From Logic Programming towards Multi-agent systems

Robert Kowalski and Fariba Sadri
Department of Computing
Imperial College, London, UK
rak, fs@doc.ic.ac.uk

Abstract

In this paper we present an extension of logic nogning (LP) that is suitable not only for
the "rational” component of a single agent but &sdhe "reactive” component and that can
encompass multi-agent systems. We modify an eattiductive proof procedure and embed
it within an agent cycle. The proof procedure ipayates abduction, definitions and integrity
constraints within a dynamic environment, wherenges can be observed as inputs. The
definitions allow rational planning behaviour ahe integrity constraints allow reactive,
condition-action type behaviour. The agent cyclevjates a resource-bounded mechanism
that allows the agent's thinking to be interrugtadhe agent to record and assimilate
observations as input and execute actions as quipiare resuming further thinking. We
argue that these extensions of LP, accommodatiritrtheories embedded in a shared
environment, provide the necessary multi-agenttfanality. We argue also that our work
extends Shoham's AgentO and the BDI architecture.

Keywords: Logic based agents, agent cycle, integohstraints, reactivity, rationality.

1. Introduction

In the 1980s logic programming (LP) was widely véglas providing a new foundation for
Computing. In particular, the Fifth Generation Radjin Japan identified concurrent LP as the
core software technology, to implement knowledgerisive applications on highly parallel
computer architectures. Prolog, a sequential vaaabP, was the rising star among
computer languages, especially for Al applicati@rg] many of us expected deductive
databases, a database-oriented form of logic pmogiag, to provide the basis for the next
generation of database systems.

These expectations were not fulfilled. Concurregid programming failed to solve the
problems of the Fifth Generation Project; Prologame a niche language and was
overshadowed by C++ and Java; deductive databasesumnable to displace relational
databases and to compete with the rising fashioolject-oriented databases. Indeed, object-
orientation, rather than LP, has become to be as¢he new unifying paradigm for all of
Computing.

Although LP may not have fulfilled its wildest exgpations, it has nonetheless achieved a
number of important successes in areas such aga@on$ogic programming, inductive logic
programming, knowledge representation (includimggderal, metalevel, non-monotonic and
abductive reasoning) and logic grammars.

In this paper we will try to identify some of thefitiencies of LP viewed as a comprehensive
foundation for all of Computing. We will argue, particular, that the main problem of LP is
that it is suitable only for the "rational" componef a single agent; whereas, to be fully
comprehensive, LP needs to be extended to acctauntoa the "reactive” component of
agents and to encompass multi-agent systems. Thesgon to multi-agent systems, in

particular, arguably brings to LP the main beneditsbject-orientation, including
encapsulation.

Building on earlier extensions of LP, we will prasan outline of such a more
comprehensive foundation. We will argue that exterssof LP, such as abductive LP,
incorporating integrity constraints, provide theegsary reactivity; and extensions of LP, in
which agent programs are embedded in a sharecbenvemt, provide the necessary multi-
agent functionality. As a by-product of these egiens, we will obtain a form of LP, in
which input-output and change of state of the emrirent are justifiably non-declarative.

Although we do not discuss implementation and igfficy issues in this paper, we believe
that non-declarative change of state allows a fokiogic programming with destructive
assignment, which is potentially more efficientrthurely declarative logic programming.
There have been a number of implementations oéxtended logic programming system,
most notably the one reported in [4].

The paper is structured as follows. In section Zescribe an abstract agent cycle. In section
3 we describe in detail the representation of thentis beliefs and goals. In sections 4, 5, and
6, respectively, we describe the semantics, thefgmmcedure and a unified agent cycle that
combines reactivity with rationality. In sectiongd 8, respectively, we discuss the
correctness of the cycle and the model of interaged agent-environment communication.
In sections 9, 10 and 11 we compare our work VhighRao-Georgeff BDI (Belief-Desire-
Intention) architecture, Shoham's AgentO and séwthar approaches. Finally section 12
concludes the paper and outlines future work.

This paper expands upon [12] in two important retpd-irst, it treats "observations" as a
special kind of belief, different from beliefs thae represented by means of logic programs.
In [12], observations were incorrectly treated aalg. Second, it argues that the agent
architecture subsumes the functionality of the Bawrgeff BDI architecture [18] and
Shoham's AgentO [21].

2. The observe-think-act agent cycle

LP, in its narrowest sense, concerns itself ontwie thinking component of a rational
agent. Interactions with the environment are lichite inputs that are goals to be solved and
to outputs that are solutions to goals.

The deductive database incarnation of LP, on therdtand, is also concerned with more
general inputs including updates. Techniques haea lolevised for assimilating updates and
in particular for verifying that updates satisfyagrity constraints. These include those of
[19,17]. Knowledge in such deductive databasesiistijpned into logic programs, which
define the data, and integrity constraints, whighstrain the data.

However, compared with intelligent agents and witbedded computer systems, the outputs
of deductive databases are restricted to answqtiages and to accepting or rejecting
updates. They do not encompass the performancemf general actions, such as sending
messages or activating peripheral devices. Sugiutsitan be obtained, however, by the use
of active rules of active database systems.

Independently of developments both in LP and indét@base field, the notion of intelligent
agent has begun to provide a more unified and iw@inerent approach to problems in the
field of Artificial Intelligence (Al).

The behaviour of an intelligent agent can be chiarsed in abstract, simplified terms as a
cycle:

Tocycleat time T,

observe any inputs at time T,

think,

select one or more actions to perform,
act,

cycleat time T+n.

Heren is the amount of time taken for a single iteratdnhe cycle. In a realistic situation, the
value ofn would vary from one iteration of the cycle to dmat as would the distribution of the
value ofn between the various components of the cycle.

If more than one action is selected for performatieen conceptually they may be viewed as
being performed in parallel.

In this formulation, the four components of theleyobservation, thinking, selecting actions
and performing actions, are treated as taking ptasequence. However, it is also possible to
formulate them as concurrent processes. The cardysrocess formulation of the cycle is
more general and more flexible than the sequevgiaion. However, for simplicity, we will
employ the sequential formulation in the remairafehis paper.

Different types of agents and different approadhesl differ in the way in which they define the
various components of the cycle. In this paperwieargue that the functionality of many of these
approaches can be obtained as special cases dbaruagent architecture, in which thinking
combines reasoning with both logic programs anegirity constraints. We will argue, in particular,
that the behaviour of Shoham's AgentO [21] andBb&[18] agent architecture can both be obtained
as such special cases.

3. The thinking component of the unified agent architecture

The thinking component of our agent is a proof pthee which is a variant of [6, 7]. It
combines backward reasoning by means of abdudgie programs with forward reasoning
by means of integrity constraints. The originalgirprocedure was developed with the aim of
unifying abductive logic programming (ALP), constitalogic programming (CLP) and
semantic query optimisation in deductive datab&S€¥D). Our variant allows the proof
procedure to run within a dynamic environment, vehgranges in the environment (including
communications between agents) can be observeghatsi

The set of predicates is partitioned into four sts

e "closed" predicates defined by a set of definitionif- form

* "open" predicates representing actions that cgrebfiermed by the agent

e "open" predicates representing events that happtreienvironment and
actions of other agents

e "constraint predicates such as = and <.

Open predicates are more commonly referred toledutables". The terminology "open
predicates” is due to Denecker and De Schreye [6].

Theinternal state of an agent consists of:

1. Beliefswhich areff-definitions for closed predicates

2. Beliefs which are observation®cording positive and negative
instances of open or closed predicates
3. Goalsinif-thenform, representing
¢ commands
e queries
» obligations and prohibitions
* integrity constraints
» condition-action rules
e commitment rules
e atomic and non-atomic actions that can be perfornyetthe agent.

It is probably this use of "goals"”, to represerdtsaonceptually diverse objects, that is the
most controversial feature of our agent architectur

Compared with the BDI model of intelligent ageng @do not have a separate component for
intentions In terms of our agent model, intentions wouldab@mic and non-atomic actions
that the agent is committed to perform in the fetWe could modify our model to
accommodate such intentions by extending the $eteof an action to perform so that it
selects an entire conjunction of actions to bequeréd in the future. Such an extension
would be especially useful for multi-agent systewisere agents might communicate their
intentions in order to harmonise their interactions

In the remainder of this section we define the aymif beliefs and goals formally and
illustrate it by means of examples.

3.1 Beliefs represented by logic programs in iff-form

Example 3.1

explore iff [clear& forward& explorg or
[obstaclef right & explorg or
[can-not-se& park

This example defines the closed predicate "exployetheans of a tail-recursive logic
program. The definition reduces the goal of expigtio the subgoals of moving forward and
continuing to explore if it is clear ahead , othe subgoals of turning right and continuing to
explore if there is an obstacle ahead, or to tihgaal of parking if it cannot see ahead.

Example 3.2

explore(T1, T2) iff [clear(T1)& forward(T1+1)& explore(T1+1, Td)or
[obstacle(T1g right(T1+1)& explore(T1+1, TA)or
[can-not-see(T1& park(T2)& T2=T1+]

Here the predicates have time parameters. A naniataction predicate, such as "explore",
has two time parameters, standing for the staresadimes of the action respectively.
Atomic action predicates, such as "forward", "riggmd "park”, and properties, such as

“"clear", "obstacle" and "can-not-see", have a sitighe parameter. For simplicity, atomic
actions are assumed to be instantaneous, althbigyassumption can easily be modified.

The inclusion of time parameters as argumentsashigt actions constrains the selection of
atomic actions to perform to those whose timesdaetical to the cycle time or are at least
consistent with the cycle time and with any cornstsarelating them. This use of time
parameters to control the execution of atomic astig similar to their use to execute
"commitments” in Shoham’s AgentO.

The definitions in examples 3.1 and 3.2 are reltdazhe another in much the same way that
definite clause grammars are related to Prolograrog with explicit difference lists. In the
same way that difference lists are hidden in dificlause grammars, it is possible to hide
time parameters in the definition of complex acsiamterms of lower level actions. Thus
definitions of the form 3.1 can be compiled autdoaly into the form 3.2. Such an approach
has, in fact, been incorporated in Davila’'s impletagon [4], following the example of
Golog [15].

Although our use of time parameters resembles ¢benfitime in the event calculus [13], our
treatment of time is neutral with respect to thdertying treatment of the relationship
between events and the properties they initiatet@madinate. In particular, it is possible in
many cases to avoid explicit (and computationatjyemsive) reasoning about persistence of
properties, by extending the class of open preslicttt include properties and by using the
environment itself as its own model.

In example 3.2, in particular, the properties "cle@bstacle” and "can-not-see" can be
verified directly by observations in the environmeather than by reasoning about the
actions and events that initiate those properdied,about the persistence of those properties
in the absence of terminating actions or events.

Example 3.3
explore(T1, T2)iff [if clear(T1)then[forward(T1+1)& explore(T1+1, T} &

[if obstacle(T1}then[right(T1+1)& explore(T1+1, T]| &

[if can-not-see (Tlthen[park(T2)& T2=T1+1]]
This is an alternative formulation of example #2.we will see later in example 3.7, this
example is interesting because, except for theseaioccurrence of "explore”, the right-
hand side of the definition has the form of comufitaction rules.

It is possible to show that example 3.3 is equiviale example 3.2, under the assumption that
“"clear", "obstacle" and "can-not-see" are mutuelglusive and exhaustive.

In general:
[p &qg]or[notp &r] is equivalentto [if phen q] & [if not p then r].

Formally, definitions represent the completely defined fwatgs of an agent's beliefs. They
have the form of generalised logic programs imid-nly-if form:

() G~ D10..0Dn e 0.

Note that in the formal definitions we use symbalmtation for the logical connectives, in
contrast with the informal notation used for exa@sgh the paper.

G is an atom in the closed predicates and is sailletdhe head of the definition. The
disjunction is said to be theody. The disjuncti are either the logical constafalse or
conjunctions

(i) C10...0 Cm ne 1

where each conjung@j is either an atom (possibtgue) or an implication of the form

(i) Bl1O..0Bp- E10..0Eq p=0,q=21

where theconditions Biare atomic formulae (possibtyue) and theconclusionhas the same
form as the body of a definition (as in (i) abow&)denial-B is represented as an implication
of the form B - false.

The quantification of all variables is implicit. |AVariables that occur in the head of a
definition are implicitly universally quantified.ne scope of these universal quantifiers is the
entire definition.

All variables in an atomic conjun€lj in a disjunctDi in the body that are not in the head are
implicitly existentially quantified with scope thisjunctDi.

All variables in the conditions of an implicatior@njunctCj in a disjuncDi in the body that
are not in the head and are not in an atomic cahjoh Di are implicitly universally
quantified with scope the implicatid®j. The quantification of all other variables occuogrin

the conclusion of the implicatioBj is determined recursively as though the conclusiere

the body of a definition.

The rules for determining the quantification ofighles in definitions ensure that definitions
satisfy a generalisation of thange-restriction (also called "allowedness” in [8] and
elsewhere). The generalisation implements a linfitech of constructive negation.

Before we illustrate and define the syntax of bsltbat are observations, we deal with the
syntax of goals.

3.2 Goals represented in if-then form

We use "goals", expressediirthenform, to represent such conceptually diverse dbjas
e commands

e (queries to a database

e integrity constraints

» condition-action rules

e commitment rules

e obligations

e prohibitions

e sub-goals obtained by means of goal-reduction usdfigitions in iff-form.

Example 3.4
for-all E[if employee(E}hen existsVl manager(M,E)

This goal has the character of a classical intggonhstraint, which the database (or beliefs of
an agent) must satisfy. It can also be regardech abligation on the agent.

As we will see later, at the end of this sectitwe, quantification of variables in this example
and in the other examples in the paper can be mzgleit.

Example 3.5
if true thenco-operate

This goal can also be understood as expressinglagation to co-operate. In general, any
implicational goal of the form

If truethen G

with conditiontrue can also be understood equivalently as a condiéissgoal
G.

Example 3.6
for-all Time [if do(steal, Time}henfalsd

This goal can be viewed as a prohibition.

Example 3.7

for-all T [if clear(T) then forward(T+1)]
for-all T [if obstacle(T) then right(T+1)]
for-all T [if can-not-see (T) then park(T+1)]

Here the parameter T represents time. This exaihydérates the use of goals to represent
the effect of condition-action rules.

When goals are used to represent condition-acti@s rthen the time parameter in the
conclusion represents a later time than the timarpeaters in the conditions. However, the
syntax of goals places no constraint on the reatigp between time parameters in conditions
and conclusions. In particular, it is possibletfore in the conclusion to be earlier than time
in the conditions. This is often needed for repméisg certain kinds of integrity constraints;
for example "anyone who takes an examination foyurse must have registered for the
course at the beginning of the term in which tharse was given".

However, some syntactically acceptable goals areneaningful in practice; for example "if
you are waiting for the bus for longer than twemiyutes after leaving work, then you
should take the underground after leaving work € ©hus is on the "programmer" to ensure
that the use of time is sensible.

Compare the formulation of example 3.7 with thédggograms of 3.2 and 3.3. Notice that,
whereas 3.2 and 3.3 are recursive, 3.7 is not. aiguthe non-recursive formulation is more
natural. This illustrates both another deficientganventional LP and an attraction of our
extended LP language (as well as an attractioomdition-action rules).

Viewed procedurally, we can see that recursiomiggessary in 3.7, because the "global”
recursion of the agent cycle itself achieves tmeesaffect as the "local" recursion in 3.2 and
3.3. Viewed conceptually, on the other hand, wessnthat recursion is unnecessary in 3.7,
because the higher level goal (in this case "egpilom") is implicit (or "emergent”) in 3.7,
whereas it is explicit in the logic programs of arl 3.3.

Thus, goals do not necessarily play the role ofeta specifications. Such specifications
may be only implicit. For example, the explicit §oa

if rainingthencarry-umbrella
implicitly achieves the higher-level goal
stay-dry

which need not be represented explicitly amongatient’s goals.

Example 3.8

for-all Agent Act, T1, T2
if happens{sk(Agentdo(Act, T2), T1)
then existsT, T
[confirm(can-do(Act, T2)[T, T']) &
do(Act, T2)& T1<T<T' <T2]

This illustrates the use of goals to represeneffext of commitment rules, as in Agent0. The
goal states that if at time T1 an agent asks yalotan action at time T2, then you should
first confirm that you can do it, and then do tb&an at time T2. Here "confirm", like
"explore” is a non-atomic action, which has a giare and an end time. It needs to be
defined by an iff-definition, which reduces the raiomic action to atomic actions. In
contrast, in Agent0, the conclusion of a commitnrele can only be a conjunction of atomic
actions.

Here, for simplicity, it is assumed that the Actthas been requested is a simple atomic act,
which can be performed in a single time instance.

The goal in example 3.8 commits the agent to daeviea it is asked. Example 3.9, below,
allows the agent also to deal with requests fdpastthat it cannot perform. It also illustrates
the fact that the conclusion of a goal can be jiision.

Example 3.9

for-all Agent, Act, T1, T2

if happensg{sk(Agentdo(Act, T2), T1)

then existsT, T, T"
[[confirm(can-do(Act, T2)[T, T1) &
do(Act, T2)& T1<T<T' <T3or
[confirm(can-not-do(Act, T2)[T, T')) &
do(tell(Agent, can-not-do(Act, T2), T)'&
TI<T<T<T< T2

It is important to realise that, although all oé taxamples have a natural declarative
interpretation, they also have a procedural behayishich needs to be efficient. Indeed,
because agents need to perform actions in a timahner, the efficiency that is required of
their programs is more demanding than it is foremrional logic programs. In particular, it
is important that all agent programs be formulateslich a way that any
reasoning/computation that needs to be perfornoegeerate a commitment to an atomic
action, is performed before the action is schedideéxecution.

Formally, agoalis an implication of the form

B1O..O0Bp- E10...0 Eq =0, q=1.

where theconditions Biare atomic formulae (possibisue) and theconclusiorhas the same
form as the body of a definition. The special case - G

is equivalent to thgoal G.

As in the case of definitions, all quantificatiori wariables is implicit. The rules for

determining the quantification of variables in goake similar to those for subgoals in the
body of definitions.

As we will see later, individual goals are conjaneith observations and other goals in
disjuncts of problem statements. Such problem rsités have the same syntax as the bodies
of definitions, and the rules for determining theagtification of variables in problem
statements are the same as those for the bodikginitions.

The rules for determining the quantification ofighles in goals ensure that, like definitions,
they satisfy a generalisation of trenge-restriction. In addition to the fact that this
restriction allows quantification to be implicit,also allows variables to be renamed so that
different disjuncts of a problem statement haveartables in common. As a result, the
special case of the proof procedure consistingp@two inference rules of forward reasoning
and splitting implement the theorem-prover SATCHIAQ].

Note that the beliefs and goals of an agent caorjpacate a general theory of action. For
example in [20] we present a variant of the evaltuwtus formulated as a theory consisting of
iff definitions for persistence and for initiati@md termination of properties and of integrity
constraints for action preconditions. In [11] wegent a similar formulation of a variant of
the situation calculus. The agent cycle, the laggua beliefs and goals, its proof procedure
and its semantics are all neutral with respechfosaich action theory.

As we observed following the discussion of exan®® it is often possible to avoid the use
of action theories altogether, using direct obggyua of properties in the environment
instead. Thus there is a distinction between antageeasoning about actions and events,
which in a logical approach is non-destructive, #redactual changes themselves that occur
in the environment, which can legitimately be dedire.

3.3 Observations

Beliefsincludeobservationswhich are given dynamically as inputs. Observeticecord

positive and negative instances of open and clpesedicates, representing events that happen
in the environment, including actions of other dgeas well as the success or failure of the
agent's own actions and properties that are obsdéovieold.

Positive observations are recorded as simple, hariaee atomic predicates. Negative
observations are recorded as variable-free impbicatwith conclusiorialse.

Examples 3.10
employee(mary)

if employee(bob)henfalse
i.e.notemployee(bob)

happens(ask(mary, john, do(john, go-home, 10)), 1)
i.e. at time 1 Mary asks John to go home at time 10

if do(john, go-home, 1@henfalse
i.e. John does not go home at time 10.

Observations can also be instances of closed @tedicas in databasiew updates:

Example 3.11

telephone-is-dead

where telephone-is-dead is a closed predicate ety

telephone-is-dead iff disconnected or wires-outtechnical-problem.

Here the observation has three alternative, abgrietiplanations, disconnected, wires-cut or
technical-problem.

The representation of incompletely defined, opestjmates by means of integrity constraints
(goals) has been advocated by Denecker and De&cfieyHere we use the same syntax for
instances of open predicates as we do for goalsidimg integrity constraints. However,
unlike Denecker and DeSchreye, we distinguish easens from goals in the semantics, the
proof procedure and the agent cycle.

4. Semantics

The proof procedure described in the next sectsas backward reasoning with definitions to
reduce an initial problem statement, consistinga#ls G and observations O, to an
equivalent disjunction of answers to the problesctcansweAG & AO is a formula that is
irreducible in the sense that it is expressed éwtttabulary of the open and constraint
predicates alone. The compon&@ of the answer contains among its subformulaeia pf
atomic actions for accomplishing G, wher&&3 contains an explanation of O. The
explanationAO can be used as part of the solution of G Athitannot be used as part of the
explanation of O.

Of course, within the agent cycle, observationsl(iding records of the agent's successful
and failedpast actions, as well as observationgat external events and their effects) are
added to O incrementally. However, for conceptirapficity, the semantics and the proof
procedure are defined under the assumption thttealbbservations are given in advance. It
is possible to show that the interruption and restion of the proof procedure to make
observations and to perform actions does not affiectemantics (see section 7).

The proof procedure uses forward reasoning to ctieatkthe observations are consistent with
the goals and subgoals. As we have seen in thepes, such forward reasoning may
generate atomic or non-atomic actions for the atgeperform. In the case where the goals
represent integrity constraints and the observatisa database updates, the generation of
these actions actively maintains the integritynef tlatabase.

We now define the top-most level of the semantidb® proof procedure. This top-most level is
abstract, in the sense that it is non-committahwgspect to a number of such important, lower-
level matters as the definition of |= . This istjyabecause the proof procedure is compatible with
many different semantics and partly because we toigleep the options open at this time.

Let D be a conjunction of definitions in iff-forrhet G be a conjunction of goals in if-then
form. Let O be a conjunction of positive and negatbservations.

AG & AO is anansweriff it satisfies all four conditions below:

1. AG andAO are both conjunctions of formulae in the operdjmages and constraint
predicates.

2. D&AG&AO |=G

3. D&AO|=0

4, D & AG & AO is consistent; i.e. it is not the case that D& & AO |=false.

1C

We have investigated a number of different defanisi for |=. All of these interpret P |= C as
expressing that C is true in all the intended medéP. The definitions differ, however, in their
understanding of the notion of intended model.

In [8], for example, the intended models are thredkvalued models of D, together with the Clark
equality theory (CET) and definitions in iff-forrorfthe open predicates. The correctness and
completeness proofs of the iff-proof procedure8idan be adapted to the variant of the proof
procedure presented in this paper, relative tadmee semantics. A similar semantics and proof
procedure, with somewhat weaker completeness se$ate been given by [6]. They also discuss
the completeness of their proof procedure relabvether semantics.

In [14], D is restricted to be a locally stratifieayjic program, and the unique perfect model of D &
AG & AO is taken as the only intended model. The prosiooidness of the proof procedure of
[14] can also be adapted to the proof procedutkisipaper.

The top-most level of the semantics above is alsBaommittal about what, if any, restrictions
are imposed upon the formulaeA® andAO. A variety of different restrictions have been
investigated.

Fung and Kowalski [8], as mentioned above, retgrarsswers iff-definitions of ground positive
atoms. These are obtained by first generatingjardison that is equivalent to the initial problem
statement, and such that one of its disjunctseéslircible. The positive atoms of this disjunct are
then instantiated, so they contain no variablessanithey are consistent with the other formulae in
the disjunct. These ground positive atoms are taemitten as definitions in iff-form.

Denecker & DeSchreye [6], on the other hand, cansinore general answers containing
variables. Kowalskeét al [14] and Wetzeét al[23] also construct answers containing variables,
but these are restricted to conjunctions of atamaiscd negations of positive atoms.

In this paper we focus on the agent applicatiothefmodified proof procedure and refer the
reader to [8], [6], and [14] for more technicalalkt of the semantics.

5. The Proof Procedure

The proof procedure is the thinking component efdhified agent cycle. It combines
backward reasoning by means of iff-definitions wiahward reasoning by means of goals and
observations. Whereas such backward reasoning@étoseduce goals to subgoals in logic
programming, forward reasoning is used to chedgiritty constraint satisfaction in deductive
databases [19] and also to check that integritgtramts are consistent [17]. Forward
reasoning with the observations also produces tonehction and active-rule behaviour.

The proof procedure is based on that of [7, 8,28}, which, in turn, can be viewed as a
hybrid of the proof procedures of Conseleal.[2] and Denecker and De Schreye [6]. It was
originally developed with the goal of unifying almdive logic programming, constraint logic
programming and semantic query optimisation. A ksinproof procedure has been used for
abductive planning in the event calculus [13] bl [8] and [9].

Our variant of the proof procedure distinguishesesbations from beliefs and goals, thus
allowing the proof procedure to be embedded inreadyc environment.

The goals and observations of an agent are orghitiseproblem statement3hey have the
same form

11

Di10...0 Dn

as the body of a definition. Each conjunct in edigjunctDi is either a goal, as described in
section 3.2, or an observation, as described ose8.3. The observations are marked to
distinguish them from goals.

All variables belonging to an atomic goal are irojly existentially quantified with scope the
entire disjunct in which the goal occurs. All othariables in the problem statement are
guantified in accordance with the rules in sec8c¢h

Problem statements are a declarative representafidhe search space, containing both
alternative courses of action that an agent neegwetform to achieve its goals as well as
alternative explanations of the observations.

Example 5.1
The problem statement

[do(drop-out, T)% do(take-drugs, T)or
[do(study-hard, T do(get-good-job, T¥ do(get-rich, T"& T<T'& T'< T"]

represents two alternative courses of action, betwehich a student might need to choose.

In the propositional case, tipeoof procedurénas four inference rules, each of which rewrites
a problem statement into another problem statetteattis equivalent. The proof procedure
terminates when no further inference rules cangpdied. The resulting problem statement is
then equivalent to the initial problem statement.

When the proof procedure is used for planning, wihéerminates, each disjunct of the final
problem statement which does not cont@ilse as a conjunct contains an alternative plan,
which solves the agent's goals with respect toconsgistent explanation of the observations.

In addition to the inference rules, the proof pthoe needs to be augmented by selection
rules and search strategies for deciding what enfeg rules to apply when. In particular,
consistency checking by forward reasoning is noénesemi-decidable. Therefore the
inference rules need to be applied "fairly" in thense that no inference step is delayed
indefinitely.

Backward reasoning uses iff-definitions to reduce atomic goals (abdayvations) to
disjunctions of conjunctions of sub-goals. It cdmites to the implementation of tbe& AO
[FO and D & AG & AO |= G parts of the semantics.

Example 5.2
Given the atomic goal "co-operate” and the belief

co-operate iff for-all Agent, Act, T1, T2
if happens(ask(Agent, do(Act, T2)), T1)
then existsT, T
[confirm(can-do(Act, T2), [T, T]) &
do(Act, T2) & T1<T<T <T2]

backward reasoning reduces the goal to the subgoal

12

for-all Agent, Act, T1, T2
if happens(ask(Agent, do(Act, T2)), T1)
then existsT, T
[confirm(can-do(Act, T2), [T, T]) &
do(Act, T2) & T1<T< T <T2]
which has the form of a commitment rule. Noticetthathe original goal had been this
subgoal, then "co-operate” would have been an emergoal, i.e. a goal not explicitly
represented within the agent, but one that couldebdéied externally.
More formally,backward reasoning uses a definition
G~ D10..0 Dn
(case 1) to replace a problem statement of the'form
(GOGHYOD by (D10..0DN)OG")OD.
(case 2) to replace a problem statement of the form
(oG'-DYyOGc"HOD
by(D10OG'-D)0O...0(DOnOG'-D")OIG") OD.

In both cases if5 in the problem statement is an observation theh ed@mic conjunct in
eachDi in the resulting problem statement will be markesdan observation.

In case 1, goal reduction needs to be followedbysplitting rule, described below, to put the
resulting formula in problem statement form:

(b10G)0O..0MONnOG)OD.
Case 2 implicitly uses the equivalence
(BOC) - A) « (B> A)O(C- A).

Forward reasoning is a form of modus ponens, which tests and agtivelintains
consistency, contributing to the implementationhaf following part of the specification:

D & AG & AO is consistent.

It matches an observation or atomic goal p
with a condition of a non-atomic goal or negatibservation p /g - r
to derive the new goal gq-r

The observation or atomic goglis sometimes called the "trigger” of the inferehead the
conditionp in p Z7q - r is sometimes called the "invocation condition".

Any further conditiong] can be eliminated either by repeated backwarsbreag (goal-to-
subgoal reduction) or by further steps of forwadsoning. After all of the conditiops//q

! Here and elsewhere, we assume the commutativityaasociativity of conjunction and disjunction.
In particular, when we write a problem statemerthie form(G //G') /D, we intend thaG /JG' may
be any disjunct in the problem statement and@aiay be any conjunct in the disjunct.

have been eliminated, the concluside added as a new subgoal. In generaself, has the
form of a problem statement.rlis an atomic goal, it can trigger forward reasgronit can
be reduced to sub-goals by backward reasoning.
More formally,forward reasoning replaces a problem statement of the form
(GOGUG'- D)Yoc"HOD
by(GOGOG'- D')O(G'- D')OG") OD.
Logically, when the implication(GOG'—~ D') represents an integrity constraint or an
implication derived from an integrity constraintdai represents an update, forward
reasoning contributes to integrity verification.
Other inferencerules
Splitting uses distributivity to replace a formula of thenfio
(D ODY) OG by (D JG) D' OG)
Splitting preserves all the markings of observation
L ogical equivalences rewrite a subformula by means of another formuhéctvis both

logically equivalent and simpler. These includeftiilowing equivalences used as rewrite
rules:

G [true » G G//false -~ false
D [Jtrue « true D [false « D.
[true - D] - D [false - D] - true

The resulting formula& andD retain all the markings of observations.

Factoring merges two copies of the same atomic ggal/G into one copy ofG. It also
merges an atomic go& with an atomic observatio® into the observatiors, thereby
distinguishing between the different roles of gaald observations in the specification

D&AG&AO |=G
D&AO|=0

In the non-propositional case, factoring rewrites formulaP(t) Z/P(s) by the equivalent
formula

[P(t) s =1 L[P() JP(s)Is #1]
where P(t) and P(s) are atomic goals or observations. Both of thenatan the second
disjunct P(t)/P(s) of the result retain their original markings, dhy, as observations.
However, if at least one of the ato@) or P(s),before factoring, is an observation, th()
in the first disjunct of the result is marked aso@iservation.

The other inference rules of the proof proceduesdefined for the non-propositional case in
the usual way, using unification and constraintaditjgs, as presented in [7,8].

Example 5.3

14

Let D consist of the following iff definition:

write-reference(X, [T1, T]) iff
[get-file(X, T1)& type-reference(X, T2R send-reference(X, & T1<T2<T] or
[tutor(X,Y) & ask-about(Y, X, T1& type-reference(X, T2& send-reference(X, &
T1<T2<T]

i.e to write a reference for some X in the perbdme [T1,T] either get X's file or ask X's
tutor about X, then type the reference and send it.

Let G be the conjunction of the following goals:
Gl write-reference(johnson, [1, T])
G2 if get-file(X,T+1) &lost-file(X,T) thenfalse

G3 if request(X, meeting, ® student(X)
then answer(X, T+1& meet(X, T)& T+1 < T < T+60

G1 represents the goal of writing a reference étindon starting at time 1. G2 represents the
integrity constraint that one cannot get a fileg ihdost. G3 represents an obligation that if a
student requests a meeting then one should ansiten & unit of time and one should meet
the student within 60 units of time.

Let O be the conjunction of the following obsereas (marked by *):

01 lost-file(johnson, 0)*

02 request(martins, meeting, 2)*

(0X] student(martins)*

04 tutor(johnson, palmer)*

Alternatively, "tutor" could be represented asasel predicate defined by means of an iff
definition listing all pairs of students and theitors.

The proof procedure starts with the conjunctiothefgoals G and the observations O as the
problem statement S1. One strategy for selectinguoots in the problem statement and for

selecting inference rules to apply to the selecteguncts produces the following derivation:

Reasoning forward with O2 and O3 using G3, theuttjon

answer(martins, 3% meet(martins, TR 3<T' <62

is conjoined to S1, giving a new problem statenght

Reasoning backwards with G1 using the iff defimitio D, G1 is replaced by

[get-file(johnson, 1% type-reference(johnson, T&)
send-reference(johnson, &)1<T2<T] or

[tutor(johnson,Y)& ask-about(Y, johnson, B
type-reference(johnson, T& send-reference(johnson, &) 1<T2<T]

in S2. Splitting then results in a problem staten&h S3 consists of two disjuncts, which are
identical, except that where one of the disjunets the goal "get-file(johnson, 1)" the other
has the two goals "tutor(johnson, &)ask-about(Y, johnson, 1)".

The first disjunct reduces falseafter two steps of reasoning forward with "geg(iibhnson,
1)" and O1 using G2.

After factoring the goal "tutor(johnson, Y) withetobservation O4, the second disjunct
generates the following answer:

AO =01& 02& 03& 04

AG = ask-about(palmer, johnson,&)type-reference(johnson, T&
send-reference(johnson, &)1 < T2 < T& answer(martins, 3&
meet(martins, TR 3 < T < 62.

Alternatively, a ground answer could be extractethfthe second disjunct by generating
consistent ground substitutions for the variables.

6. The Unified Agent Cycle

The proof procedure described in the previous @edt only the thinking component of our
unified agent cycle. The top-most level of the eyichs the form:

To cycle attime T,

e record any observations at time T,

* resume the proof procedure, giving priority to fard/reasoning with the new observations,

* evaluate tdalseany disjuncts containing subgoals that are nokethas observations but
are atomic actions to be performed at an earkee ti

» select subgoals, that are not marked as obsergafimm among those that are atomic
actions to be performed at times consistent wighctirrent time,

e attempt to perform the selected actions,

» record the success or failure of the performedastand mark them as observations,

e cycle attime T+ n.

An earlier version of this cycle has been formalisemeta-logic in [10]. This formalisation has hee
used as the basis of Davila's implementation datlbgsed agents [4].

The proof procedure within the agent cycle givesfgnence to reasoning forward from new
observations. As mentioned earlier, this prefererems to be balanced by fair application of the
inference rules. In addition, other constraintsthieebe imposed on the proof procedure. For example
before evaluating an atomic action subgodhtsein step three, all factoring of the subgoal with
observations must first be attempted.

Note that selecting atomic actions involves bothoding an alternative branch of the search space
(i.e. a disjunct from the current problem staterpantl choosing subgoals (i.e. atomic actions from
among the conjuncts of the chosen disjunct). Thhs&es are non-deterministic. At one extreme,
they can simply be made at random. At another exreéhey can be made by means of a decision-
theoretic analysis of probabilities and utilities.

Note that an atomic action that is selected foretien might not succeed. For example, a "send-

email" action might fail if the server is down.deneral, attempted actions might fail because the
agent has incorrect or incomplete knowledge aldmietvironment.

16

Although the agent model outlined above does ne¢ lratentions as a separate component of an
agent's internal state, intentions can be apprdeithiay employing suitable search strategies and
selection rules. In particular, the combined usdeagth-first, heuristic-guided search and heurstic
guided selection of actions will focus the ageatons on those belonging to a preferred altereati
This focus will have the effect, at any given tiroéjdentifying the preferred alternative as a ptén
action, which serves as the agent's current irtesti

Note also that, not only does the unified agentecgtiow the interruption of thinking and plannitay
react to observations, but it also allows the $ele@nd execution of atomic actions in partiaingla
without first requiring that complete plans be geed.

Example 6.1

Let D, G1, G2, G3 be as in example 5.3. Here wkshibw how the example works within
the agent cycle, when we do not have foreknowledgd the inputs at the start, but we
receive them incrementally.

Assume that the cycle starts at time 0. The prolgtement at that time consists of the
conjunction of G1, G2, G3. Suppose that we theresand record observations O1 and
0O4. These will be conjoined to the problem stateraed marked as observations, and the
proof procedure is then applied.

Assume that the following inference steps are apgh the following order:

« forward reasoning with O1 and G2

* backward reasoning with G1 and D

» splitting the disjunction that is introduced by kaard reasoning
e factoring with O4

» splitting the disjunction that is introduced by tfaing.

These inferences result in the following probleatesnent:

[get-file(johnson, 1X type-reference(johnson, T&)
send-reference(johnson, &) 1< T2 < T&
(if get-file(johnson,1) theffalse & REST] or

[Y = palmer& ask-about(Y, johnson, B
type-reference(johnson, T& send-reference(johnson, &)1<T2 <T &
(if get-file(johnson,1) thefalse & REST] or

[tutor(X,Y) & Y # palmer& ask-about(Y, johnson, B
type-reference(johnson, T& send-reference(johnson, T) &< T2 <T &
(if get-file(johnson,1) thefalse & REST]

where "REST" is the conjunction of G2, G3, O1, O4.
Forward reasoning within the first disjunct genes#étlse which reduces the entire disjunct
to false leaving only the other two disjuncts. In thetfio§ these, the equality Y = palmer can

be eliminated, resulting in the problem statement:

[ask-about(palmer, johnson, &)
type-reference(johnson, T& send-reference(johnson, &)1 < T2 <T &
(if get-file(johnson,1) thefalse & REST] or

17

[tutor(X,Y) & Y # palmer& ask-about(Y, johnson, B
type-reference(johnson, T® send-reference(johnson, T) &< T2 <T &
(if get-file(johnson,1) thefalse & REST]

Suppose the atomic action subgoal "ask-about(pajotenson, 1)" is now selected for
execution, and assume that it is executed sucdlyssfuthat case a record of the successful
action, i.e. "ask-about(palmer, johnsort"1will be conjoined to the problem statement. In
the next iteration of the cycle, after splittingistobservation will be added to both disjuncts.

Suppose that, in that next iteration of cycle, obstions O2 and O3 are made. Giving
preference to the new observations, the planninthoreference writing is suspended and
the cycle reacts to the new observations. This dugsonjunct

answer(martins, 3% meet(martins, T)& 3<T'<62
to the problem statement. After splitting this eorgt is added to both disjuncts.
During this iteration of the cycle, the followinggblem statement is generated:

[ask-about(palmer, johnson, 1§

type-reference(johnson, T& send-reference(johnson, &1 < T2 <T &

(if get-file(johnson,1) thefalse & REST& 02 & O3 & answer(martins, 3 meet(martins,
T) & 3<T'<62]

Here the successfully executed subgoal "ask-abalutgy, johnson, 1)" has been factored
with the observation "ask-about(palmer, johnsoH;. Tjhe other disjunct that results from
the factoring step contains false equalities, ab ¢ntire disjunct is evaluatedfadse

The second disjunct, left over from the previoudeycontaining the atomic action subgoal
"ask-about(Y, johnson, 1)" has also been evaluatéalse This is obtained after first
factoring the subgoal with the observation of thecessfully executed action. One of the
resulting disjuncts after factoring contains thedaequalities "johnsor johnson" and "&

1", and therefore is evaluatedftdse The other disjunct is evaluatedfédseby the third step
of the cycle, which recognises that the time, &f'the action is past.

The remaining actions of the problem statementlvéglselected for execution in future
iterations of the agent cycle. However, to avoie ¢ntire problem statement being evaluated
to false, the atomic action "answer(martins,)ddd be selected for execution at time 3. In
the case of successful executions of this actiohaduthe remaining atomic actions, the time
parameters T2, T and T' will be instantiated wittual execution times.

7. The correctness of the agent cycle

Example 5.3 illustrates the proof procedure inaéicenvironment, whereas example 6.1
illustrates the proof procedure in a dynamic sgttitnere the agent's beliefs are incrementally
augmented by observations. The cycle correctlyrpaates the proof procedure, in the sense
that any problem statement generated dynamicatiypeagenerated statically by the same
sequence of inferences where the initial probletestent includes foreknowledge of all
observations. The following theorem states thisaiormally. Its proof is straightforward.

Theorem 7.1

18

Let D be a set of iff definitions and let P be allem statement. Suppose O is the
conjunction of all observations recorded duningerations of cycle, including all successful
and failed actions. Then the problem statemerieaghd of then iterations is identical to the
problem statement resulting from the uninterrugtpglication of the same sequence of
inference rules, with the same iff definitions Egréing with the problem statement consisting
of the conjunction of P and O.

8. The environment and multi-agent systems

The unified agent cycle of section 6 is a spe@akcof the abstract agent cycle of section 2.
Inputs are observations, and outputs are actiorisrpeed by the agent. Interactions with
other agents are special kinds of interactions thighenvironment.

This model of inter-agent interaction contrastdwifite message-passing model, employed in
concurrent logic programming, in which agents iateby passing messages between one
another. In the concurrent logic programming madedulti-agent system is represented by
means of a single logic program. Interactions betwagents are represented by bindings of
shared variables, generated by one agent and cedsoyranother. There is no separate
environment and no destructive assignment. Any eptually separate environment has to be
implemented declaratively as another agent.

The concurrent logic programming model contrasth wie unified agent model in which a
multi-agent system is a system of individual agémas interact with one another through the
medium of the shared environment. Each agent asih logic program (if any), and the
environment that "glues" the agents together islmguistic. The environment "grounds” the
goals and beliefs of an agent and gives them mgairthis sense, the environment serves as
a privileged model of the agents' beliefs, the rhadech determines whether or not the
agents' beliefs are true.

The environment, like the world around us, is niaglistic, dynamic and need not remember
its past. In this sense, because the environmemdaeed to remember its past, the
transition from one state of the environment totheomay be truly and justifiably
destructive.

Thus, in our framework, a multi-agent system iskection of individual agents, interacting
through a shared and possibly destructive enviromn®ich multi-agent systems share with
object-oriented programs the fact that the intesteties of individual agents are encapsulated,
like the internal states of objects. Although santelligent agents might employ a logic-
based, unified agent architecture like that outdiabove, other agents might use other
internal mechanismes, including ones that are ngieéd and even destructive.

We illustrate the interaction of a unified agensiuch a multi-agent context in the airline

agent example in section 10 below.

9. Comparison with the Rao & Georgeff agent model

In [18] and elsewhere, Rao and Georgeff descritr@etical system architecture, which is based
upon an abstract BDI agent architecture. Both techires employ an agent cycle like the one
outlined in section 2. Here we formulate, in outeexled logic programming language, a variant of
the example given in [18]:

19

if happens(become-thirsty, T)
thenholds(quench-thirst, [T1, T2R T<T1<T2< T+10

holds(quench-thirst, [T1, T2]) iff holds (drink-soda, [T1, T2Bhr
holds (drink-water, [T1, T2])

holds (drink-soda, [T1, T2]) iff holds(have-glass, [T1, T
holds (have-soda, [T", T2})
do(drink, T2)&
TL<T'<T2<T

holds (have-soda, [T1, T2]) iff do(open-fridge, T1% do(get-soda, T2&
T1<T2

holds (drink-water, [T1, T2]) iff holds(have-glass, [T1, T'|&
do(open-tap, T"& do(drink, T2)&
TI<T'<T2<T'

The first sentence represents the goal of quendhirgg within 10 units of time whenever the
agent becomes thirsty. Becoming thirsty is intagate@as an observation. Thus, the agent’s
body is treated as part of the environment.

Notice that "plans" are represented as iff-defimisi, which reduce non-atomic actions of the
form "holds(P, [T1, T2])" to other non-atomic actgor to atomic actions of the form
"do(Act, T)". In this example, as in other BDI exales, planning is "planning from second
principles”: looking up pre-specified plans to nim#cpre-identified class of planning
problems.

Our formulation of the example, compared with tleR5eorgeff formulation, is typical of
the similarities and differences between the twenagnodels. Both models employ a similar
agent cycle and both distinguish goals and bediefseparate components of an agent’s
internal state. However, the Rao-Georgeff modd distinguishes intentions as a separate
component.

In the Rao-Georgeff model, there are of two kinflsadiefs: “facts”, which record the current
state of the environment, and plans, which redoogptex actions to simpler, lower-level
actions. Our model allows both these kinds of gli@s well as historical records of past
observations and arbitrary logic programs.

In the Rao-Georgeff model, goals are conjunctidigogitive and negative literals. In our
model, they are more general implications. Whene@sitions are distinguished from beliefs
and goals in the Rao-Georgeff model, in our moldey tare treated as goals that represent
actions to be performed in the future.

Rao & Georgeff [18] employ two agent language® as a modal logic specification
language and the other as a procedural implementkinguage. In contrast, we use the same
language for both specification and implementatitdie. use an explicit representation of
time, whereas [18] uses modal operators for tintbénspecification language, but implicit
time in the implementation language.

We distinguish beliefs and goals, as separate coens of an agent's internal state.

However, [18] distinguishes them by modal operaittothe specification language and by
meta-predicates in the implementation language.

2C

Whereas our proof procedure distinguishes back¥vard forward reasoning as separate
inference rules, the practical architecture of [@8iploys a single procedure for both. The
procedure matches a "trigger event" (corresponttirggfact or goal) with the "invocation
condition” of a "plan”. In those cases where thecpdure simulates forward reasoning, the
trigger event represents a fact and the invocatimdition represents a distinguished
condition of an implicational goal. In those casé®re the procedure simulates backward
reasoning, the trigger event represents a goattenshvocation condition represents the head
of a definition.

10. Comparison with the Agent0 agent model

Perhaps the most distinguishing characteristicheh@m’s agent model, Agent0 [21], is that
the main part of an agent program consists of camaerit rules, similar to the rule of
example 3.8. These rules are executed by meamsagent cycle, like the abstract cycle of
section 2. Thus Agent0 can be regarded as a gesai@h of condition-action rule
production systems, in which actions are geneigliseommitments to actions to be
performed in the future.

Like the unified agent cycle and unlike the Rao-«@eff cycle, commitments are actions to
be performed by the agent at explicitly represetiteds. The cycle executes all
commitments that are scheduled for the current.time

Unlike the unified agent cycle and unlike the Raeageff cycle, all actions are atomic. The
selection of actions is deterministic: all commitrhreules whose conditions are satisfied are
executed when their times become identical to yiséedime. Unlike the unified agent cycle
and unlike the Rao-Georgeff cycle, it is assumeil ali selected actions succeed.

Here we formulate, in our extended logic prograngnanguage, a variant of the airline
agent example given in [21Perhaps the most obvious difference between oordiation

and Shoham'’s is that ours employs non-atomic astiwhich are ultimately decomposed into
atomic actions. In Agent0, all actions are atorHiowever, a more important difference is
that we employ a separate database of reservaiitey than an internal set of commitments
to issue boarding passes. There is no reason whAgamtO formulation might not make
similar use of an external database.

if happens{sk(Agentdo(Act, T2), T1)
then confirm(can-do(Act, T2)[T, T')) &
do(Act, T2)& T1<T<T'<T2

if happens(present(Pass), T1)

then check(eservation(Pass, Flight#, TI, T1) & T1+20<T"<T1+120 &
do(issue-boarding-pass(Pass, Flight#, TJ) &
T1<T<T<T2<T1+10

confirm(can-dofnake-reservation(Pass, Flight#, T, J112) T'])
iff check¢emaining-seats(Flight#, T', N) and
not reservation(Pass, Other-flight#, [T) T"]) &
N>0

check(Query, [T, T')

21

iff do(ask(database, Queryl) &
happendgll(databaseaffirm(Query, TY), T") &
T<T<T"<T+5

The first commitment rule deals generally with aeguest to perform an atomic action. It
uses the first iff-definition to deal with a reqtiegs make a reservation. It confirms that the
reservation can be made, by querying a databadetéomine that there are remaining seats
on the flight and that the passenger does notdjreave a reservation on any flight leaving
at that time.

In general the querying of the database is a nemiataction, which is decomposed, by
means of the second iff-definition, into the atomation of asking the query, followed by
waiting for an affirmative answer. Waiting is caébed to a maximum of 5 minutes. Once it
has been confirmed that the reservation can be ntaeléirst commitment rule generates the
commitment to make the reservation, which is aratgtb the database.

Note that the term
"remaining-seats(Flight#, T', N) and not reservatitass, Other-flight#, T")"

names a query to the database. The answer redeivedhe database instantiates the
variable N, which is then checked to make surg greater than 0.

The second commitment rule deals with the arriva customer at the check-in desk. It first
gueries the database to check that the custoneadgithas a reservation on a flight with a
departure time no less than 20 minutes and no thare2 hours away. It then issues the
customer with a boarding pass within a maximum@frinutes of the customer’s arrival.

Our formulation of the example contrasts with thgeAtO formulation in a number of
important respects. As already mentioned, periaaibst important of these is that in our
formulation the reservations database is extemtilé agent and is queried and updated by
atomic actions performed by the agent. In the A@émtmulation, the database is represented
as an internal set of commitments to issue custwinaarding passes when they arrive at the
check-in desk. Arguably, our formulation is mor#Hful to conventional implementations, in
which a separate, external reservations databasaied by many travel agents.

In our formulation, because the database is conabpipart of the environment, the atomic
action of making a reservation can change the dattestructively. This contrasts with the
pure logic programming approach, where all chamgesl to be non-destructive.

A somewhat less important difference concernsriegment of "capabilities”, which are
conditions that need to be satisfied for the atebe capable of performing an action. In our
formulation, capabilities, defined by iff-definitig, are explicitly represented as actions, such
as "confirm" and "check", that need to be perfornmednsure that other actions can be
performed. In AgentO the requirement that capadslibe satisfied is implicit rather than
explicit. They are defined by a separate, intedaghbase of capabilities.

11. Other related work

We have already compared our approach thigrRao-Georgeff agent model and
Shoham’s Agent0. Here we give a brief comparisah winumber of logic-programming
related agent models.

22

Eiter, Subrahmanian and Pick [24] use agent progyramthe style of logic programming, to
generalise condition-action rules. These rulesnektegic programming by including deontic
modalities to indicate that actions are permitfechidden, obliged or waived. They also
employ integrity constraints on states and actibnsontrast, we employ a uniform
representation of integrity constraints to obtaia ¢ffect of condition-action rules,
commitment-rules and integrity constraints on ksitites and actions. We also employ iff-
definitions for goal-oriented problem-reduction.

Eiter et al[24] employ an agent cycle to generate actiongsponse to input messages. All
reasoning takes place and is completed withinglesiteration of the agent cycle. In our
agent cycle, on the other hand, reasoning cantbeupted both to accept inputs and to
generate outputs. Outputs can be, not only actiensrated in response to inputs received in
iterations of that cycle, but also actions generagactively or proactively in earlier

iterations.

Wagner [22] employs an agent architecture thatasoata number of different components: a
knowledge base of beliefs represented in extenoigid programming form, a set of tasks
having the form of queries, reaction rules encodiregreactive and communicative behaviour
of the agent, and action rules giving proactiveawédur. The different components have
similar, but different semantics and proof proceguin contrast, we employ a general-
purpose formalism, semantics and proof procedarmteégrate these different functionalities
within a unified framework.

Wagner employs a metalogical formulation of thera@gcle in the manner of [10]. Although
he acknowledges that planning needs to be intezduiptr timely execution of actions, he
does not show how this can be done in his approach.

Baral, Gelfond and Provetti [1] use logic programgiextended with “classical negation” to
implement a modification of the action descriptianguageA [25]. The logic program is
used proactively to reduce goals to plans. Thugtiseno explicit provision for obtaining
condition-action rule reactive behaviour.

Baralet alemploy an agent cycle in which inputs are eitleyeovations or goals.
Observations are added to the knowledge baserbutdused as triggers for generating
actions. Any goals that have been input are adal#itetcurrent goals, and some subset of the
resulting goals is selected to generate a plargubimaction logic program. All planning is
performed within a single iteration of the agentleyHowever, a new observation can
invalidate a current plan, which then necessitapRnning.

Whereas Barakt al[1] use extended logic programming to implemewaidant of the action
languageA, Li and Pereira [16] use abductive logic programgrto implemenA modified

to deal with concurrent actions. However, althotighir abductive programming language
allows the use of integrity constraints, Li andd®er do not use them, as we do, to obtain
reactive behaviour. In fact, they focus mainly tassical problems of reasoning about
actions, and do not concern themselves with thegaotion between reasoning about actions
and actually performing them.

Jung [9] builds up on the earlier version of ouified agent architecture [12] and explores in
further detail the ability of the architecture merleave partial, abstract planning with
execution of partially constructed plans. Althoulifke us, he uses the iff-proof procedure [8]
to execute abductive logic programs, he does nitider the use of integrity constraints to
represent condition-action rules or commitmentsule

12. Conclusions and further work

We have argued in this paper that multi-agent aystare a more powerful and more
comprehensive model of computation than logic paogning; and we have presented an
extension of logic programming that has the poatmtdi provide multi-agent functionality. In
addition to including the use of backward reasomipgrovide the "rationality” of ordinary
logic programs, the extension includes forwardagasy by means of integrity constraints to
provide "reactive” behaviour.

Whereas logic programming is not committed to aagipular operating system, the
extension employs an observe-think-act cycle, whitérfaces an agent to its environment.
The environment gives meaning to the beliefs aralsgof an agent and can change
destructively. Agents are object-oriented, in thiese that their goals and beliefs are
encapsulated and their interactions with other tagare limited to the effects of their actions
on the shared environment.

We have presented a proof procedure and semaatitisef extended logic programming
language, and we have compared our agent modelde3Rorgeff's BDI model, to Shoham's
Agent0 and to a number of logic-programming relatgent models.

We have argued that the unified agent cycle angr@sf procedure subsume condition-action
rule production systems, SATCHMO, the Rao-Georggéfint model and Agent0. We also
believe that they incorporate much of the functibypaf the other, logic programming based
approaches. It remains future work to make thegemnaents and conjectures more precise and
more formal.

Further work is also needed on the agent cyclpanticular, to investigate the relationship
between passive observations and actions thatecaggarded as actively generating
observations.

We have investigated the dynamic change of belieésto the addition of new observations.

However, it is also necessary to investigate madécal changes of belief, including learning,
belief revision, and garbage collection of obsaorat and of other beliefs that are no longer

needed.

Acknowledgements

The authors are grateful to Dr. Francesca Tonvétuable discussions and to the anonymous
referees for helpful comments and suggestions. rEsisarch was supported by the UK
Science and Engineering Research Council.

References

[1] Chitta Baral, Michael Gelfond and Alessandrowtti. Representing actions: laws,
observations and hypothesdsurnal of Logic Programmind@1(1-3) (1997) 201-243.

[2] Luca Console, D. Theseider Dupre, Pietro Tarya€m the relationship between abduction
and deductionJournal of Logic and Computatidt(5) (1991) 661-690.

[3] Jacinto Davila. REACTIVE PASCAL and the eveataulus: a platform to program

reactive, rational agents. Rroc. Workshop on Reasoning about Actions and Htagnin
Complex Environment8onn, 1996.

24

[4] Jacinto Davila. Agents in logic programminghDPthesis, Imperial College of Science,
Technology and Medicine, 1997.

[5] Marc Denecker and Danny De Schreye. Represgihticomplete Knowledge in
Abductive Logic Programming. IRroc. International Symposium on Logic Programming
1993, 147-163.

[6] Marc Denecker and Danny De Schreye. SLDNFAAlductive Procedure for Abductive
Logic ProgramsThe Journal of Logic programming4 (2) (1998) 111-167.

[7] Tse Ho Fung. A modified abductive framework Aroceedings of Logic
Programming WorkshopWLP'94, N. Fuchs and G. Gottlob (eds.), 1994.

[8] Tse Ho Fung and Robert Kowalski. The IFF PrBadcedure for Abductive Logic
ProgrammingThe Journal of Logic programming3 (2) (1997) 151-165.

[9] C. Jung. Situated abstraction planning by alidedemporal reasoning. Proceedings of
ECAI 98, Edited by H. Prade, Wiley, 1998, 383-387.

[10] Robert Kowalski. Using meta-logic to reconaiéactive with rational agents. In Meta-
Logic and Logic Programming, K. Apt and F. turiad6.), MIT Press, 1995, 227-242.

[11] Robert Kowalski and Fariba Sadri. The sitoattalculus and event calculus compared,
Proceedings of the International Logic Programn8ggposium, Ithaca, New York,
Bruynooghe M. (Ed), The MIT Press, November 19%9-553.

[12] Robert Kowalski and Fariba Sadri. Towards afiedd Agent Architecture that Combines
Rationality with ReactivityProceedings of International Workshop on Logic etd&bases,
San Miniato, Italy, Springer-Verlag, 1996.

[13] Robert Kowalski and Marek Sergot. A Logic-basgalculus of Events. INew
Generation Computing4 (1) (1986) 67-95.

[14] Robert Kowalski, Francesca Toni and Gerhardaéle Executing Suspended Logic
ProgramsFundamenta Informatic84 (1998) 1-22.

[15] H.J. Levesque, R. Reiter, Y. Lesperance, R, R.B. Scherl. GOLOG:A logic
programming language for dynamic domaidsurnal of Logic Programming, Special issue
in reasoning about action and chan@d (1-3) (1997) 59-83.

[16] Renwei Li and Luis Moniz Pereira. Representamgl reasoning about concurrent actions
with abductive logic programs. lnnals of Mathematics and Artificial Intelligenaelume
21 (1997), 245-303.

[17] R. Manthey and F. Bry. SATCHMO: A Theorem Peoumplemented in Prolog.
Proceedings of thé"@Conference on Automated Deduction (CADE), Argoritiiepis, 1988.

[18] Anand S. Rao and Michael P. Georgeff. An azttarchitecture for rational agents.
Proceedings of the Third International ConferenaeRuinciples of Knowledge
Representation and Reasoning, KRRB@ston, 1992.

[19] Fariba Sadri and Robert Kowalski. A Theoreroving Approach to Database Integrity
Checking. In Foundations of Deductive Databased agic Programming, J. Minker (ed.),
Morgan Kaufmann, 1988, 275-312.

[20] Fariba Sadri and Robert Kowalski. Variantgtef event calculus, Proceedings of the
International Conference on Logic Programming, Kgvea, Japan, Stirling L. (Ed), The
MIT Press, June 1995, 67-81.

[21] Yoav Shoham. Agent-oriented programmiAgJournal vol. 60, no. 1, (1993) 51-92.

[22] Gerd Wagner. Vivid Agents - How they deliberahow they react, how they are
verified. Extended version of G. Wagner: A Logigald Operational Model of Scalable
Knowledge- And Perception-Based Agents. In W. Varvdlde and J.W. Perram (Eds.),
Agents Breaking Away, Proc. of MAAMAW'96, Springeecture Notes in Artificial
Intelligence 1038, 1996.

[23] Gerhard Wetzel , Robert A. Kowalski and FraseaeToni. A theorem-proving approach
to CLP. InWorkshop Logische Programmieryrigrall A., Geske U. (eds.), vol. 270 of
GMD-Studien, September 1995, 63-72.

[24] Thomas Eiter, V.S.Subrahmanian and George.Rétkrogeneous active agentsAl.
Journal, vol. 108, no. 1-2, (March 1999) 179-255.

[25] M. Gelfond and V. Lifschitz. Representingiaotand change by logic programs
Journal of logic programmingvol. 17, (1993) 301-322.

26

27

