logic Programming 45(1-3):43-70 (2000)
2. Bonner and M. Kifer.: Transaction logic programming. In Warren D. S., (ed.), Logic

Programming: Proc. of the 10th International Conf., 257-279 (1993)
3. Costantini, S. and Tocchio, A.: About Declarative Semantics of Logic-Based Agent

Languages, Dalt 2005, LNAI 3904, Baldoni, M. et al (eds.), 106-123 (2006)
4. Dennis, L.A., Farwer, B., Bordini, R.H., Fisher, M., Wooldridge, M.: A Common Semantics

Basis for BDI Languages, ProMAS, LNAI 4908, Dastani, M. et al (eds.) Springer-Verlag
Berlin Heidelberg, 124-139 (2008)

5. van Emden, M. and Kowalski, R.: The Semantics of Predicate Logic as a Programming
 Language, in JACM, Vol. 23, No. 4, 733-742 (1976)
6. Fisher, M.: A Survey of Concurrent METATEM - The Language and its Applications.

Lecture notes in computer science, 827, Springer Verlag (1994)
7. Flesca, S. and Greco, S. Declarative Semantics for Active Rules. Theory and Practice of

Logic Programming 1 (1): 43-69, (2001)
8. Fung, T.H. and Kowalski, R. : The IFF Proof Procedure for Abductive Logic Programming.

J. of Logic Programming (1997)
9. Kakas,T., Kowalski, R., Toni, F.:The Role of Logic Programming in Abduction, Handbook

of Logic in Artificial Intelligence and Programming 5, Oxford University Press, 235-324
(1998)

10. Kakas, A., Mancarella, P., Sadri, F., Stathis, K., Toni, F.: Computational Logic Foundations
of KGP Agents. Journal of Artificial Intelligence Research. 33, 285-348 (2008)

11. Kowalski, R.: Predicate Logic as Programming Language, in Proceedings IFIP Congress,
Stockholm, North Holland Publishing Co., 569-574 (1974)

12. Kowalski, R. and Sadri, F.: From Logic Programming Towards Multi-agent Systems, Annals
of Mathematics and Artificial Intelligence, Volume 25, 391-419 (1999)

13. Kowalski, R. and Sadri, F.: Integrating Logic Programming and Production Systems in
Abductive Logic Programming Agents. In Proceedings of The Third International
Conference on Web Reasoning and Rule Systems, Chantilly, Virginia, USA (2009)

14. Reiter, R.: Knowledge in Action. MIT Press (2001)
15. Thielscher, M.: FLUX: A Logic Programming Method for Reasoning Agents, Theory and

Practice of Logic Programming, 5(4-5), 533-565 (2005)
16. Zaniolo, C. A Unified Semantics for Active and Deductive Databases, Procs. 1993

Workshop on Rules In Database Systems, RIDS'93, Springer-Verlag, 271-287 (1993)
17. Thielscher, M., Integrating Action Calculi and AgentSpeak. In Proceedings of the

International Conference on Principles of Knowledge Representation and Reasoning (KR),
Lin, F and Sattler, U. (eds.), Toronto (2010)

18. Hayashi, H., Tokura, S., Ozaki, F., Doi. M.: Background Sensing Control for Planning
Agents Working in the Real World. International Journal of Intelligent Information and
Database Systems, Inderscience Publishers, 3(4): 483-501 (2009)

19. Rao, Anand S.: AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language.
Proceedings of Seventh European Workshop on Modelling Autonomous Agents in a Multi-
Agent World (MAAMAW-96) (1996)

http://centria.di.fct.unl.pt/~jja�
http://centria.di.fct.unl.pt/~jleite�
http://centria.di.fct.unl.pt/~lmp�
http://www.cs.ucr.edu/~teodor/�
http://centria.di.fct.unl.pt/~lmp/publications/online-papers/jlp00.ps.gz�
http://centria.di.fct.unl.pt/~lmp/publications/online-papers/jlp00.ps.gz�

20. Kowalski, R. and Sergot, M.: A Logic-based Calculus of Events. In New Generation
Computing, Vol. 4, No.1, 67-95 (1986). Also in The Language of Time: A Reader (eds.
Inderjeet Mani, J. Pustejovsky, and R. Gaizauskas) Oxford University Press (2005)

21. Kowalski, R. and Sadri, F.: An Agent Language with Destructive Assignment and Model-
Theoretic Semantics, In Dix J., Leite J., Governatori G., Jamroga W. (eds.), Proc. of the 11th
International Workshop on Computational Logic in Multi-Agent Systems (CLIMA), 200-218
(2010)

22. Kowalski, R.: Computational Logic and Human Thinking: How to be Artificially Intelligent,
To be published by Cambridge University Press

23. Wooldridge, M.: An Introduction to MultiAgent Systems, John Wiley & Sons Ltd (2009)
24. Nau, D., Cao, Y., Lotem, A., Munoz-Avila, H.: SHOP: Simple Hierarchical Ordered

Planner, Proc. of the 16th International Joint Conference on Artificial Intelligence (IJCAI),
968-973 (1999)

25. Kowalski, R. and Sadri, F.: The Situation Calculus and Event Calculus Compared, Proc. of
 International Logic Programming Symposium (ILPS) 94, MIT Press, 539-553 (1994)

26. Rao, A. S., Georgeff, M. P.: Modeling Rational Agents within a BDI-Architecture, Proc. of
the 2nd International Conference on Principles of Knowledge Representation and Reasoning,
473-484 (1991)

http://jmvidal.cse.sc.edu/lib/rao91a.html�

	5 The Operational Semantics

