Towards a Logic-based Production System Language

Robert Kowalski and Fariba Sadri
Department of Computing, Imperial College Londo®Q DQueens Gate, London SW7 2AZ
{rak, fs}@doc.ic.ac.uk

Abstract. In this paper we present a system, called LP$ cttrabines production rules

and logic programs in a single logic-based framé&wdhe framework gives both an

operational and model-theoretic semantics to pribdmluqules, and to logic programs

extended with a database of facts that is modbiedestructive assignment. The model-
theoretic semantics is obtained by separating tbeygtion system working memory

into facts and goals. Logic programs are used fmelenacro-actions, ramifications of

the facts and to reduce goals to sub-goals, inetudctions. The execution of actions
generates a sequence of database states. In teeotasiccessful termination, this
sequence, taken as a whole, serves as the baaisrfodel of the production rules.

Keywords — logic programming, production systems, modebthgc semantics

1 Introduction

Production rules and logic programs are among ttannkinds of knowledge
representation in Artificial Intelligence. Despttes fact that both represent knowledge
in the form of rules, there seems to have bede httempt to study the relationships
between them. In this paper we present a framewakcombines the two kinds of
rules, eliminates their overlap, and reconcilesrttigferences. For this purpose, we
define a logic-based framework (LPS), in which pretibn rules have a model-
theoretic semantics, and logic programs destrugtivanipulate a database of facts.

1.1 Confusions about rules in Al

Rules in production systems have the foconditions — actions and look like
conditionals in logic. Indeed, the most populathieok on Artificial Intelligence [13]
views production rules as just conditionals usedrgason forward (page 286).
However, one of the main textbooks on CognitiveeBcé [14] maintains that “Rules
are if-then structures...very similar to the conditits..., but they have different
representational and computational properties.gépd3). “Unlike logic, rule-based
systems can also easily represent strategic inttwmabout what to do. Rules often
contain actions that represent goals, such-ag@u want to go home for the weekend
and you have bus fare, THEN you can catch a’l{page 45).

Thagard [15] characterizes Prolog as “a programniamguage that uses logic
representations and deductive techniques”. HoweS8enon [14] includes Prolog
“among the production systems widely used in cagmiimulation.”

The relationship between logic, logic programmingl groduction systems has
recently become the focus of attention in the W3E Working Group drafts on rule
interchange (see http://www.w3.0rg/2005/rules/viRki_Working_Group).The RIF
proposals include a Horn clause language, RIF-Bltd a draft production rule
language RIF-PRD. RIF-BLD has model-theoretic, bot operational semantics.
Although the conditions of production rules in RPRD have model theoretic
semantics, production rules themselves have onlyerational semantics. Both
proposals ignore the fact that one of the main usfedoth Horn clauses and
production rules is to reduce goals to sub-goaldeéd, it is the elimination of this
overlap that is one of the main goals of LPS.

Whereas production systems manipulate a working engrthat combines both
facts and goals, and logic programs manipulate gobls, LPS separates facts from
goals and treats them differently. The facts ardatgd destructively by structured
actions, and the goals are updated by firing prddocules and by goal-reduction.
LPS has both an operational semantics and a mbdetetic semantics.

In the remainder of the paper, we present backghotime syntax, operational
semantics and model-theoretic semantics of LPS déstliss conflict resolution. We
assume the reader is familiar with the basic caiscefdogic programming.

1.2 Motivating Example

We consider an online shopping scenario, similath® RIF-PRD draft running
example. The following informal rules and claudkssirate the LPS approach.
Some condition-goal rules:
When a customer logs in, he is welcomed.
When a customer checks out, payment is taken,@fitroation is issued.
Some logic programming clauses (A customeregcamedwith an appropriate offer):
A customer is welcomed if his status is new ancetieea promotional item in
the store and the promotional item is offereditn.h
A customer is welcomed if his status is gold amdethis a promotional item in
the store and there is an item in his profile ahd item is similar to the
promotional item and the promotional item is afééto him.

2 Background

2.1 Production systems

A typical production system combineswerking memoryof atomic sentences, also
calledfacts with condition-action rules of the foriwondition— actions.Condition-
action rules are also called production ruleshér rules, or just plain rules.

In RIF-PRD and many other production systems, tleeking memory can be
viewed as a model-theoretic structure. An atomitesece is true in the structure if it
is a fact in the working memomnd false otherwiséhe language of theondition of
a rule is generally a subset of first-order logtoughly speaking, a rule fseable if
there exists an instance of the rule such thatdnelition of the instance is true in the
current state of the working memory, viewed as dehtheoretic structure.

If more than one rule iireable, thenconflict-resolutionis performed to select an
instance of aule tofire, by executing itsactions. Theactionspart of a rule can be a
sequence of actions. Typical actions aradd deleteor modifya fact in the working

memory. An action can also be an external actiaithsas printing. Executing
production rules in this way is called “forward @tiag”.*

The repeatediring of production rules generates a sequencgait transitions of
the working memory. It is partly because statenditions are performed by
destructive assignment and partly because of ebnfsolution that production
systems do not have a model-theoretic semantics.

The following formulation of theproduction system cyclewill facilitate
comparison with the LPS cycle later in the pap@thBycles can be formalised by
means of the transitive closure of a labelled iteomssystem, as in the RIF-PRD
formal operational semantics.

Definition 1. A production system (PS) framewadska tuple ®, S;, Cor> whereP is
a set of production rule&, is theinitial state of the working memory, ar¢bnis a
conflict resolution strategy. Given such a framdwothe PS cyclegenerates a
sequence of state transitiolss, ..., S, S+1 ... , Where eachy; is a working memory
state. It generates,, from § by means of the following steps:

PSL1.For every instanceonditions — actionses of a rulecondition — actionsin P
such thatonditions holds inS, all theactionss are collected into a s&;.

PS2.If the setG; is not emptyconflict resolutions performed according to the policy
of Conto select a single= actionss in G;. The cycleterminatesif there is no
sucha selected byConor if the selG; is empty.

PS3.The actions of are executed in sequence, generafpgfrom S.

Conflict resolution can be performed in many dif®@ ways, for example by
giving priority torules in the order in which they are written. Faample, a timid
agent might try the following rules in the order:

someone attacks me add(run away)
someone attacks me add(attack them back)
Other conflict resolution strategies will be dissed after the LPS cycle.

2.2 Production Rules in Practice

Arguably, there are three kinds of production rukesictive rules, forward chaining
logic rules, and goal-reduction rules.

The first kind of rule is the most characteristipe of production rule, and is
responsible for their general characterisatiorc@sdition-actionrules. This kind of
rule typically has implicit oemergentgoals. For example, the rulé is raining —
cover yourself with an umbrellaas the implicit goato stay dry

The second kind of rule, for exampgheiman X- mortal X adds to the working
memory a fact that is a logical conclusion of otfats in the working memory. It is
probably this kind of rule that gives the impressihat production rules are just
conditionals used to reason forward.

However, it is the third kind of rule, exemplifiég the goal-reduction ruldF you
want to go home for the weekend and you have besT&lEN you can catch a his
that causes the most trouble for a model-theorsgimantics. This is because, to
represent goal-reduction in production rule forie tworking memory needs to
contain, in addition téreal” facts, which describe the current state of a database, al

1t is often claimed that production rules can keceited either forwards or backwards. But
this claim seems to be based on a confusion wificdbimplications and possibly with
production rules in formal grammars.

goal facts,which describe some future desired state. Correfipgly, production
rules have bothreal” actions, which update the database, agwhl actions which
maintain goals and sub-goals. Both types of ast@me expressed as additions and
deletions of facts in the working memory. There ace higher-level structures to
ensure that these additions and deletions are “imgifati’.

To obtain a model-theoretic semantics, LPS reptegbe third kind of rule, which
has the general forngoal G and conditions C. add H as a goal
as a logic programming clause of the forr® ~ C, H.Backward reasoning with the
clause simulates forward chaining with the procarctiule.

To obtain the model theoretic semantics, LPS diwithe working memory into
two components, one containing real facts, andother containing goals. The real
facts act as a database representing the curegatafta domairL.PS uses destructive
assignment withstructured definitions of actions, to transform ostate of the
database into anothefhe collection of all such states determines a rtd®retic
structure, which makes the production rules true.

LPS updates and manipulates goals using backvessbning, representing the
current state of the goals as a disjunction of wectjons of atomic goals, which is a
kind of flattened and-or tree with existentiallyamtified variables. The LPS cycle
terminates successfully when one of the conjunstlmetomes empty.

LPS also represents forward chaining productioesuf the second kind, above,
as logic programming clauses. However, it exteratficl programming by using
reactive rules (anaondition-goalrules, more generally) dynamically to addw
goalsto the current state of the goals whenever amasst of theconditionof a rule
holds in the current state of the database. Theelrtbdoretic semantics ensures that
these rules are true in the model-theoretic stractletermined by the sequence of
databases that is generatethé cycle terminates successfully.

2.3 Logic Programming

In this section we review the main concepts ofdggiogramming needed for LPS.
We restrict logic programs and goals in LPS to Hdauses (without negation). For
simplicity, in the remainder of the paper, when wee the terminology “clause” and
“goal clause” we mean Horn clauses without negation

Definition 2. Logic programsare sets oflausesf the form:H ~ By, ... , B where
~ stands foif and the comma stands famd TheconclusionH and theconditionsB;
are atomic formulae afoms for short). All variables are implicitly univerdba
guantified in front of the claus€actsare clauses with no variables and wit0.

Thus clauses that are facts are like facts invtbeking memory of a production
system. Clauses that are not facts are often calkes We do not use this
terminology in this paper, because this invitesfgsion with production rules.

Definition 3. Goal clausesare conjunctions of atoms, the individual atomsvhfch
represent individuagoals All variables are implicitly existentially quafied in front
of the goal clause.

Backward reasoning uses program clauses to redoaks to sub-goals and is
formalized by SLD-resolution [9].

Definition 4. A selection functions, is a function from goal clauses to atoms, such
that wherL = 5(C), L is an atom irC and is said to be trselected literain C.

Given a goal clause,,...., L;,..., L,, with selected atorh; and given a clause
H < By,..., B, whose conclusionl unifies withL; with most general unifiew, SLD-
resolution reduces the godl to the subgoaléB, , ... , B)o and generates the SLD-
resolvent, which is a new goal clause (...,Li.1,B1, ..., By Lis1,..., L) 0.

If m=0 and n=i=1, then the new clause is called eéhgpty clausewritten {},
which is logically equivalent ttrue.

Definition 5. Given a set of clauses a selection functiog, and an initial goal clause
Co, an SLD-derivation or successful SLD-computation of @om L wrt s, is a
sequence of goal claus€sg, ..., C;, C1 ... G, such thatCi,; is generated fror; by
means of SLD-resolution ar@}, is the empty clause.

The selection function determines a search treese/nodes are goal clauses, each
branch of which is an attempted construction afiecessful computation. To obtain a
proof procedure, it is necessary to employ a seatctegy),, which chooses goal
clauses and program clauses, in the search foLBrd8rivation of the empty clause.
Different search strategies, including depth-fisgadth-first, and best-first strategies,
are all possible. We will see later, that the gedecfunctions and the search strategy
> in LPS perform some of the functions of confliesolution in production systems.

Backward reasoning treats clausés- By,... , B,as goal-reduction procedures:
to show/solve H, show/solvg Bnd ... and B. For example, it turns the clauseu
will go home for the weekend you have the bus fare, you catch a n® the
procedureTo go home for the weekend, have the bus farecatcth a bus.

Horn clauses inherit the model-theoretic semardicslassical logic. However,
they also have an alternative, minimal model serosint

Theorem 1: Given a set of Horn clausés there exists a unique minimal modél
such that for all goal claus€s Cis a logical consequence bf(i.e. C is true in all
models ofL) if and only if C is true inM.

The theorem is a direct consequence of the thegmawved in [4] for the case
where C is an atomic fact. Note that the theorem doeshodd for more general
consequences df, containing negation and universal quantificatidhe following
theorem follows from Theorem 1 and the well-knovaursdness and completeness
results for SLD-resolution:

Theorem 2:Given a set of Horn clausés a goal claus€, anda selection functios,
there exists a successful SLD computatio éfom L wrt s

» ifand only ifC is a logical consequence lof

» ifand only ifC is true in the minimal model &f.

2.4 Abductive Logic Programming
LPS is partly inspired by abductive logic programgqi(ALP) [8] and by abductive
logic programming agents (ALP agents) [10]. ALPeexts LP by allowing some
predicatesAb, the abduciblesto be undefined, in the sense that they do noaroin
the conclusions of clauses. Instead, they can &enzexd, buare constrained directly
or indirectly by a setC of integrity constraints

Thus anALP framework<L, Ab, IC> consists of a logic program, a set of
abduciblesAb, and a set of integrity constrairitS. The predicates in the conclusions
of clauses irL are disjoint from the predicates Ab. An atom whose predicate is in

Ab is called abducible In LPS, the abducible atoms represent actions, the
integrity constraints generalise condition-actiales.

Here we define a simplified variant of ALP thatlie basis for the LPS operational
and model-theoretic semantics. For this purposeesict the integrity constraints to
implications of the forntondition — conclusionwhereconditionandconclusionare
conjunctions of atoms, and all the variables odngrin condition are universally
quantified over the implication, and all variabteurring only in theeonclusionare
existentially quantified over theonclusion Thus the implication customer(C) —
status(C, S)stands for the quantified sentenceC[customer(C)- //S[status(C, S)]]-

Definition 6. Given an ALP framework s, Ab, IC> and a goal clausgé (which can
be the empty clauses solutionis a set of atomic sentencdsn the predicates\b,
such that boti€ andl C are true in the minimal model bfd A.

This semantics is one of several that have begpoged for ALP and for integrity
constraints more generally. It has the advantageittextends naturally to provide a
semantics for production rules in LPS. The follogvjpproof procedure for ALP, which
extends SLD-resolution, also provides a naturalsbfis the LPS cycle. To ensure
that4, below, is a set of atomic sentences, the seleétioction must be restricted so
that when it selects an abducible atbrthenL is ground (contains no variables). We
call such a selection functicsafe (by analogy with the terminology “safe selection
function” for logic programs with negation).

Definition 7. Given an ALP framework I, Ab, IC>, safeselection functiors, and

initial goal clauseC,, an ALP-derivation wrt s, is a sequence of pairds Co>, ...,

<4, C;>, whered, = {} and C, is the empty clause}, = 4,1 and for alli, 0<i <n-

1, <4.4, Ci.,>is obtained from 4, C;> by the following steps:

ALP1. For every instanceondition ¢ —» conclusions of an integrity constraint in
IC such thatonditione holds inL O 4, add the conjunction of atoms
conclusiors to C. Let C* be the resulting goal clause.

ALP2. LetL =s(C*). If L is not abducible, the@;., is the SLD-resolvent dE;* with
some clause ih and4.; = 4. If L is abducible and O 4 thenCi,, is the SLD-
resolvent ofC;* with L and4,,; = 4. If L is abducible andl O 4 thenC,,; is the
SLD-resolvent ofS* with L and4..; =4 O {L}.

The condition C, is the empty clausand4, = 4,," is needed to ensure that, not only

are there no more goals to solve, but there aréurtber instances of the integrity

constraints that need to be made true. Note thidasity between ALP1 and PS1.

The verification thatcondition ¢ holds inLOA4 can be performed in different
ways, for example by showing there is an SLD déigveof conditions from LOA4.
Alternatively, the addition of an abducible atomd4o can be used to “trigger” the
conditionby forward reasoning, and the remaining conditicaus then be verified by
backward reasoning.

To ensure ALP1 and ALP2 fully instantiate the @msally quantified variables of
integrity constraints, and to ensure that the attdei@toms irL andl C can always be
made safe for selection, the abductive framewotkiaitial goal clausé, have to be
range-restricted We will define a similar restriction for LPS lat@he proof of the
following theorem can be adapted from the prootlifer IFF proof procedure [7].
Theorem 3. Soundness and Completenedset <L, Ab, IC> be a range-restricted
ALP framework andC, a range-restricted goal clause. If there existsAaR-
derivation<{}, Co>, ..., <4, {}>, then Cy andIC are true in the minimal model of

LOA,. If there exists a sed of atomic sentences with predicatesAin such thatC,
andIC are true in the minimal model &ff14, then for every safe selection function
there exists aALP-derivation <{}, Co>, ..., <4, {}> where 4,04.

LPS is based on ALP agents [10], which embed AbRn observation-thought-
action cycle, in which abducible atomspresent observations and actions. Integrity
constraints give the reactive behaviour of condigation rules. The ALP agent cycle
generates a sequence of actions in the attempake iem initial goal and the integrity
constraints true in the agent’s environment.

In ALP agents, the agent's environment is an esterdestructively changing
semantic structure. The sdt on the other hand, is the agent’s internal regmeegion
of its interactions with the environment. This imi@l representation is monotonic in
the sense that observations and actions are timnepstd and state representations are
derived by an action theory, such as the situaiioevent calculus. In contrast, in both
production systems and LPS, the environment isIgitex by an internal destructively
changing representation. In LPS this representascsssociated with a Kripke-like
model-theoretic structure.

3 LPS — A Logic-based Production System Framework

Like ALP agents, LPS combines logic programs angkgrity constraints, and

represents actions by abducible atoms. Moreoues,the ALP agent cycle, the LPS
cycle generates actions in the attempt to makenigialigoal and the set of integrity

constraints true. However, unlike ALP agents, whigde an internal, monotonic
representation of states, LPS uses destructivegramsint to maintain an internal
representation of only the current state. In bottPAagents and LPS, if the cycle
terminates successfully, then the actions anddtadityy of all the states generated by
the cycle determine a model of the initial goal amegrity constraints. This model is
analogous to a Kripke model, in which the individsiates are like possible worlds.

Definition 8. An LPS frameworks a tuple <V, P, L, A, Wy, Gy >, where

e Vs itself a tuple A, M, E, I, O,<, <, initiates, terminates, precondition>

dividing the vocabulary of. and P into predicates representing atomic actiédgs

macro-actionsM, extensional predicatek, directly affected by atomic actions,

intensional predicatels indirectly affected by changes to the extensigradicates,

and “ordinary” stateless predicat®snot affected by change of state. In addition, the

vocabulary contains the inequality predicateand < to compare states, the special

predicatesinitiates and terminates which represent the effects of actions on the

extensional predicates, angrecondition which represents the preconditions of

actions. LeAFTbe theseAOMOEDO | 0 OO {<, <}. Only the predicates iIAFT

can occur in rules and clauses. The other predicateused for state transitions.

» Pisa set of condition-conclusion rules

* L is a set of Horn clauses, made up of five disjsimidsetd gaaesss Lram: Lpians
Liemps Lmacro, defining stateless predicates, intentional piges plans, the
inequality predicates, and macro-actions, respelgtiv

 Ais aset of Horn clauses, calladtion clausesmade up of two disjoint subsets
Age andAg.g, defining preconditions and postconditions ofa, respectively.

W, is a set of atomic sentences, in the predicatés of

* Gy is a set of goal clauses whose predicates betAFT.

Given such a framework, the LPS cycle, defined weldetermines a sequence of

state transitions Wy, Go>, ag, ..., <W,, G>, a..., where theg represent actions, the

W, represent the successive states of the datababéhes; represent the successive
states of the goals. The cycle terminates sucdbssfustaten, if G, contains the
empty clause. In this case, the sequence of stagsctiondNg, ag, W1, &, ..., W,
augmented with the clauseslifees 0 Lram O Lignp 0 Linacro determines a minimal
modelM, in whichG, andP are true. Here we give greater detail:

V - the vocabulary. For clarity in the LPS cycle, except for facts lre tdatabase
statesW,, the extensional, intension and atomic and mactiom predicates have a
single explicit state argument, which we write as thest largument. We sometimes
use the notatiop(t) to refer to an atom with state argumer{tepresented by non-
negative integers or variablds T;, T,) when the other arguments of the atom are
irrelevant to the discussion.

This state argument is always a variablé&y the rules inP and the clauses in
andA. Moreover, different occurrences of state varialatethe same rule or clause are
so highly constrained that they could easily be engwplicit. For example, all state
arguments in clauses in,, andA are a single (universally quantified) variable.

On the other hand, the state variables and indpsaln Gy, in the conclusions of
rules inP and in the conditions of clauses iR, and Lmaeo are needed only to
indicate the order in which actions and goals arbe achieved. These variables and
inequalities could be made implicit, by employingyatax in which the intended order
of achievement is indicated by the order in whiod goals and actions are written.

Whether states are implicit or explicit, we impake restriction that no two
actions (whether fromA or M) have the same state argument. This is because, fo
simplicity, the LPS operational semantics execatemgle action in each cycle/state.

W, - the database. W, is a set offacts representing the current state of the
database. These correspond to the extensionakptediof a deductive database, e.qg.
customer(john-smith), spent-to-date(john-smith,)5@8&cause the transformation of
W, into Wi, is implemented by destructive assignment, thesfatlWV, are written
without state arguments. This means that facts trat not affected by the
transformation simply persist without being copiexplicitly from one state to the
next. However, for the model-theoretic semantics, to domlall the states into a
single model, the facts i, need to be understood as containing the implieites
argumeni. We use the notatiow*; when we need to refer to facts containing explicit
state arguments: W*; = {p(i) : p O W}.

A — the action clausesThe clauses i are divided into clause,. defining the
preconditions of actions and claus@g.y defining the post-conditions of actions.
Unlike the clauses ih, the clauses i\ do not contribute to checking the conditions
of rules or to the reduction of goals to subgo@ley have the form:

initiates(a, p, T)— init-conditions(T)

terminates(a, p, T term-conditions(T)

precondition(a, q, T} pre-conditions(T)
where a represents an atomic actiop,represents an extensional predicate gnd
represents any predicate Bt 0 | 0O O. The conditionsinit-conditions(T), term-
conditions(T)and pre-conditions(Tare (possibly empty) conjunctions atomsin the
predicate€€ 0 | O O. Each clause iA contains a single state variable. For example:

initiates(take-payment(X, 1D, Value), spent-to-@&teNew), T)

spent-to- date(X, Old, T), New = Old + Value.

terminates(take-payment(X, 1D, Value), spent-te@&tOld), T)~

spent-to-date(X, Old, T).

An actiona can be executed in stafé provided that for alf), if precondition(a,
g, i) holds inW*; 0 Ay e O Lyadess I Lyam theng holds inW*; O Lgagessd Lram-
Since W*; O Apre O Lgadess O Lram @nd W¥i O Lgatdess J Lram. are sets of Horn
clauses, the notion dfolding can be understood equivalently either in termiwh
in the associated minimal model, in terms of thistence of an SLD-derivation, or in
terms of any other complete proof procedure forrHdausesThe execution of a
updates the state of the databadé;; = (W, — delete(a)] add(a)
where delete(a) = {p: terminates(a, p, Jolds inW*; 0 Apog O Leatetess O Lram}
add(a) = {p:initiates(a, p, i) holds in W*; O Apest O Lsatetess O Lram}-
Not every action needs to initiate or terminateatate facts. In particular, we can
have external actions, as in RIF-PRD, which havenpact on the database.
G -the goal statesG; is a set of goal clauses, each of which can berdegl as
apartial plan for achieving the initial goal&, and the additional goals generated by
the cycle so far. The intention is that, for ev€yone of the goal clauses @ should
be true in the model that is generated by the YR& G, can contain only the empty
clause, as is typical of production systems. Tleglipates irG; all belong toAFT.
P —the rules. The setP of rules has the same forrondition- conclusionand
the same implicit quantification as ALP integritgnstraints, where botbondition
andconclusionare conjunctions of atorhsThe predicates in theonditionbelong toE
01000 A, and the predicates in tkenclusiorbelong toAFT. For example:
customer(X, T), login(X, B> welcome(X, T), ¥T’
customer(X, T), checkout(X, T), shop-cart(X, |BIU&, T)—
take-payment(X, ID, Value, T1), confirm(X, ID, MaIT2), T<T1, T1<T2
All atoms in thecondition with predicates belonging t O | contain a single state
variable, sayl. Theconditioncan also include a single atom representing dorait
A of the forma(T-1). This allowsP to include a kind of action-condition-conclusion
rule. All state variables in theonclusionrefer to states later than or equalTioas
indicated by inequalities among state variablesétonclusion
L - the clausesThe set of clausels is made up of four disjoint subsetg,gess,
Lram, Lpian, Liemp- The setlgaaess CONSists of clauses not containing state arguments,
with all predicates fron®. For examplesimilar(X, Y)« cd(X), dvd(Y)
L.am defines intensional predicates, which are rantifices of the extensional
predicates. For example :
status(X, gold, T3 spent-to-date (X, V, T), 580
status(X, new, T spent-to-date (X, V, T), V <500
Herespent-to-datés an extensional predicate, which changes dirextlthe result of
actions, such amke-paymentandstatusis an intensional predicate, which changes as
a ramification of changes to the predicafgent-to-dateln general, clauses ibqy
have the fornconclusion— conditionwhereconclusionis an intensional atom ih
and the atoms igonditionare all extensional, intensional or state-indepahétoms
in EO 1 O O. The clauses ih,4y, contain only a single state variable.
Lyan represents plans for achieving future states efdétabase, including plans
similar to those in AgentSpeak(L) [11]. For example
quenched-thirst(T5+1)- go-to-fridge(T1), open-fridge(T2), get-drink(T3),
open-drink(T4), drink(T5), T1<T2, T2<T3,¥34,T4<T5
In general, clauses ihpa, have an extensional predicate in the conclusiom a
predicates fromAFT in the conditions. States in the conditions arestramed to be

2 Later we will see that, to deal with conflict réstion, we allow negative conditions in rules.

earlier than the state in the conclusion. The d@m$ must have one action whose
state is immediately prior to the state in the dasion.

Liemp defines the inequality relations. These clausesaggled only to check that
one state comes before another. Therefore any defahition will serve the purpose
including, for example:

0<I+1 | <J <1<
[+1<J+1 1< l £J~1=J
L macro defines the macro-actions. Claused jpq, have a predicate from in the
conclusion, and predicates froAFT in the conditions. States in the conditions are
constrained to be earlier than or the same adale is the conclusion. The conditions
must have one action (froA or M) whose state is the same as the state in the
conclusion. For example:
welcome(X, T3 status(X, new, T), promotional-item(Y, T), offer{XT)
welcome(X, T3 status(X, gold, T), promotional-item(Y, T), prefX, Z, T),
similar(Y, Z), offer(X, Y, T)
In the LPS cycle, the state argument of an ac8always a variable when it is chosen
for execution. Otherwise, all of its other argunsenéed to be variable-free. This is a
generalisation of the safety requirement of ALP.atidition, the selection function
needs to beimely in the sense that, when an action is selectedgdia clause in
which it occurs contains no other atoms that nedibtsolved or executed earlier.

Definition 9. A selection function isafeif and only if, when it selects an action, the
action is ground except for state variables; anderwit selects an inequality, the
inequality is groundA selection function igimely if and only if, when it selects an
action a(t) in a goal clauseC, then C contains no other atom whose state is
constrainedo be before or the same @si.e. no other atom of the forp(t), no pair
of atoms of the fornp(t’), t' <t and no pair of atoms of the forp(t’), t' <t.
To ensure the existence of safe selection functaorts to ensure that quantifiers in
rules are correctly interpreted, LPS frameworksdneebe range-restricted. We define
range-restriction after the LPS cycle.

The operational semantics is a synthesis of theyel® and ALP derivations.

3.1 The Operational Semantics

Definition 11. LPS cycle:Given a range-restricted LPS framework/<P, L, A, W ,
Gy >, a safeselection functiors, and search strategdy, the LPS cycle determines a
sequence of state transitiond/s; Go>, &, ..., <W,, G;>, a....where for all i, i, &
and WV, Gi,1> are obtained fromg.; and WV, G;> by the following steps:

LPS1. For every instanceonditions — conclusiors of a rule inP such thatondition
o holds inW¥; [0 {&.1} 0 Lgateless J Lram, @ddconclusione to every clause ifs;.
Let G be the resulting set of goal clauses.

LPS2. Using the selection functios and search strategy, let Gi.; be a set of goal
clauses, starting fror@; , derivable by SLD-resolution using the clause$vin 0
{1} O Lgaeless I Lram O Lpan O Liemp Such that eithe6;,; contains the empty
clause or G;;; contains at least one clause whose selected lisee executable
action. (Recall that an action is executable siesWV, if and only if all the
preconditions of the action hold in the currentesda

e If there is no sucl®;., then the cycle terminates unsuccessfully. (Noté tha
SLD-resolution might loop without generating a séde executable action, in
which case unsuccessful termination is non-consueiy
« If G, contains the empty clause a@® = G, then the cyclderminates
successfullandW,,; =W,

LPS3. If the cycle does not terminate in step LPS2, thera(t) be the selected,
executable action in a goal clausedn; chosen by the search stratégy(Note
thata(t) might have been generated and selected in areeayitle, but not have
been executable before. Moreover, even if it wéscsaed and executable before,
the search strategy might have chosen some ottienac

LPS4. The chosen action is executed, lettiag= a(i). The current state of the
databaseW, is updated toW,.;, by destructively deleting the old facts in
delete(a(i))andadding the new facts add(a(i))

Range-restriction. The following definition generalises the definiticaf range-

restriction for normal logic programming and ALP:

Definition 10. An LPS framework V, P, L, A, Wy , G, > isrange-restrictedf and

only if all rules inP and all clauses ih, A andG, are range-restricted, where:

* A goal clauseC in Gy (and more generally any conjuncti@hof atoms in the

predicateAFT is range-restricted if and only if every variablecurring in an atomic

action atom inC, except for state variables, occurs in an ator@ iwhose predicate

does not belong tA O {<, <}, and whose state is not constrained to be #ite state

of the action, and every variable in an inequdlitith predicate in €, <}) occurs in a

non-inequality atom of.

» A clauseconclusion— conditionsin L is range-restricted if and onlyébnditions

is range-restricted and every variabledmclusionoccurs inconditions.

* A clauseconclusion« conditionsin A, whereconclusionis initiates(a, p, },

terminates(a, p, t)pr precondition(a, p, t)js range-restricted if and only if every

variable inp occurs either ionditionsor in a.

* A rule condition — conclusionin P is range-restricted if and onlyéfvery variable

occurring in an atomic action atom @onclusion except for a state variable, occurs

either in thecondition or in an atom in the&onclusionwhose predicate does not

belong toA O {<, <}, and whose state is not constrained to ber dfte state of the

action, and every variable in an inequality (witleglicate in £, <}) occurs in a non-

inequality atom in the rule.

Derivation versus search.Both ALP and LPS generate a sequence of paired
database and goal states — of the fouly €> in the case of ALP, and of the form
<W,, G> in the case of LPS. However, ALP derivations ideluwonly inferences
necessary to solve the initially given problem, velas the LPS cycle also includes a
search for the solution, determined by the sedraltegy) .

The cycle granularity. To maximise similarity with the PS cycle, excémt the
last transition of a successfully terminating cydhe transition from one statef
G;> to the next Wi.,,, G;.1> is determined by the execution of an action. Assallt, a
single iteration of the cycle needs to perform adeterminate number of SLD-
resolution steps until a selected action becomescwable and is chosen for
execution. A single action in LPS typically invotvéhe deletion and addition of
several facts. In PS, each such deletion and addgia separate action.

Notice that for the shopping example, it would Iseful to allow input actions by
customers. It is easy to extend the LPS cycleltwasuch external input actions, so

that the transition from one state to another tetbm the collective effects of these
and the internally chosen action. We omit the ¢&efar lack of space.

The selection function and choice of actions to bexecuted. There is no
requirement that an action must be selected # éxecutable. In fact, the selection of
an executable action can be delayed, to plan figoaés, Nor is there any requirement
that an action that is selected and executabléhbsen for execution. This is because
several such actions might be executable in thesearation of the cycle.

The evaluation of conditions of rules and clauseis A. In LPS1, an instance
condition s — conclusiong of a rule inP is fired whenconditions holds inW*; [
{a1}0 Lgades d Liam- Here “holds” means thaonditions is true in the minimal
model of W*; 0 {a.; }0 Lgaeess 0 Lram- TO ensure that truth can be verified
effectively, we have restricted the form obndition to conjunctions of atoms.
However, if the minimal model is finite, then thsstriction can be liberalised, and
conditioncan be any sentence of first-order logic. Thereraa@y simple, syntactic
restrictions, such as Datalog, that can be impdsegliarantee finiteness. Similarly,
the syntax of the conditions of clausedigan be liberalised for the same reason.

3.2 Conflict Resolution

Unlike the PS cycle, the LPS cycle does not perfexplicit conflict resolution.
Instead, it uses the selection function, to seqeegguals, and the search strategy, to
choose among the alternative ways of solving gaald sub-goals. However, like
conflict resolution in production systems, the exem of an action in LPS is a
committed choicefrom which there is no backtracking.

Production systems use conflict resolution to deaihich rules should be fired
when several rules are fireable. In contrast, L&&do its goals the conclusions of all
instances of rules whose conditions hold in theenirstate. This feature of LPS is
necessary for the model-theoretic semantic, torerthiat the rules i will be true in
the model determined by the LPS cycle.

As a consequence, conventional ways of writingdpation rules are not always
acceptable in LPS. Consider, for example, the priodiu rules:

Someone-attacks-me attack-them-back

Someone-attacks-merun-away
Both rules are fireable in a state in whisbhmeone attacks mén conventional
production systems, conflict resolution would beegsary to fire only one of them.

However, in the same situation in LPS, both rulesuld fire and both actions
would need to be executed. To obtain the effeatanfflict resolution, LPS would
need to rewrite the two rules, making their intahdggher-level goal and the
alternative ways of achieving it explicit. For exalen(with explicit state variables):
InP: someone-attacks-me(F) protect-myself(T’), T’

In Lpjan: protect- myself(T+1)— attack -them -back(T)
protect myself(T+1)- run-away(T)
More generally, to obtain the effect of the productules:

C — Al C — A2
where the intention is that, wh&his true, then one of the actioAs or A, should be
made true in the future, rewrite the rules in threrf:

InP: CM - G(M), T=sT
IN Lpjan: G(T+1) — A(T) G(T+1)«— A(T)

There are also other, less problematic cases,end@flict resolution can be dealt
with simply by assigning different priorities toetlules. In the particular case where
the rules are written in order of priority:

C -G G -G G - G,
the effect of conflict resolution can be obtainad . PSby adding extra conditions to
the rules:

C(T) - G(T), T=T Cy(T), not G(T) - G(T"), TsT

Cy(T), not G(T),..., not Gy(T) - G|(T"), TsT
Notice that this is a case where we need the lisateon of the syntax of the
conditions of the rules iR, discussed at the end of the previous section

There is also a more problematic case, where cbméisolution is used to deal with
refraction to prevent the same rule from firing repeatedlgew its conditions
continue to hold in successive states. For exantperule
customer(X,T), online(X,B present-advert(X, T'), €T’
will fire repeatedly in all states in which the dition online(X,T)continues to hold.
If required, this can be avoided by replacing tindine condition by the action (or
event) that initiates it, in this case obtaining thle
customer(X,T), login(X,T) present-advert(X, T'),ET’

More generally, to avoid firing the same rule C(M-G(T), T=T
unnecessarily, replace it by A(M-G(T), =T,
whereC(T) is an extensional predicate aimdtiates(A, C, T)A similar approach can
be used whe@(T) is an intensional predicate. Dealing with refractby representing
it in an appropriate formulation of the rules hhs advantage that different policies
regarding refraction can be combined in the sanpdicgion.

3.3 Model-theoretic semantics

The setS of sentence®V*, O ...0 W¥; O...{@ay, ..., & ...} O Lateless 7 Lram O Ltemp O
Lmacro IS @ Horn clause logic program. Therefdehas a unique minimal modi.
This model is like a Kripke structure of possiblerteds M= W*; 0 Lgateless /7 Lram O
Liemp 0 Limacro €mbedded in a single modd, where the actionsaj, ..., g, ...} are
like the transition relation from one possible wddid another.

Soundness. To prove the soundness of the LPS cycle, thesrmé ., need to be
compatible with the action clausesAn
Definition 12. Lyan is compatiblewith A if every clause ifpa, has the form :
p(T+1) < init-conditions(T), other-conditions, a(T)

where initiates(a, p, T)x— init-conditions(T)is an instance of a clauseAn p(T+1)
may have other arguments, aoither-conditionsare any other conditions respecting
range-restriction.

It is easy to satisfy this condition, and all th@mples in this paper, if done in full
will have this property. Note that we can plan tchiave intentional atoms by
combining such clauses iny,, with clauses i .

Theorem 4: Given a range-restricted LPS frameworl/sP, L, A, W, , Gy >, safe
selection functiors, and search strategy, if the LPS cycle terminates successfully
andLya, is compatible wittA, then some clausg, in Gq is true inM and all the rules
in P are true inM.

Sketch of proof: If the cycle terminates successfully, then sdBjecontains the
empty clause an6,.." =G,... The proof of this empty clause can be traced bandsva

to a sequence of clauses, starting with s@er G, : Cp ,...,G,Cn = {}, where
Ci+1 is obtained fronC;in one of two ways:

1) G, is G conjoined withconclusions for every instanceondition o —
conclusioneg of a rule inP such thatcondition ¢ holds inW*; O {a.} O
I—sta're!&aslz| I-ram-

2) Ci, is obtained by SLD-resolution betwe&n and some clause W*; [0
{ai-l} U Lstate!as U I—ramD |-plan 0 I-temp 0 Lmacro-

It suffices to prove theemma: All the C; are true inM. The lemma implies tha&i, is
true inM. Together with the conditio®,.; =G,.;, the lemma also implies that all the
rules inP are true irM.

Proof of lemma: The lemma follows by induction, by showing bassed@,, = {}
is true inM and induction step i€, is true inM, thenC; is true inM. The base case
is trivial. For the induction step, there are two cases: |le ¢agbove, iCi,; is true in
M, thenC;is true inM, because if a conjunction is true then so arefats conjuncts.

In case 2 above, the clauggs; andC; are actually the negations of clauses in
ordinary resolution. So, according to the soundmméssrdinary resolution, 6, is a
logical consequence ofCrandC. Therefore, if bothC andCi,; are true irM, thenC;
is true inM. But any claus€ in W*; 0 {&.1} 0 Lgadess 0 Lram 0 Liemp 0 Limacro iS
true inM by the definition ofM. It suffices to show that all clauseslip,, are also
true inM. But this follows from the compatibility dfy,, with A.

Completeness.Following the completeness results for ALP, it niigh expected that
a similar completeness result would hold for LP&e@ a minimal modeM of some
clauseC, in Gy and of all the rules iR, it might be hoped that there would exist some
search strategy that together with the LPS cycle could generataescelated model
M’, possibly determined by a subequence of the astif M. Unfortunately this is
not always possible. The LPS cycle will not geremabdels that make rules true by
making their conditions false. For example:

P.q-a A: terminates(b, q) Wy : {q}
Herea andb are actions, and we ignore states for simplicifyere is a minimal
model corresponding to the sequence of actimng, but the LPS cycle can only
generate the non-terminating sequence a, a, ...

4 Related and Future Work

LPS combines production rules and logic programth vei destructively updated
database, and gives this combination a model-tie@emantics. To the best of our
knowledge, both of these contributions are novelsdRid[12] considers a restricted
kind of production rules and translates them ittatsied logic programs. She shows
that the final state of the production system cyglielentical to the minimal model of
the associated logic program. However, the modglddinal state of the cycle, rather
than as in the LPS case the totality of all théest@generated from the initial state to
the final state.

Other systems more closely related to LPS have begeloped mainly in other
fields, such as logic programming, active databases intelligent agents. EVOLP
[1], in particular, gives a model-theoretic semesitio evolving logic programs that
change state destructively over the course of tleaiecution. Several authors,
including [6] obtain a model-theoretic semantics for event-camtliaction rules in
active database systems, by translating ruleslagic programs with their associated

model theory. Metatemgb] on the other hand, is a programming language with a
Kripke semantics for modal logic sentences reserghpiroduction rules. The Bonner
Kifer Transaction Logic [2hives a Kripke-like semantics for macro-actionsjolilis
similar to that of LPS.

LPS is based on ALP agents, but differs in its abe destructively changing
database. Unlike ALP agents, LPS does not genactitss to terminate conditions of
production rules. However, Dung and Mancar¢Bh address a related problem of
allowing future actions to affect the conditions moduction rules. They give the
resulting production system an argumentation seicgant

Perhaps the most important direction for future kvier to harmonise and unify
related work in production systems, active databased intelligent agents, all of
which employ rules in a cycle that generates aesecpiof database states. LPS, based
on ALP agents, is a contribution to this unificatioHowever, further work is
necessary both to extend the database to includenek updates, and to investigate
further the problem of completeness. We are cugreviirking on an implementation.

Acknowledgments.We are grateful to Ken Satoh, Luis Moniz Perditatold Boley,
Thomas Eiter and Keith Stenning for helpful diséoiss.

References

1. Alferes, J., Leite, J., Pereira, L.M., Przymusindka& Przymusinski, T.:Dynamic Updates of
Non-Monotonic Knowledge Bases, J. of Logic Prograng5(1-3):43-70 (2000)

2.Bonner and M. Kifer.: Transaction logic programming Warren D. S., (ed.), Logic
Programming: Proc. of the 10th International Ca2$.7-279 (1993)

3.Dung, P. M. Mancarella, P.: Production Systems Wi#lgation as Failure, IEEE Transactions
on Knowledge and Data Engineering, Vol 14; 2, 33@-(2002)

4.van Emden, M. and Kowalski, R.: The Semantics agfdiate Logic as a Programming
Language, in JACM, Vol. 23, No. 4, 733-742 (1976)

5.Fisher, M.: A Survey of Concurrent METATEM - The nguage and its Applications.
Lecture notes in computer science, 827, Springeiay€1994)

6.Flesca, S. and Greco, S. Declarative semanticadiive rules. Theory and Practice of Logic
ProgrammindlL (1): 43-69, (2001)

7.Fung, T.H. and Kowalski, R. : The IFF Proof Prasedfor Abductive Logic Programming.
J. of Logic Programming (1997)

8. Kakas,T., Kowalski, R., Toni, F.:The Role of Logicogramming in Abduction, Handbook of
Logic in Artificial Intelligence and Programming 6&xford University Press, 235-324 (1998)
9. Kowalski, R.: Predicate Logic as Programming Lamgyain Proceedings IFIP Congress,

Stockholm, North Holland Publishing Co., 569-57974)

10. Kowalski, R. and Sadri, F.: From Logic Programmiaogiards Multi-agent Systems, Annals
of Mathematics and Artificial Intelligence , Volw®25, 391-419 (1999)

11.Rao, A.: Agents Breaking Away, In Lecture Notedntificial Intelligence, Volume 1038,
Springer Verlag, Amsterdam, Netherlands (1996)

12.Raschid, L.: A Semantics for a Class of Stratiffrdduction System Programs. J. of Logic
Programming. 21(1) (1994)

13.Russell, S. and Norvig, P.: Atrtificial IntelligencA& Modern Approach (2nd ed.), Upper
Saddle River, NJ: Prentice Hall (2003)

14.Simon, H.: Production Systems. In Wilson, R. and,Ke (eds.): The MIT Encyclopedia of
the Cognitive Sciences. The MIT Press. 676-678919

15. Thagard, H.: Mind: Introduction to @aitive ScienceSecond Edition. MIT Press (2005)

