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Abstract

A multiagent system may be thought of as an artificial society of autonomous software
agents and we can apply concepts borrowed from welfare economics and social choice theory
to assess the social welfare of such an agent society. In this paper, we study an abstract
negotiation framework where agents can agree on multilateral deals to exchange bundles
of indivisible resources. We then analyse how these deals affect social welfare for different
instances of the basic framework and different interpretations of the concept of social welfare
itself. In particular, we show how certain classes of deals are both sufficient and necessary
to guarantee that a socially optimal allocation of resources will be reached eventually.

1. Introduction

A multiagent system may be thought of as an artificial society of autonomous software
agents. Negotiation over the distribution of resources (or tasks) amongst the agents inhab-
iting such a society is an important area of research in artificial intelligence and computer
science (Rosenschein & Zlotkin, 1994; Kraus, 2001; Chavez, Moukas, & Maes, 1997; Sand-
holm, 1999). A number of variants of this problem have been studied in the literature.
Here we consider the case of an artificial society of agents where, to begin with, each agent
holds a bundle of indivisible resources to which it assigns a certain utility. Agents may then
negotiate with each other in order to agree on the redistribution of some of these resources
to benefit either themselves or the agent society they inhabit.

Rather than being concerned with specific strategies for negotiation, we analyse how the
redistribution of resources by means of negotiation affects the well-being of the agent society
as a whole. To this end, we make use of formal tools for measuring social welfare developed
in welfare economics and social choice theory (Moulin, 1988; Arrow, Sen, & Suzumura,
2002). In the multiagent systems literature, the utilitarian interpretation of the concept of
social welfare is usually taken for granted (Rosenschein & Zlotkin, 1994; Sandholm, 1999;
Wooldridge, 2002), i.e. whatever increases the average welfare of the agents inhabiting a
society is taken to be beneficial for society as well. This is not the case in welfare economics,
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for instance, where different notions of social welfare are being studied and compared with
each other. Here, the concept of egalitarian social welfare takes a particularly prominent
role (Sen, 1970; Rawls, 1971; Moulin, 1988; Arrow et al., 2002). In this model, social
welfare is tied to the individual welfare of the weakest member of society, which facilitates
the incorporation of a notion of fairness into the resource allocation process. While the
discussion of the respective advantages and drawbacks of different notions of social welfare
in the social sciences tends to be dominated by ethical considerations,1 in the context
of societies of artificial software agents the choice of a suitable formal tool for modelling
social welfare boils down to a clear-cut (albeit not necessarily simple) technical design
decision (Endriss & Maudet, 2004). Indeed, different applications may call for different
social criteria. For instance, for the application studied by Lemâıtre, Verfaillie, and Bataille
(1999), where agents need to agree on the access to an earth observation satellite which has
been funded jointly by the owners of these agents, it is important that each one of them
receives a “fair” share of the common resource. Here, a society governed by egalitarian
principles may be the most appropriate. In an electronic commerce application running on
the Internet where agents have little or no commitments towards each other, on the other
hand, egalitarian principles seem of little relevance. In such a scenario, utilitarian social
welfare would provide an appropriate reflection of the overall profit generated. Besides
utilitarian and egalitarian social welfare, we are also going to discuss notions such as Pareto
and Lorenz optimality (Moulin, 1988), as well as envy-freeness (Brams & Taylor, 1996).

In this paper, we study the effect that negotiation over resources has on society for a
number of different interpretations of the concept of social welfare. In particular, we show
how certain classes of deals regarding the exchange of resources allow us to guarantee that a
socially optimal allocation of resources will be reached eventually. These convergence results
may be interpreted as the emergence of a particular global behaviour (at the level of society)
in reaction to local behaviour governed by the negotiation strategies of individual agents
(which determine the kinds of deals agents are prepared to accept). The work described here
is complementary to the large body of literature on mechanism design and game-theoretical
models of negotiation in multiagent systems (see e.g. Rosenschein & Zlotkin, 1994; Kraus,
2001; Fatima, Wooldridge, & Jennings, 2004). While such work is typically concerned with
negotiation at the local level (how can we design mechanisms that provide an incentive
to individual agents to adopt a certain negotiation strategy?), we address negotiation at a
global level by analysing how the actions taken by agents locally affect the overall system
from a social point of view.

As we shall see, truly multilateral deals involving any number of agents as well as any
number of resources may be necessary to be able to negotiate socially optimal allocations
of resources. This is certainly true as long as we use arbitrary utility functions to model
the preferences of individual agents. In some application domains, however, where utility
functions may be assumed to be subject to certain restrictions (such as being additive), we
are able to obtain stronger results and show that also structurally simpler classes of deals
(in particular, deals involving only a single resource at a time) can be sufficient to negotiate
socially optimal allocations. Nevertheless, for other seemingly strong restrictions on agents’

1. A famous example is Rawls’ veil of ignorance, a thought experiment designed to establish what constitutes
a just society (Rawls, 1971).
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utility functions (such as the restriction to dichotomous preferences) we are able to show
that no reduction in the structural complexity of negotiation is possible.

Our approach to multiagent resource allocation is of a distributed nature. In general,
the allocation procedure used to find a suitable allocation of resources could be either cen-
tralised or distributed. In the centralised case, a single entity decides on the final allocation
of resources amongst agents, possibly after having elicited the agents’ preferences over al-
ternative allocations. Typical examples are combinatorial auctions (Cramton, Shoham, &
Steinberg, 2006). Here the central entity is the auctioneer and the reporting of preferences
takes the form of bidding. In truly distributed approaches, on the other hand, allocations
emerge as the result of a sequence of local negotiation steps. Both approaches have their
advantages and disadvantages. Possibly the most important argument in favour of auction-
based mechanisms concerns the simplicity of the communication protocols required to im-
plement such mechanisms. Another reason for the popularity of centralised mechanisms is
the recent push in the design of powerful algorithms for combinatorial auctions that, for
the first time, perform reasonably well in practice (Fujishima, Leyton-Brown, & Shoham,
1999; Sandholm, 2002). Of course, such techniques are, in principle, also applicable in the
distributed case, but research in this area has not yet reached the same level of maturity
as for combinatorial auctions. An important argument against centralised approaches is
that it may be difficult to find an agent that could assume the role of an “auctioneer” (for
instance, in view of its computational capabilities or in view of its trustworthiness).

The line of research pursued in this paper has been inspired by Sandholm’s work on
sufficient and necessary contract (i.e. deal) types for distributed task allocation (Sandholm,
1998). Since then, it has been further developed by the present authors, their colleagues, and
others in the context of resource allocation problems (Bouveret & Lang, 2005; Chevaleyre,
Endriss, Estivie, & Maudet, 2004; Chevaleyre, Endriss, Lang, & Maudet, 2005a; Chevaleyre,
Endriss, & Maudet, 2005b; Dunne, 2005; Dunne, Laurence, & Wooldridge, 2004; Dunne,
Wooldridge, & Laurence, 2005; Endriss & Maudet, 2004, 2005; Endriss, Maudet, Sadri,
& Toni, 2003a, 2003b). In particular, we have extended Sandholm’s framework by also
addressing negotiation systems without compensatory side payments (Endriss et al., 2003a),
as well as agent societies where the concept of social welfare is given a different interpretation
to that in the utilitarian programme (Endriss et al., 2003b; Endriss & Maudet, 2004). The
present paper provides a comprehensive overview of the most fundamental results, mostly on
the convergence to an optimal allocation with respect to different notions of social welfare,
in a very active and timely area of ongoing research.

The remainder of this paper is organised as follows. Section 2 introduces the basic ne-
gotiation framework for resource reallocation we are going to consider. It gives definitions
for the central notions of allocation, deal, and utility, and it discusses possible restrictions
to the class of admissible deals (both structural and in terms of acceptability to individual
agents). Section 2 also introduces the various concepts of a social preference we are going
to consider in this paper. Subsequent sections analyse specific instances of the basic ne-
gotiation framework (characterised, in particular, by different criteria for the acceptability
of a proposed deal) with respect to specific notions of social welfare. In the first instance,
agents are assumed to be rational (and “myopic”) in the sense of never accepting a deal
that would result in a negative payoff. Section 3 analyses the first variant of this model
of rational negotiation, which allows for monetary side payments to increase the range of
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acceptable deals. As we shall see, this model facilitates negotiation processes that maximise
utilitarian social welfare. If side payments are not possible, we cannot guarantee outcomes
with maximal social welfare, but it is still possible to negotiate Pareto optimal allocations.
This variant of the rational model is studied in Section 4. Both Section 3 and 4 also in-
vestigate how restrictions to the range of utility functions agents may use to model their
preferences can affect such convergence results.

In the second part of the paper we apply our methodology to agent societies where the
concept of social welfare is given a different kind of interpretation than is commonly the
case in the multiagent systems literature. Firstly, in Section 5 we analyse our framework
of resource allocation by negotiation in the context of egalitarian agent societies. Then
Section 6 discusses a variant of the framework that combines ideas from both the utilitarian
and the egalitarian programme and enables agents to negotiate Lorenz optimal allocations
of resources. Finally, Section 7 introduces the idea of using an elitist model of social welfare
for applications where societies of agents are merely a means of enabling at least one agent
to achieve their goal. This section also reviews the concept of envy-freeness and discusses
ways of measuring different degrees of envy.

Section 8 summarises our results and concludes with a brief discussion of the concept of
welfare engineering, i.e. with the idea of choosing tailor-made definitions of social welfare
for different applications and designing agents’ behaviour profiles accordingly.

2. Preliminaries

The basic scenario of resource allocation by negotiation studied in this paper is that of an
artificial society inhabited by a number of agents, each of which initially holds a certain
number of resources. These agents will typically ascribe different values (utilities) to differ-
ent bundles of resources. They may then engage in negotiation and agree on the reallocation
of some of the resources, for example, in order to improve their respective individual welfare
(i.e. to increase their utility). Furthermore, we assume that it is in the interest of the system
designer that these distributed negotiation processes —somehow— also result in a positive
payoff for society as a whole.

2.1 Basic Definitions

An instance of our abstract negotiation framework consists of a finite set of (at least two)
agents A and a finite set of resources R. Resources are indivisible and non-sharable. An
allocation of resources is a partitioning of R amongst the agents in A.

Definition 1 (Allocations) An allocation of resources is a function A from A to subsets
of R such that A(i) ∩A(j) = { } for i 6= j and

⋃
i∈AA(i) = R.

For example, given an allocation A with A(i) = {r3, r7}, agent i would own resources r3 and
r7. Given a particular allocation of resources, agents may agree on a (multilateral) deal to
exchange some of the resources they currently hold. In the most general case, any numbers
of agents and resources could be involved in a single deal. From an abstract point of view,
a deal takes us from one allocation of resources to the next. That is, we may characterise
a deal as a pair of allocations.
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Definition 2 (Deals) A deal is a pair δ = (A,A′) where A and A′ are allocations of
resources with A 6= A′.

The set of agents involved in a deal δ = (A,A′) is given by Aδ = {i ∈ A |A(i) 6= A′(i)}.
The composition of two deals is defined as follows: If δ1 = (A,A′) and δ2 = (A′, A′′), then
δ1 ◦ δ2 = (A,A′′). If a given deal is the composition of two deals that concern disjoint sets
of agents, then that deal is said to be independently decomposable.

Definition 3 (Independently decomposable deals) A deal δ is called independently
decomposable iff there exist deals δ1 and δ2 such that δ = δ1 ◦ δ2 and Aδ1 ∩ Aδ2 = { }.

Observe that if δ = (A,A′) is independently decomposable then there exists an intermediate
allocation B different from both A and A′ such that the intersection of {i ∈ A |A(i) 6= B(i)}
and {i ∈ A |B(i) 6= A′(i)} is empty, i.e. such that the union of {i ∈ A |A(i) = B(i)} and
{i ∈ A |B(i) = A′(i)} is the full set of agents A. Hence, δ = (A,A′) not being independently
decomposable implies that there exists no allocation B different from both A and A′ such
that either B(i) = A(i) or B(i) = A′(i) for all agents i ∈ A (we are going to use this fact in
the proofs of our “necessity theorems” later on).

The value an agent i ∈ A ascribes to a particular set of resources R will be modelled by
means of a utility function, that is, a function from sets of resources to real numbers. We
are going to consider both general utility functions (without any restrictions) and several
more specific classes of functions.

Definition 4 (Utility functions) Every agent i ∈ A is equipped with a utility function
ui : 2R → R. We are going to consider the following restricted classes of utility functions:

• ui is non-negative iff ui(R) ≥ 0 for all R ⊆ R.

• ui is positive iff it is non-negative and ui(R) 6= 0 for all R ⊆ R with R 6= { }.

• ui is monotonic iff R1 ⊆ R2 implies ui(R1) ≤ ui(R2) for all R1, R2 ⊆ R.

• ui is additive iff ui(R) =
∑

r∈R ui({r}) for all R ⊆ R.

• ui is a 0-1 function iff it is additive and ui({r}) = 0 or ui({r}) = 1 for all r ∈ R.

• ui is dichotomous iff ui(R) = 0 or ui(R) = 1 for all R ⊆ R.

Recall that, given an allocation A, the set A(i) is the bundle of resources held by agent i
in that situation. We are usually going to abbreviate ui(A) = ui(A(i)) for the utility value
assigned by agent i to that bundle.

2.2 Deal Types and Rationality Criteria

In this paper we investigate what kinds of negotiation outcomes agents can achieve by using
different classes of deals. A class of deals may be characterised by both structural constraints
(number of agents and resources involved, etc.) and rationality constraints (relating to the
changes in utility experienced by the agents involved).

Following Sandholm (1998), we can distinguish a number of structurally different types
of deals. The most basic are 1-deals, where a single item is passed from one agent to another.
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Definition 5 (1-deals) A 1-deal is a deal involving the reallocation of exactly one resource.

This corresponds to the “classical” form of a contract typically found in the Contract Net
protocol (Smith, 1980). Deals where one agent passes a set of resources on to another
agent are called cluster deals. Deals where one agent gives a single item to another agent
who returns another single item are called swap deals. Sometimes it can also be necessary
to exchange resources between more than just two agents. In Sandholm’s terminology, a
multiagent deal is a deal that could involve any number of agents, where each agent passes
at most one resource to each of the other agents taking part. Finally, deals that combine the
features of the cluster and the multiagent deal type are called combined deals by Sandholm.
These could involve any number of agents and any number of resources. Therefore, every
deal δ, in the sense of Definition 2, is a combined deal. In the remainder of this paper, when
speaking about deals without further specifying their type, we are always going to refer to
combined deals (without any structural restrictions).2

An agent may or may not find a particular deal δ acceptable. Whether or not an agent
will accept a given deal depends on the rationality criterion it applies when evaluating deals.
A selfish agent i may, for instance, only accept deals δ = (A,A′) that strictly improve its
personal welfare: ui(A) < ui(A′). We call criteria such as this, which only depend on
the utilities of the agent in question, personal rationality criteria. While we do not want
to admit arbitrary rationality criteria, the classes of deals that can be characterised using
personal rationality criteria alone is somewhat too narrow for our purposes. Instead, we are
going to consider rationality criteria that are local in the sense of only depending on the
utility levels of the agents involved in the deal concerned.

Definition 6 (Local rationality criteria) A class ∆ of deals is said to be characterised
by a local rationality criterion iff it is possible to define a predicate Φ over 2A×R×R such
that a deal δ = (A,A′) belongs to ∆ iff Φ({(i, ui(A), ui(A′)) | i ∈ Aδ}) holds true.

That is, Φ is mapping a set of triples of one agent name and two reals (utilities) each to
truth values. The locality aspect comes in by only applying Φ to the set of triples for
those agents whose bundle changes with δ. Therefore, for instance, the class of all deals
that increase the utility of the previously poorest agent is not characterisable by a local
rationality criterion (because this condition can only be checked by inspecting the utilities
of all the agents in the system).

2.3 Socially Optimal Allocations of Resources

As already mentioned in the introduction, we may think of a multiagent system as a society
of autonomous software agents. While agents make their local decisions on what deals to
propose and to accept, we can also analyse the system from a global or societal point of
view and may thus prefer certain allocations of resources over others. To this end, welfare
economics provides formal tools to assess how the distribution of resources amongst the
members of a society affects the well-being of society as a whole (Sen, 1970; Moulin, 1988;
Arrow et al., 2002).

2. The ontology of deal types discussed here is, of course, not exhaustive. It would, for instance, also be of
interest to consider the class of bilateral deals (involving exactly two agents but any number of items).

320



Negotiating Socially Optimal Allocations of Resources

Given the preference profiles of the individual agents in a society (which, in our frame-
work, are represented by means of their utility functions), a social welfare ordering over
alternative allocations of resources formalises the notion of a society’s preferences. Next we
are going to formally introduce the most important social welfare orderings considered in
this paper (some additional concepts of social welfare are discussed towards the end of the
paper). In some cases, social welfare is best defined in terms of a collective utility function.
One such example is the notion of utilitarian social welfare.

Definition 7 (Utilitarian social welfare) The utilitarian social welfare swu(A) of an
allocation of resources A is defined as follows:

swu(A) =
∑
i∈A

ui(A)

Observe that maximising the collective utility function swu amounts to maximising the
average utility enjoyed by the agents in the system. Asking for maximal utilitarian social
welfare is a very strong requirement. A somewhat weaker concept is that of Pareto optimal-
ity. An allocation is Pareto optimal iff there is no other allocation with higher utilitarian
social welfare that would be no worse for any of of the agents in the system (i.e. that would
be strictly better for at least one agent without being worse for any of the others).

Definition 8 (Pareto optimality) An allocation A is called Pareto optimal iff there is
no allocation A′ such that swu(A) < swu(A′) and ui(A) ≤ ui(A′) for all i ∈ A.

The first goal of an egalitarian society should be to increase the welfare of its weakest
member (Rawls, 1971; Sen, 1970). In other words, we can measure the social welfare of
such a society by measuring the welfare of the agent that is currently worst off.

Definition 9 (Egalitarian social welfare) The egalitarian social welfare swe(A) of an
allocation of resources A is defined as follows:

swe(A) = min{ui(A) | i ∈ A}

The egalitarian collective utility function swe gives rise to a social welfare ordering over
alternative allocations of resources: A′ is strictly preferred over A iff swe(A) < swe(A′). This
ordering is sometimes called the maximin-ordering. The maximin-ordering only takes into
account the welfare of the currently weakest agent, but is insensitive to utility fluctuations
in the rest of society. To allow for a finer distinction of the social welfare of different
allocations we introduce the so-called leximin-ordering.

For a society with n agents, let {u1, . . . , un} be the set of utility functions for that
society. Then every allocation A determines a utility vector 〈u1(A), . . . , un(A)〉 of length n.
If we rearrange the elements of that vector in increasing order we obtain the ordered utility
vector for allocation A, which we are going to denote by ~u(A). The number ~ui(A) is the ith
element in such a vector (for 1 ≤ i ≤ |A|). That is, ~u1(A) for instance, is the utility value
assigned to allocation A by the currently weakest agent. We now declare a lexicographic
ordering over vectors of real numbers (such as ~u(A)) in the usual way: ~x lexicographically
precedes ~y iff ~x is a (proper) prefix of ~y or ~x and ~y share a common (proper) prefix of length
k (which may be 0) and we have ~xk+1 < ~yk+1.
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Definition 10 (Leximin-ordering) The leximin-ordering ≺ over alternative allocations
of resources is defined as follows:

A ≺ A′ iff ~u(A) lexicographically precedes ~u(A′)

We write A � A′ iff either A ≺ A′ or ~u(A) = ~u(A′). An allocation of resources A is called
leximin-maximal iff there is no other allocation A′ such that A ≺ A′.

Finally, we introduce the concept of Lorenz domination, a social welfare ordering that
combines utilitarian and egalitarian aspects of social welfare. The basic idea is to endorse
deals that result in an improvement with respect to utilitarian welfare without causing a
loss in egalitarian welfare, and vice versa.

Definition 11 (Lorenz domination) Let A and A′ be allocations for a society with n
agents. Then A is Lorenz dominated by A′ iff

k∑
i=1

~ui(A) ≤
k∑

i=1

~ui(A′)

for all k with 1 ≤ k ≤ n and, furthermore, that inequality is strict for at least one k.

For any k with 1 ≤ k ≤ n, the sum referred to in the above definition is the sum of the
utility values assigned to the respective allocation of resources by the k weakest agents. For
k = 1, this sum is equivalent to the egalitarian social welfare for that allocation. For k = n,
it is equivalent to the utilitarian social welfare. An allocation of resources is called Lorenz
optimal iff it is not Lorenz dominated by any other allocation.

We illustrate some of the above social welfare concepts (and the use of ordered utility
vectors) by means of an example. Consider a society with three agents and two resources,
with the agents’ utility functions given by the following table:

u1({ }) = 0 u2({ }) = 0 u3({ }) = 0
u1({r1}) = 5 u2({r1}) = 4 u3({r1}) = 2
u1({r2}) = 3 u2({r2}) = 2 u3({r2}) = 6
u1({r1, r2}) = 8 u2({r1, r2}) = 17 u3({r1, r2}) = 7

First of all, we observe that the egalitarian social welfare will be 0 for any possible allocation
in this scenario, because at least one of the agents would not get any resources at all. Let
A be the allocation where agent 2 holds the full bundle of resources. Observe that this is
the allocation with maximal utilitarian social welfare. The corresponding utility vector is
〈0, 17, 0〉, i.e. ~u(A) = 〈0, 0, 17〉. Furthermore, let A′ be the allocation where agent 1 gets
r1, agent 2 gets r2, and agent 3 has to be content with the empty bundle. Now we get an
ordered utility vector of 〈0, 2, 5〉. The initial element in either vector is 0, but 0 < 2, i.e.
~u(A) lexicographically precedes ~u(A′). Hence, we get A ≺ A′, i.e. A′ would be the socially
preferred allocation with respect to the leximin-ordering. Furthermore, both A and A′ are
Pareto optimal and neither is Lorenz-dominated by the other. Starting from allocation A′,
agents 1 and 2 swapping their respective bundles would result in an allocation with the
ordered utility vector 〈0, 3, 4〉, i.e. this move would result in a Lorenz improvement.
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3. Rational Negotiation with Side Payments

In this section, we are going to discuss a first instance of the general framework of resource
allocation by negotiation set out earlier. This particular variant, which we shall refer to as
the model of rational negotiation with side payments (or simply with money), is equivalent
to a framework put forward by Sandholm where agents negotiate in order to reallocate
tasks (Sandholm, 1998). For this variant of the framework, our aim will be to negotiate
allocations with maximal utilitarian social welfare.

3.1 Individual Rationality

In this instance of our negotiation framework, a deal may be accompanied by a number
of monetary side payments to compensate some of the agents involved for accepting a loss
in utility. Rather than specifying for each pair of agents how much money the former is
supposed to pay to the latter, we simply say how much money each agent either pays out
or receives. This can be modelled by using what we call a payment function.

Definition 12 (Payment functions) A payment function is a function p from A to real
numbers satisfying the following condition:∑

i∈A
p(i) = 0

Here, p(i) > 0 means that agent i pays the amount of p(i), while p(i) < 0 means that it
receives the amount of −p(i). By definition of a payment function, the sum of all payments
is 0, i.e. the overall amount of money present in the system does not change.3

In the rational negotiation model, agents are self-interested in the sense of only propos-
ing or accepting deals that strictly increase their own welfare (for a justification of this
approach we refer to Sandholm, 1998). This “myopic” notion of individual rationality may
be formalised as follows.

Definition 13 (Individual rationality) A deal δ = (A,A′) is called individually rational
iff there exists a payment function p such that ui(A′) − ui(A) > p(i) for all i ∈ A, except
possibly p(i) = 0 for agents i with A(i) = A′(i).

That is, agent i will be prepared to accept the deal δ iff it has to pay less than its gain in
utility or it will get paid more than its loss in utility, respectively. Only for agents i not
affected by the deal, i.e. in case A(i) = A′(i), there may be no payment at all. For example,
if ui(A) = 8 and ui(A′) = 5, then the utility of agent i would be reduced by 3 units if it were
to accept the deal δ = (A,A′). Agent i will only agree to this deal if it is accompanied by
a side payment of more than 3 units; that is, if the payment function p satisfies −3 > p(i).

For any given deal, there will usually be a range of possible side payments. How agents
manage to agree on a particular one is not a matter of consideration at the abstract level
at which we are discussing this framework here. We assume that a deal will go ahead
as long as there exists some suitable payment function p. We should point out that this

3. As the overall amount of money present in the system stays constant throughout the negotiation process,
it makes sense not to take it into account for the evaluation of social welfare.
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assumption may not be justified under all circumstances. For instance, if utility functions
are not publicly known and agents are risk-takers, then a potential deal may not be identified
as such, because some of the agents may understate their interest in that deal in order to
maximise their expected payoff (Myerson & Satterthwaite, 1983). Therefore, the theoretical
results on the reachability of socially optimal allocations reported below will only apply
under the assumption that such strategic considerations will not prevent agents from making
mutually beneficial deals.

3.2 An Example

As an example, consider a system with two agents, agent 1 and agent 2, and a set of two
resources R = {r1, r2}. The following table specifies the values of the utility functions u1

and u2 for every subset of {r1, r2}:

u1({ }) = 0 u2({ }) = 0
u1({r1}) = 2 u2({r1}) = 3
u1({r2}) = 3 u2({r2}) = 3
u1({r1, r2}) = 7 u2({r1, r2}) = 8

Also suppose agent 1 initially holds the full set of resources {r1, r2} and agent 2 does not
own any resources to begin with.

The utilitarian social welfare for this initial allocation is 7, but it could be 8, namely if
agent 2 had both resources. As we are going to see next, the simple class of 1-deals alone are
not always sufficient to guarantee the optimal outcome of a negotiation process (if agents
abide to the individual rationality criterion for the acceptability of a deal). In our example,
the only possible 1-deals would be to pass either r1 or r2 from agent 1 to agent 2. In either
case, the loss in utility incurred by agent 1 (5 or 4, respectively) would outweigh the gain
of agent 2 (3 for either deal), so there is no payment function that would make these deals
individually rational. The cluster deal of passing {r1, r2} from agent 1 to 2, on the other
hand, would be individually rational if agent 2 paid agent 1 an amount of, say, 7.5 units.

Similarly to the example above, we can also construct scenarios where swap deals or
multiagent deals are necessary (i.e. where cluster deals alone would not be sufficient to
guarantee maximal social welfare). This also follows from Theorem 2, which we are going
to present later on in this section. Several concrete examples are given by Sandholm (1998).

3.3 Linking Individual Rationality and Social Welfare

The following result, first stated in this form by Endriss et al. (2003a), says that a deal (with
money) is individually rational iff it increases utilitarian social welfare. We are mainly going
to use this lemma to give a simple proof of Sandholm’s main result on sufficient contract
types (Sandholm, 1998), but it has also found useful applications in its own right (Dunne
et al., 2005; Dunne, 2005; Endriss & Maudet, 2005).

Lemma 1 (Individually rational deals and utilitarian social welfare) A deal δ =
(A,A′) is individually rational iff swu(A) < swu(A′).
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Proof. ‘⇒’: By definition, δ = (A,A′) is individually rational iff there exists a payment
function p such that ui(A′) − ui(A) > p(i) holds for all i ∈ A, except possibly p(i) = 0 in
case A(i) = A′(i). If we add up the inequations for all agents i ∈ A we get:∑

i∈A
(ui(A′)− ui(A)) >

∑
i∈A

p(i)

By definition of a payment function, the righthand side equates to 0 while, by definition of
utilitarian social welfare, the lefthand side equals swu(A′) − swu(A). Hence, we really get
swu(A) < swu(A′) as claimed.

‘⇐’: Now let swu(A) < swu(A′). We have to show that δ = (A,A′) is an individually
rational deal. We are done if we can prove that there exists a payment function p such that
ui(A′)− ui(A) > p(i) for all i ∈ A. We define the function p : A → R as follows:

p(i) = ui(A′)− ui(A)− swu(A′)− swu(A)
|A|

(for i ∈ A)

First, observe that p really is a payment function, because we get
∑

i∈A p(i) = 0. We also
get ui(A′) − ui(A) > p(i) for all i ∈ A, because we have swu(A′) − swu(A′) > 0. Hence, δ
must indeed be an individually rational deal. 2

Lemma 1 suggests that the function swu does indeed provide an appropriate measure of
social well-being in societies of agents that use the notion of individual rationality (as given
by Definition 13) to guide their behaviour during negotiation. It also shows that individual
rationality is indeed a local rationality criterion in the sense of Definition 6.

3.4 Maximising Utilitarian Social Welfare

Our next aim is to show that any sequence of deals in the rational negotiation model
with side payments will converge to an allocation with maximal utilitarian social welfare;
that is, the class of individually rational deals (as given by Definition 13) is sufficient to
guarantee optimal outcomes for agent societies measuring welfare according to the utilitarian
programme (Definition 7). This has originally been shown by Sandholm (1998) in the
context of a framework where rational agents negotiate in order to reallocate tasks and
where the global aim is to minimise the overall costs of carrying out these tasks.

Theorem 1 (Maximal utilitarian social welfare) Any sequence of individually ratio-
nal deals will eventually result in an allocation with maximal utilitarian social welfare.

Proof. Given that both the set of agents A as well as the set of resources R are required
to be finite, there can be only a finite number of distinct allocations of resources. Further-
more, by Lemma 1, any individually rational deal will strictly increase utilitarian social
welfare. Hence, negotiation must terminate after a finite number of deals. For the sake
of contradiction, assume that the terminal allocation A does not have maximal utilitarian
social welfare, i.e. there exists another allocation A′ with swu(A) < swu(A′). But then, by
Lemma 1, the deal δ = (A,A′) would be individually rational and thereby possible, which
contradicts our earlier assumption of A being a terminal allocation. 2
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At first sight, this result may seem almost trivial. The notion of a multilateral deal without
any structural restrictions is a very powerful one. A single such deal allows for any number
of resources to be moved between any number of agents. From this point of view, it is not
particularly surprising that we can always reach an optimal allocation (even in just a single
step!). Furthermore, finding a suitable deal is a very complex task, which may not always
be viable in practice. The crucial point of Theorem 1 is that any sequence of deals will
result in an optimal allocation. That is, whatever deals are agreed on in the early stages of
negotiation, the system will never get stuck in a local optimum and finding an allocation
with maximal social welfare remains an option throughout (provided, of course, that agents
are actually able to identify any deal that is theoretically possible). Given the restriction to
deals that are individually rational for all the agents involved, social welfare must increase
with every single deal. Therefore, negotiation always pays off, even if it has to stop early
due to computational limitations.

The issue of complexity is still an important one. If the full range of deals is too large
to be managed in practice, it is important to investigate how close we can get to finding
an optimal allocation if we restrict the set of allowed deals to certain simple patterns.
Andersson and Sandholm (2000), for instance, have conducted a number of experiments on
the sequencing of certain contract/deal types to reach the best possible allocations within
a limited amount of time. For a complexity-theoretic analysis of the problem of deciding
whether it is possible to reach an optimal allocation by means of structurally simple types
of deals (in particular 1-deals), we refer to recent work by Dunne et al. (2005).

3.5 Necessary Deals

The next theorem improves upon Sandholm’s main result regarding necessary contract
types (Sandholm, 1998), by extending it to the cases where either all utility functions are
monotonic or all utility functions are dichotomous.4 Sandholm’s original result, translated
into our terminology, states that for any system (consisting of a set of agents A and a
set of resources R) and any (not independently decomposable) deal δ for that system, it
is possible to construct utility functions and choose an initial allocation of resources such
that δ is necessary to reach an optimal allocation, if agents only agree to individually
rational deals. All other findings on the insufficiency of certain types of contracts reported
by Sandholm (1998) may be considered corollaries to this. For instance, the fact that,
say, cluster deals alone are not sufficient to guarantee optimal outcomes follows from this
theorem if we take δ to be any particular swap deal for the system in question.

Theorem 2 (Necessary deals with side payments) Let the sets of agents and re-
sources be fixed. Then for every deal δ that is not independently decomposable, there exist
utility functions and an initial allocation such that any sequence of individually rational
deals leading to an allocation with maximal utilitarian social welfare must include δ. This
continues to be the case even when either all utility functions are required to be monotonic
or all utility functions are required to be dichotomous.

4. In fact, our theorem not only sharpens but also also corrects a mistake in previous expositions of this
result (Sandholm, 1998; Endriss et al., 2003a), where the restriction to deals that are not independently
decomposable had been omitted.

326



Negotiating Socially Optimal Allocations of Resources

Proof. Given a set of agents A and a set of resources R, let δ = (A,A′) with A 6= A′ be
any deal for this system. We need to show that there are a collection of utility functions
and an initial allocation such that δ is necessary to reach an allocation with maximal social
welfare. This would be the case if A′ had maximal social welfare, A had the second highest
social welfare, and A were the initial allocation of resources.

We first prove the existence of such a collection of functions for the case where all utility
functions are required to be monotonic. Fix ε such that 0 < ε < 1. As we have A 6= A′,
there must be an agent j ∈ A such that A(j) 6= A′(j). We now define utility functions ui

for agents i ∈ A and sets of resources R ⊆ R as follows:

ui(R) =
{
|R|+ ε if R = A′(i) or (R = A(i) and i 6= j)
|R| otherwise

Observe that ui is a monotonic utility function for every i ∈ A. We get swu(A′) = |R|+ε·|A|
and swu(A) = swu(A′) − ε. Because δ = (A,A′) is not individually decomposable, there
exists no allocation B different from both A and A′ such that either B(i) = A(i) or B(i) =
A′(i) for all agents i ∈ A. Hence, swu(B) ≤ swu(A) for any other allocation B. That
is, A′ is the (unique) allocation with maximal social welfare and the only allocation with
higher social welfare than A. Therefore, if we were to make A the initial allocation then
δ = (A,A′) would be the only deal increasing social welfare. By Lemma 1, this means that
δ would be the only individually rational (and thereby the only possible) deal. Hence, δ is
indeed necessary to achieve maximal utilitarian social welfare.

The proof for the case of dichotomous utility functions is very similar; we only need to
show that a suitable collection of dichotomous utility functions can be constructed. Again,
let j be an agent with A(j) 6= A′(j). We can use the following collection of functions:

ui(R) =
{

1 if R = A′(i) or (R = A(i) and i 6= j)
0 otherwise

We get swu(A′) = |A|, swu(A) = swu(A′)−1 and swu(B) ≤ swu(A) for all other allocations
B. Hence, A is not socially optimal and, with A as the initial allocation, δ would be the
only deal that is individually rational. 2

We should stress that the set of deals that are not independently decomposable includes
deals involving any number of agents and/or any number of resources. Hence, by Theorem 2,
any negotiation protocol that puts restrictions on the structural complexity of deals that
may be proposed will fail to guarantee optimal outcomes, even when there are no constraints
on either time or computational resources. This emphasises the high complexity of our
negotiation framework (see also Dunne et al., 2005; Chevaleyre et al., 2004; Endriss &
Maudet, 2005; Dunne, 2005). The fact that the necessity of (almost) the full range of deals
persists, even when all utility functions are subject to certain restrictions makes this result
even more striking. This is true in particular for the case of dichotomous functions, which
are in some sense the simplest class of utility functions (as they can only distinguish between
“good” and “bad” bundles).

To see that the restriction to deals that are not independently decomposable matters,
consider a scenario with four agents and two resources. If the deal δ of moving r1 from
agent 1 to agent 2, and r2 from agent 3 to agent 4 is individually rational, then so will be
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either one of the two “subdeals” of moving either r1 from agent 1 to agent 2 or r2 from
agent 3 to agent 4. Hence, the deal δ (which is independently decomposable) cannot be
necessary in the sense of Theorem 2 (with reference to our proof above, in the case of δ
there are allocations B such that either B(i) = A(i) or B(i) = A′(i) for all agents i ∈ A,
i.e. we could get swu(B) = swu(A′)).

3.6 Additive Scenarios

Theorem 2 is a negative result, because it shows that deals of any complexity may be
required to guarantee optimal outcomes of negotiation. This is partly a consequence of the
high degree of generality of our framework. In Section 2.1, we have defined utility functions
as arbitrary functions from sets of resources to real numbers. For many application domains
this may be unnecessarily general or even inappropriate and we may be able to obtain
stronger results for specific classes of utility functions that are subject to certain restrictions.
Of course, we have already seen that this is not the case for either monotonicity (possibly
the most natural restriction) or dichotomy (possibly the most severe restriction).

Here, we are going to consider the case of additive utility functions, which are appro-
priate for domains where combining resources does not result in any synergy effects (in the
sense of increasing an agent’s welfare). We refer to systems where all agents have additive
utility functions as additive scenarios. The following theorem shows that for these additive
scenarios 1-deals are sufficient to guarantee outcomes with maximal social welfare.5

Theorem 3 (Additive scenarios) In additive scenarios, any sequence of individually ra-
tional 1-deals will eventually result in an allocation with maximal utilitarian social welfare.

Proof. Termination is shown as for Theorem 1. We are going to show that, whenever the
current allocation does not have maximal social welfare, then there is still a possible 1-deal
that is individually rational.

In additive domains, the utilitarian social welfare of a given allocation may be computed
by adding up the appropriate utility values for all the single resources in R. For any
allocation A, let fA be the function mapping each resource r ∈ R to the agent i ∈ A that
holds r in situation A (that is, we have fA(r) = i iff r ∈ A(i)). The utilitarian social welfare
for allocation A is then given by the following formula:

swu(A) =
∑
r∈R

ufA(r)({r})

Now suppose that negotiation has terminated with allocation A and there are no more
individually rational 1-deals possible. Furthermore, for the sake of contradiction, assume
that A is not an allocation with maximal social welfare, i.e. there exists another allocation
A′ with swu(A) < swu(A′). But then, by the above characterisation of social welfare for
additive scenarios, there must be at least one resource r ∈ R such that ufA(r)({r}) <
ufA′ (r)({r}). That is, the 1-deal δ of passing r from agent fA(r) on to agent fA′(r) would
increase social welfare. Therefore, by Lemma 1, δ must be an individually rational deal,
i.e. contrary to our earlier assumption, A cannot be a terminal allocation. Hence, A must
be an allocation with maximal utilitarian social welfare. 2

5. This has also been observed by T. Sandholm (personal communication, September 2002).
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We conclude this section by briefly mentioning two recent results that both extend, in
different ways, the result stated in Theorem 3 (a detailed discussion, however, would be
beyond the scope of the present paper). The first of these results shows that rational
deals involving at most k resources each are sufficient for convergence to an allocation
with maximal social welfare whenever all utility functions are additively separable with
respect to a common partition of R —i.e. synergies across different parts of the partition
are not possible and overall utility is defined as the sum of utilities for the different sets
in the partition (Fishburn, 1970)— and each set in this partition has at most k elements
(Chevaleyre et al., 2005a).

The second result concerns a maximality property of utility functions with respect to
1-deals. Chevaleyre et al. (2005b) show that the class of modular utility functions, which is
only slightly more general than the class of additive functions considered here (namely, it is
possible to assign a non-zero utility to the empty bundle), is maximal in the sense that for no
class of functions strictly including the class of modular functions it would still be possible
to guarantee that agents using utility functions from that larger class and negotiating only
individually rational 1-deals will eventually reach an allocation with maximal utilitarian
social welfare in all cases.

4. Rational Negotiation without Side Payments

An implicit assumption made in the framework that we have presented so far is that every
agent has got an unlimited amount of money available to it to be able to pay other agents
whenever this is required for a deal that would increase utilitarian social welfare. Concretely,
if A is the initial allocation and A′ is the allocation with maximal utilitarian social welfare,
then agent i may require an amount of money just below the difference ui(A′)−ui(A) to be
able to get through the negotiation process. In the context of task contracting, for which
this framework has been proposed originally (Sandholm, 1998), this may be justifiable,
but for resource allocation problems it seems questionable to make assumptions about the
unlimited availability of one particular resource, namely money. In this section, we therefore
investigate to what extent the theoretical results discussed in the previous section persist
to apply when we consider negotiation processes without monetary side payments.

4.1 An Example

In a scenario without money, that is, if we do not allow for compensatory payments, we
cannot always guarantee an outcome with maximal utilitarian social welfare. To see this,
consider the following simple problem for a system with two agents, agent 1 and agent 2,
and a single resource r. The agents’ utility functions are defined as follows:

u1({ }) = 0 u2({ }) = 0
u1({r}) = 4 u2({r}) = 7

Now suppose agent 1 initially owns the resource. Then passing r from agent 1 to agent 2
would increase utilitarian social welfare by an amount of 3. For the framework with money,
agent 2 could pay agent 1, say, the amount of 5.5 units and the deal would be individually
rational for both of them. Without money (i.e. if p ≡ 0), however, no individually rational
deal is possible and negotiation must terminate with a non-optimal allocation.
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As maximising social welfare is not generally possible, instead we are going to investigate
whether a Pareto optimal outcome (see Definition 8) is possible in the framework without
money, and what types of deals are sufficient to guarantee this.

4.2 Cooperative Rationality

As will become clear in due course, in order to get the desired convergence result, we need
to relax the notion of individual rationality a little. For the framework without money, we
also want agents to agree to a deal, if this at least maintains their utility (that is, no strict
increase is necessary). However, we are still going to require at least one agent to strictly
increase their utility. This could, for instance, be the agent proposing the deal in question.
We call deals conforming to this criterion cooperatively rational.6

Definition 14 (Cooperative rationality) A deal δ = (A,A′) is called cooperatively ra-
tional iff ui(A) ≤ ui(A′) for all i ∈ A and there is an agent j ∈ A such that uj(A) < uj(A′).

In analogy to Lemma 1, we still have swu(A) < swu(A′) for any deal δ = (A,A′) that is
cooperatively rational, but not vice versa. We call the instance of our negotiation framework
where all deals are cooperatively rational (and hence do not include a monetary component)
the model of rational negotiation without side payments.

4.3 Ensuring Pareto Optimal Outcomes

As the next theorem will show, the class of cooperatively rational deals is sufficient to
guarantee a Pareto optimal outcome of money-free negotiation. It constitutes the analogue
to Theorem 1 for the model of rational negotiation without side payments.

Theorem 4 (Pareto optimal outcomes) Any sequence of cooperatively rational deals
will eventually result in a Pareto optimal allocation of resources.

Proof. Every cooperatively rational deal strictly increases utilitarian social welfare (this is
where we need the condition that at least one agent behaves truly individually rational for
each deal). Together with the fact that there are only finitely many different allocations
of resources, this implies that any negotiation process will eventually terminate. For the
sake of contradiction, assume negotiation ends with allocation A, but A is not Pareto
optimal. The latter means that there exists another allocation A′ with swu(A) < swu(A′)
and ui(A) ≤ ui(A′) for all i ∈ A. If we had ui(A) = ui(A′) for all i ∈ A, then also
swu(A) = swu(A′); that is, there must be at least one j ∈ A with uj(A) < uj(A′). But then
the deal δ = (A,A′) would be cooperatively rational, which contradicts our assumption of
A being a terminal allocation. 2

Observe that the proof would not have gone through if deals were required to be strictly
rational (without side payments), as this would necessitate ui(A) < ui(A′) for all i ∈ A.
Cooperative rationality means, for instance, that agents would be prepared to give away
resources to which they assign a utility value of 0, without expecting anything in return. In

6. Note that “cooperatively rational” agents are still essentially rational. Their willingness to cooperate
only extends to cases where they can benefit others without any loss in utility for themselves.
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the framework with money, another agent could always offer such an agent an infinitesimally
small amount of money, who would then accept the deal.

Therefore, our proposed weakened notion of rationality seems indeed a very reasonable
price to pay for giving up money.

4.4 Necessity Result

As our next result shows, also for the framework without side payments, deals of any
structural complexity may be necessary in order to be able to guarantee an optimal outcome
of a negotiation.7 Theorem 5 improves upon previous results (Endriss et al., 2003a) by
showing that this necessity property persists also when either all utility functions belong to
the class of monotonic functions or all utility functions belong to the class of dichotomous
functions.

Theorem 5 (Necessary deals without side payments) Let the sets of agents and re-
sources be fixed. Then for every deal δ that is not independently decomposable, there exist
utility functions and an initial allocation such that any sequence of cooperatively rational
deals leading to a Pareto optimal allocation would have to include δ. This continues to be
the case even when either all utility functions are required to be monotonic or all utility
functions are required to be dichotomous.

Proof. The details of this proof are omitted as it is possible to simply reuse the construction
used in the proof of Theorem 2. Observe that the utility functions defined there also
guarantee ui(A) ≤ ui(A′) for all i ∈ A, i.e. A is not Pareto optimal, but A′ is. If we were
to make A the initial allocation, then δ = (A,A′) would be the only cooperatively rational
deal (as every other deal would decrease social welfare). 2

4.5 0-1 Scenarios

We conclude our study of the rational negotiation framework without side payments by
identifying a class of utility functions where we are able to achieve a reduction in structural
complexity.8 Consider a scenario where agents use additive utility functions that assign
either 0 or 1 to every single resource (this is what we call 0-1 functions).9 This may be
appropriate when we simply wish to distinguish whether or not the agent needs a particular
resource (to execute a given plan, for example). This is, for instance, the case for some of
the agents defined in the work of Sadri, Toni, and Torroni (2001). As the following theorem
shows, for 0-1 scenarios (i.e. for systems where all utility functions are 0-1 functions),

7. This theorem corrects a mistake in the original statement of the result (Endriss et al., 2003a), where the
restriction to deals that are not independently decomposable had been omitted.

8. As dichotomous functions are a special case of the non-negative functions, the full range of (not indepen-
dently decomposable) deals is also necessary in scenarios with non-negative functions. Interestingly, this
changes when we restrict ourselves to positive utility functions. Now the result of Theorem 5 would not
hold anymore, because any deal that would involve a particular agent (with a positive utility function)
giving away all its resources without receiving anything in return could never be cooperatively rational.
Hence, by Theorem 4, such a deal could never be necessary to achieve a Pareto optimal allocation either.

9. Recall the distinction between 0-1 functions and dichotomous functions. The latter assign either 0 or 1
to each bundle, while the former assign either 0 or 1 to each individual resource (the utilities of bundles
then follow from the fact that 0-1 functions are additive).
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1-deals are sufficient to guarantee convergence to an allocation with maximal utilitarian
social welfare, even in the framework without monetary side payments (where all deals are
required to be cooperatively rational).

Theorem 6 (0-1 scenarios) In 0-1 scenarios, any sequence of cooperatively rational 1-
deals will eventually result in an allocation with maximal utilitarian social welfare.

Proof. Termination is shown as in the proof of Theorem 4. If an allocation A does not have
maximal social welfare then it must be the case that some agent i holds a resource r with
ui({r}) = 0 and there is another agent j in the system with uj({r}) = 1. Passing r from i
to j would be a cooperatively rational deal, so either negotiation has not yet terminated or
we are indeed in a situation with maximal utilitarian social welfare. 2

This result may be interpreted as a formal justification for some of the negotiation strategies
proposed by Sadri et al. (2001).

5. Egalitarian Agent Societies

In this section, we are going to apply the same methodology that we have used to study
optimal outcomes of negotiation in systems designed according to utilitarian principles in
the first part of this paper to the analysis of egalitarian agent societies. The classical
counterpart to the utilitarian collective utility function swu is the egalitarian collective
utility function swe introduced in Definition 9 (Moulin, 1988; Sen, 1970; Rawls, 1971).
Therefore, we are going to study the design of agent societies for which negotiation can be
guaranteed to converge to an allocation of resources with maximal egalitarian social welfare.

Our first aim will be to identify a suitable criterion that agents inhabiting an egalitarian
agent society may use to decide whether or not to accept a particular deal. Clearly, coop-
eratively rational deals, for instance, would not be an ideal choice, because Pareto optimal
allocations will typically not be optimal from an egalitarian point of view (Moulin, 1988).

5.1 Pigou-Dalton Transfers and Equitable Deals

When searching the economics literature for a class of deals that would benefit society
in an egalitarian system we soon encounter Pigou-Dalton transfers. The Pigou-Dalton
principle states that whenever a utility transfer between two agents takes place which
reduces the difference in utility between the two, then that transfer should be considered
socially beneficial (Moulin, 1988). In the context of our framework, a Pigou-Dalton transfer
(between agents i and j) can be defined as follows.

Definition 15 (Pigou-Dalton transfers) A deal δ = (A,A′) is called a Pigou-Dalton
transfer iff it satisfies the following criteria:

• Only two agents i and j are involved in the deal: Aδ = {i, j}.

• The deal is mean-preserving: ui(A) + uj(A) = ui(A′) + uj(A′).

• The deal reduces inequality: |ui(A′)− uj(A′)| < |ui(A)− uj(A)|.
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The second condition in this definition could be relaxed to postulate ui(A) + uj(A) ≤
ui(A′) + uj(A′), to also allow for inequality-reducing deals that increase overall utility.

Pigou-Dalton transfers capture certain egalitarian principles; but are they sufficient as
acceptability criteria to guarantee negotiation outcomes with maximal egalitarian social
welfare? Consider the following example:

u1({ }) = 0 u2({ }) = 0
u1({r1}) = 3 u2({r1}) = 5
u1({r2}) = 12 u2({r2}) = 7
u1({r1, r2}) = 15 u2({r1, r2}) = 17

The first agent attributes a relatively low utility value to r1 and a high one to r2. Further-
more, the value of both resources together is simply the sum of the individual utilities, i.e.
agent 1 is using an additive utility function (no synergy effects). The second agent ascribes
a medium value to either resource and a very high value to the full set. Now suppose the
initial allocation of resources is A with A(1) = {r1} and A(2) = {r2}. The “inequality
index” for this allocation is |u1(A)− u2(A)| = 4. We can easily check that inequality is in
fact minimal for allocation A (which means that there can be no inequality-reducing deal,
and certainly no Pigou-Dalton transfer, given this allocation). However, allocation A′ with
A′(1) = {r2} and A′(2) = {r1} would result in a higher level of egalitarian social welfare
(namely 5 instead of 3). Hence, Pigou-Dalton transfers alone are not sufficient to guarantee
optimal outcomes of negotiations in egalitarian agent societies. We need a more general
acceptability criterion.

Intuitively, agents operating according to egalitarian principles should help any of their
fellow agents that are worse off than they are themselves (as long as they can afford to do
so without themselves ending up even worse). This means, the purpose of any exchange of
resources should be to improve the welfare of the weakest agent involved in the respective
deal. We formalise this idea by introducing the class of equitable deals.

Definition 16 (Equitable deals) A deal δ = (A,A′) is called equitable iff it satisfies the
following criterion:

min{ui(A) | i ∈ Aδ} < min{ui(A′) | i ∈ Aδ}

Recall that Aδ = {i ∈ A |A(i) 6= A′(i)} denotes the set of agents involved in the deal δ.
Given that for δ = (A,A′) to be a deal we require A 6= A′, Aδ can never be the empty set
(i.e. the minima referred to in above definition are well-defined). Note that equitability is
a local rationality criterion in the sense of Definition 6.

It is easy to see that any Pigou-Dalton transfer will also be an equitable deal, because
it will always result in an improvement for the weaker one of the two agents concerned.
The converse, however, does not hold (not even if we restrict ourselves to deals involving
only two agents). In fact, equitable deals may even increase the inequality of the agents
concerned, namely in cases where the happier agent gains more utility than the weaker does.

In the literature on multiagent systems, the autonomy of an agent (one of the central
features distinguishing multiagent systems from other distributed systems) is sometimes
equated with pure selfishness. Under such an interpretation of the agent paradigm, our
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notion of equitability would, of course, make little sense. We believe, however, that it is
useful to distinguish different degrees of autonomy. An agent may well be autonomous in
its decision in general, but still be required to follow certain rules imposed by society (and
agreed to by the agent on entering that society).

5.2 Local Actions and their Global Effects

We are now going to prove two lemmas that provide the connection between the local
acceptability criterion given by the notion of equitability and the two egalitarian social
welfare orderings introduced in Section 2.3 (i.e. the maximin-ordering induced by swe as
well as the leximin-ordering).

The first lemma shows how global changes are reflected locally. If a deal happens to
increase (global) egalitarian social welfare, that is, if it results in a rise with respect to the
maximin-ordering, then that deal will in fact be an equitable deal.

Lemma 2 (Maximin-rise implies equitability) If A and A′ are allocations with
swe(A) < swe(A′), then δ = (A,A′) is an equitable deal.

Proof. Let A and A′ be allocations with swe(A) < swe(A′) and let δ = (A,A′). Any
agent with minimal utility for allocation A must be involved in δ, because egalitarian social
welfare, and thereby these agents’ individual utility, is higher for allocation A′. That is,
we have min{ui(A) | i ∈ Aδ} = swe(A). Furthermore, because Aδ ⊆ A, we certainly have
swe(A′) ≤ min{ui(A′) | i ∈ Aδ}. Given our original assumption of swe(A) < swe(A′), we
now obtain the inequation min{ui(A) | i ∈ Aδ} < min{ui(A′) | i ∈ Aδ}. This shows that δ
will indeed be an equitable deal. 2

Observe that the converse does not hold; not every equitable deal will necessarily increase
egalitarian social welfare (although an equitable deal will never decrease egalitarian social
welfare either). This is, for instance, not the case if only agents who are currently better off
are involved in a deal. In fact, as argued already at the end of Section 2.2, there can be no
class of deals characterisable by a local rationality criterion (see Definition 6) that would
always result in an increase in egalitarian social welfare.

To be able to detect changes in welfare resulting from an equitable deal we require
the finer differentiation between alternative allocations of resources given by the leximin-
ordering. In fact, as we shall see next, any equitable deal can be shown to result in a strict
improvement with respect to the leximin-ordering.

Lemma 3 (Equitability implies leximin-rise) If δ = (A,A′) is an equitable deal, then
A ≺ A′.

Proof. Let δ = (A,A′) be a deal that satisfies the equitability criterion and define α =
min{ui(A) | i ∈ Aδ}. The value α may be considered as partitioning the ordered utility
vector ~u(A) into three subvectors: Firstly, ~u(A) has got a (possibly empty) prefix ~u(A)<α

where all elements are strictly lower than α. In the middle, it has got a subvector ~u(A)=α

(with at least one element) where all elements are equal to α. Finally, ~u(A) has got a suffix
~u(A)>α (which again may be empty) where all elements are strictly greater than α.
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By definition of α, the deal δ cannot affect agents whose utility values belong to ~u(A)<α.
Furthermore, by definition of equitability, we have α < min{ui(A′) | i ∈ Aδ}, which means
that all of the agents that are involved will end up with a utility value which is strictly
greater than α, and at least one of these agents will come from ~u(A)=α. We now collect the
information we have on ~u(A′), the ordered utility vector of the second allocation A′. Firstly,
it will have a prefix ~u(A′)<α identical to ~u(A)<α. This will be followed by a (possibly empty)
subvector ~u(A′)=α where all elements are equal to α and which must be strictly shorter than
~u(A)=α. All of the remaining elements of ~u(A′) will be strictly greater than α. It follows
that ~u(A) lexicographically precedes ~u(A′), i.e. A ≺ A′ holds as claimed. 2

Again, the converse does not hold, i.e. not every deal resulting in a leximin-rise is necessarily
equitable. Counterexamples are deals where the utility value of the weakest agent involved
stays constant, despite there being an improvement with respect to the leximin-ordering at
the level of society.

A well-known result in welfare economics states that every Pigou-Dalton utility transfer
results in a leximin-rise (Moulin, 1988). Given that we have observed earlier that every deal
that amounts to a Pigou-Dalton transfer will also be an equitable deal, this result can now
also be regarded as a simple corollary to Lemma 3.

5.3 Maximising Egalitarian Social Welfare

Our next aim is to prove a convergence result for the egalitarian framework (in analogy to
Theorems 1 and 4). We are going to show that systems where agents negotiate equitable
deals always converge towards an allocation with maximal egalitarian social welfare.

Theorem 7 (Maximal egalitarian social welfare) Any sequence of equitable deals will
eventually result in an allocation of resources with maximal egalitarian social welfare.

Proof. By Lemma 3, any equitable deal will result in a strict rise with respect to the leximin-
ordering≺ (which is both irreflexive and transitive). Hence, as there are only a finite number
of distinct allocations, negotiation will have to terminate after a finite number of deals. So
suppose negotiation has terminated and no more equitable deals are possible. Let A be the
corresponding terminal allocation of resources. The claim is that A will be an allocation
with maximal egalitarian social welfare. For the sake of contradiction, assume it is not, i.e.
assume there exists another allocation A′ for the same system such that swe(A) < swe(A′).
But then, by Lemma 2, the deal δ = (A,A′) will be an equitable deal. Hence, there is still
a possible deal, namely δ, which contradicts our earlier assumption of A being a terminal
allocation. This shows that A will be an allocation with maximal egalitarian social welfare,
which proves our claim. 2

From a purely practical point of view, Theorem 7 may be of a lesser interest than the
corresponding results for utilitarian systems, because it does not refer to an acceptability
criterion that only depends on a single agent. Of course, this coincides with our intu-
itions about egalitarian societies: maximising social welfare is only possible by means of
cooperation and the sharing of information on agents’ preferences.

After having reached the allocation with maximal egalitarian social welfare, it may be
the case that still some equitable deals are possible, although they would not increase social
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welfare any further (but they would still cause a leximin-rise). This can be demonstrated
by means of a simple example. Consider a system with three agents and two resources. The
following table fixes the utility functions:

u1({ }) = 0 u2({ }) = 6 u3({ }) = 8
u1({r1}) = 5 u2({r1}) = 7 u3({r1}) = 9
u1({r2}) = 0 u2({r2}) = 6.5 u3({r2}) = 8.5
u1({r1, r2}) = 5 u2({r1, r2}) = 7.5 u3({r1, r2}) = 9.5

A possible interpretation of these functions would be the following. Agent 3 is fairly well off
in any case; obtaining either of the resources r1 and r2 will not have a great impact on its
personal welfare. The same is true for agent 2, although it is slightly less well off to begin
with. Agent 1 is the poorest agent and attaches great value to r1, but has no interest in
r2. Suppose agent 3 initially holds both resources. This corresponds to the ordered utility
vector 〈0, 6, 9.5〉. Passing r1 to agent 1 would lead to a new allocation with the ordered
utility vector 〈5, 6, 8.5〉 and increase egalitarian social welfare to 5, which is the maximum
that is achievable in this system. However, there is still another equitable deal that could
be implemented from this latter allocation: agent 3 could offer r2 to agent 2. Of course, this
deal does not affect agent 1. The resulting allocation would then have the ordered utility
vector 〈5, 6.5, 8〉, which corresponds to the leximin-maximal allocation.

To be able to detect situations where a social welfare maximum has already been reached
but some equitable deals are still possible, and to be able to stop negotiation (assuming we
are only interested in maximising swe as quickly as possible), however, we would require a
non-local rationality criterion. No criterion that only takes the welfare of agents involved
in a particular deal into account could be sharp enough to always tell us whether a given
deal would increase the minimum utility in society (see also our discussion after Lemma 2).
We could define a class of strongly equitable deals that are like equitable deals but on top
of that require the (currently) weakest agent to be involved in the deal. This would be
a sharper criterion, but it would also be against the spirit of distributivity and locality,
because every single agent would be involved in every single deal (in the sense of everyone
having to announce their utility in order to be able to determine who is the weakest).

5.4 Necessity Result

As our next theorem will show, if we restrict the set of admissible deals to those that
are equitable, then every single deal δ (that is not independently decomposable) may be
necessary to guarantee an optimal result (that is, no sequence of equitable deals excluding δ
could possibly result in an allocation with maximal egalitarian social welfare). Furthermore,
our theorem improves upon a previous result (Endriss et al., 2003b) by showing that this
holds even when all utility functions are required to be dichotomous.10

Theorem 8 (Necessary deals in egalitarian systems) Let the sets of agents and re-
sources be fixed. Then for every deal δ that is not independently decomposable, there exist

10. This theorem also corrects a mistake in the original statement of the result (Endriss et al., 2003b), where
the restriction to deals that are not independently decomposable had been omitted.
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utility functions and an initial allocation such that any sequence of equitable deals lead-
ing to an allocation with maximal egalitarian social welfare would have to include δ. This
continues to be the case even when all utility functions are required to be dichotomous.

Proof. Given a set of agents A and a set of resources R, let δ = (A,A′) be any deal for this
system. As we have A 6= A′, there will be a (at least one) agent j ∈ A with A(j) 6= A′(j).
We use this particular j to fix suitable (dichotomous) utility functions ui for agents i ∈ A
and sets of resources R ⊆ R as follows:

ui(R) =
{

1 if R = A′(i) or (R = A(i) and i 6= j)
0 otherwise

That is, for allocation A′ every agent assigns a utility value of 1 to the resources it holds.
The same is true for allocation A, with the sole exception of agent j, who only assigns a
value of 0. For any other allocation, agents assign the value of 0 to their set of resources,
unless that set is the same as for either allocation A or A′. As δ is not independently
decomposable, this will happen for at least one agent for every allocation different from
both A and A′. Hence, for every such allocation at least one agent will assign a utility value
of 0 to its allocated bundle. We get swe(A′) = 1, swe(A) = 0, and swe(B) = 0 for every
other allocation B, i.e. A′ is the only allocation with maximal egalitarian social welfare.

The ordered utility vector of A′ is of the form 〈1, . . . , 1〉, that of A is of the form
〈0, 1, . . . , 1〉, and that of any other allocation has got the form 〈0, . . .〉, i.e. we have A ≺ A′

and B � A for all allocations B with B 6= A and B 6= A′. Therefore, if we make A the
initial allocation of resources, then δ will be the only deal that would result in a strict rise
with respect to the leximin-ordering. Thus, by Lemma 3, δ would also be the only equitable
deal. Hence, if the set of admissible deals is restricted to equitable deals then δ is indeed
necessary to reach an allocation with maximal egalitarian social welfare. 2

This result shows, again, that there can be no structurally simple class of deals (such as the
class of deals only involving two agents at a time) that would be sufficient to guarantee an
optimal outcome of negotiation. This is the case even when agents only have very limited
options for modelling their preferences (as is the case for dichotomous utility functions).11

While this negative necessity result is shared with the two other instances of our negotia-
tion framework we have considered, there are currently no positive results on the sufficiency
of 1-deals for restricted domains in the egalitarian setting (see Theorems 3 and 6). For in-
stance, it is not difficult to construct counterexamples that show that even when all agents
are using additive 0-1 functions, complex deals involving all agents at the same time may be
required to reach an allocation with maximal egalitarian social welfare (a concrete example
may be found in Endriss et al., 2003b).

11. However, observe that unlike for our two variants of the framework of rational negotiation, we do not
have a necessity result for scenarios with monotonic utility functions (see Theorems 2 and 5). Using a
collection of monotonic utility functions as in the proof of Theorem 2 would not allow us to draw any
conclusions regarding the respective levels of egalitarian social welfare of A and A′ on the one hand, and
other allocations B on the other.
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6. Negotiating Lorenz Optimal Allocations

In this section, we are going to analyse our framework of resource allocation by negotiation in
view of the notion of Lorenz optimal allocations introduced in Definition 11. We begin with
a somewhat more general discussion of possible local rationality criteria for the acceptability
of a given deal.

6.1 Local Rationality Criteria and Separability

So far, we have studied three different variants of our negotiation framework: (i) rational ne-
gotiation with side payments (aiming at maximising utilitarian social welfare); (ii) rational
negotiation without side payments (aiming at Pareto optimal outcomes); and (iii) negoti-
ation in egalitarian agent societies. The first two instances of our framework, where agents
are either individually rational or cooperatively rational, have been natural choices as they
formalise the widely made assumptions that agents are both purely self-interested and my-
opic (for scenarios with and without monetary side payments, respectively).

The third variant of the framework, which applies to egalitarian agent societies, is at-
tractive for both conceptual and technical reasons. Conceptually, egalitarian social welfare
is of interest, because it has largely been neglected in the multiagent systems literature
despite being the classical counterpart to the widely used notion of utilitarian social wel-
fare. Technically, the analysis of egalitarian agent societies has been interesting, because
egalitarian social welfare does not admit the definition of a local rationality criterion that
directly captures the class of deals resulting in an increase with respect to this metric. This
is why we took the detour via the leximin-ordering to prove termination.

The class of social welfare orderings that can be captured by deals conforming to a
local rationality criterion is closely related to the class of separable social welfare orderings
(Moulin, 1988). In a nutshell, a social welfare ordering is separable iff it only depends on
the agents changing utility whether or not a given deal will result in an increase in social
welfare. Compare this with the notion of a local rationality criterion (Definition 6); here it
only depends on the agents changing bundle whether or not a deal is acceptable. A change
in utility presupposes a change in bundle (but not vice versa). Hence, every separable
social welfare ordering corresponds to a class of deals characterised by a local rationality
criterion (but not vice versa). This means that every separable social welfare ordering gives
rise to a local rationality criterion and proving a general convergence theorem becomes
straightforward.12 The leximin-ordering, for instance, is separable (Moulin, 1988), which is
why we are not going to further discuss this social welfare ordering in this paper.13

Similarly, the ordering over alternative allocations induced by the notion of Lorenz dom-
ination (Definition 11) is also separable. Hence, the definition of an appropriate class of
deals and the proof of a general convergence result would not yield any significant new
insights either. However, here the analysis of the effects that some of the previously intro-

12. Indeed, in the case of the framework of rational negotiation with side payments, the central argument in
the proof of Theorem 1 has been Lemma 1, which shows that individual rationality is in fact equivalent
to the local rationality criterion induced by swu.

13. A suitable rationality criterion would simply amount to a lexicographic comparison of the ordered utility
vectors for the subsociety of the agents involved in the deal in question.
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duced rationality criteria have on agent societies when social well-being is assessed in terms
of the Lorenz condition is rather instructive, as we are going to see next.

6.2 Lorenz Domination and Existing Rationality Criteria

We are now going to try to establish connections between the global welfare measure induced
by the notion of Lorenz domination on the one hand, and various local criteria on the
acceptability of a proposed deal that individual agents may choose to apply on the other. For
instance, it is an immediate consequence of Definitions 11 and 14 that, whenever δ = (A,A′)
is a cooperatively rational deal, then A must be Lorenz dominated by A′. As may easily be
verified, any deal that amounts to a Pigou-Dalton transfer (see Definition 15) will also result
in a Lorenz improvement. On the other hand, it is not difficult to construct examples that
show that this is not the case for the class of equitable deals anymore (see Definition 16).
That is, while some equitable deals will result in a Lorenz improvement, others will not.

Our next goal is to check whether it is possible to combine existing rationality criteria
and define a class of deals that captures the notion of Lorenz improvements in as so far
as, for any two allocations A and A′ such that A is Lorenz dominated by A′, there exists
a sequence of deals (or possibly even a single deal) belonging to that class leading from
A to A′. Given that both cooperatively rational deals and Pigou-Dalton transfers always
result in a Lorenz improvement, the union of these two classes of deals may seem like a
promising candidate. In fact, according to a result reported by Moulin (1988, Lemma 2.3),
it is the case that any Lorenz improvement can be implemented by means of a sequence of
Pareto improvements (i.e. cooperatively rational exchanges) and Pigou-Dalton transfers. It
is important to stress that this seemingly general result does not apply to our negotiation
framework. To see this, we consider the following example:

u1({ }) = 0 u2({ }) = 0 u3({ }) = 0
u1({r1}) = 6 u2({r1}) = 1 u3({r1}) = 1
u1({r2}) = 1 u2({r2}) = 6 u3({r2}) = 1
u1({r1, r2}) = 7 u2({r1, r2}) = 7 u3({r1, r2}) = 10

Let A be the allocation in which agent 3 owns both resources, i.e. ~u(A) = 〈0, 0, 10〉 and
utilitarian social welfare is currently 10. Allocation A is Pareto optimal, because any other
allocation would be strictly worse for agent 3. Hence, there can be no cooperatively rational
deal that would be applicable in this situation. We also observe that any deal involving only
two agents would at best result in a new allocation with a utilitarian social welfare of 7 (this
would be a deal consisting either of passing both resources on to one of the other agents,
or of passing the “preferred” resource to either agent 1 or agent 2, respectively). Hence, no
deal involving only two agents (and in particular no Pigou-Dalton transfer) could possibly
result in a Lorenz improvement. However, there is an allocation that Lorenz dominates
A, namely the allocation assigning to each one of the first two agents their respectively
preferred resource. This allocation A′ with A′(1) = {r1}, A′(2) = {r2} and A′(3) = { } has
got the ordered utility vector 〈0, 6, 6〉.

The reason why the general result reported by Moulin is not applicable to our domain
is that we cannot use Pigou-Dalton transfers to implement arbitrary utility transfers here.
Moulin assumes that every possible utility vector constitutes a feasible agreement. In the
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context of resource allocation, this would mean that there is an allocation for every possible
utility vector. In our framework, where agents negotiate over a finite number of indivisible
resources, however, the range of feasible allocations is limited. For instance, in the above
example there is no feasible allocation with the (ordered) utility vector 〈0, 4, 6〉. In Moulin’s
system, agents could first move from 〈0, 0, 10〉 to 〈0, 4, 6〉 (a Pigou-Dalton transfer) and then
from 〈0, 4, 6〉 to 〈0, 6, 6〉 (a Pareto improvement). In our system, on the other hand, this is
not possible.

6.3 Simple Pareto-Pigou-Dalton Deals and 0-1 Scenarios

As we cannot use existing rationality criteria to compose a criterion that captures the notion
of a Lorenz improvement (and that would allow us to prove a general convergence theorem),
we are going to investigate how far we can get in a scenario with restricted utility functions.
Recall our definition of 0-1 scenarios where utility functions can only be used to indicate
whether an agent does or does not need a particular resource. As we shall see next, for 0-1
scenarios, the aforementioned result of Moulin does apply. In fact, we can even sharpen it a
little by showing that only Pigou-Dalton transfers and cooperatively rational deals involving
just a single resource and two agents each are required to guarantee negotiation outcomes
that are Lorenz optimal. We first give a formal definition of this class of deals.

Definition 17 (Simple Pareto-Pigou-Dalton deals) A deal δ is called a simple
Pareto-Pigou-Dalton deal iff it is a 1-deal and either cooperatively rational or a Pigou-
Dalton transfer.

We are now going to show that this class of deals is sufficient to guarantee Lorenz optimal
outcomes of negotiations in 0-1 scenarios

Theorem 9 (Lorenz optimal outcomes) In 0-1 scenarios, any sequence of simple
Pareto-Pigou-Dalton deals will eventually result in a Lorenz optimal allocation of resources.

Proof. As pointed out earlier, any deal that is either cooperatively rational or a Pigou-
Dalton transfer will result in a Lorenz improvement (not only in the case of 0-1 scenarios).
Hence, given that there are only a finite number of distinct allocations of resources, after
a finite number of deals the system will have reached an allocation where no more simple
Pareto-Pigou-Dalton deals are possible; that is, negotiation must terminate. Now, for the
sake of contradiction, let us assume this terminal allocation A is not optimal, i.e. there
exists another allocation A′ that Lorenz dominates A. Amongst other things, this implies
swu(A) ≤ swu(A′), i.e. we can distinguish two cases: either (i) there has been a strict
increase in utilitarian welfare, or (ii) it has remained constant. In 0-1 scenarios, the former
is only possible if there are (at least) one resource r ∈ R and two agents i, j ∈ A such that
ui({r}) = 0 and uj({r}) = 1 as well as r ∈ A(i) and r ∈ A′(j), i.e. r has been moved from
agent i (who does not need it) to agent j (who does need it). But then the 1-deal of moving
only r from i to j would be cooperatively rational and hence also a simple Pareto-Pigou-
Dalton deal. This contradicts our assumption of A being a terminal allocation.

Now let us assume that utilitarian social welfare remained constant, i.e. swu(A) =
swu(A′). Let k be the smallest index such that ~uk(A) < ~uk(A′). (This is the first k for
which the inequality in Definition 11 is strict.) Observe that we cannot have k = |A|, as
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this would contradict swu(A) = swu(A′). We shall call the agents contributing the first
k entries in the ordered utility vector ~u(A) the poor agents and the remaining ones the
rich agents. Then, in a 0-1 scenario, there must be a resource r ∈ R that is owned by
a rich agent i in allocation A and by a poor agent j in allocation A′ and that is needed
by both these agents, i.e. ui({r}) = 1 and uj({r}) = 1. But then moving this resource
from agent i to agent j would constitute a Pigou-Dalton transfer (and hence also a simple
Pareto-Pigou-Dalton deal) in allocation A, which again contradicts our earlier assumption
of A being terminal. 2

In summary, we have shown that (i) any allocation of resources from which no simple
Pareto-Pigou-Dalton deals are possible must be a Lorenz optimal allocation and (ii) that
such an allocation will always be reached by implementing a finite number of simple Pareto-
Pigou-Dalton deals. As with our earlier convergence results, agents do not need to worry
about which deals to implement, as long as they are simple Pareto-Pigou-Dalton deals. The
convergence to a global optimum is guaranteed by the theorem.

7. Further Variations

In this section, we are going to briefly consider two further notions of social preference and
discuss them in the context of our framework of resource allocation by negotiation. Firstly,
we are going to introduce the idea of elitist agent societies, where social welfare is tied to
the welfare of the agent that is currently best off. Then we are going to discuss societies
where envy-free allocations of resources are desirable.

7.1 Elitist Agent Societies

Earlier we have discussed the maximin-ordering induced by the egalitarian collective utility
function swe (see Definition 9). This ordering is actually a particular case of a class of social
welfare orderings, sometimes called k-rank dictators (Moulin, 1988), where a particular
agent (the one corresponding to the kth element in the ordered utility vector) is chosen
to be the representative of society. Amongst this class of orderings, another particularly
interesting case is where the welfare of society is evaluated on the basis of the happiest
agent (as opposed to the unhappiest agent, as in the case for egalitarian welfare). We call
this the elitist approach to measuring social welfare.

Definition 18 (Elitist social welfare) The elitist social welfare swel(A) of an allocation
of resources A is defined as follows:

swel(A) = max{ui(A) | i ∈ A}

In an elitist agent society, agents would cooperate in order to support their champion (the
currently happiest agent). While such an approach may seem somewhat unethical as far
as human society is concerned, we believe that it could indeed be very appropriate for
certain societies of artificial agents. For some applications, a distributed multiagent system
may merely serve as a means for helping a single agent in that system to achieve its goal.
However, it may not always be known in advance which agent is most likely to achieve its
goal and should therefore be supported by its peers. A typical scenario could be where a
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system designer launches different agents with the same goal, with the aim that at least one
agent achieves that goal —no matter what happens to the others. As with egalitarian agent
societies, this does not contradict the idea of agents being autonomous entities. Agents may
be physically distributed and make their own autonomous decisions on a variety of issues
whilst also adhering to certain social principles, in this case elitist ones.

From a technical point of view, designing a criterion that would allow agents inhab-
iting an elitist agent society to decide locally whether or not to accept a particular deal
is very similar to the egalitarian case. In analogy to the case of equitable deals defined
earlier, a suitable deal would have to increase the maximal individual welfare amongst the
agents involved in any one deal. As for the egalitarian case, there can be no class of deals
characterised by a local rationality criterion that would exactly capture the range of deals
resulting in an increase in elitist social welfare (because every agent in the system would
have to be consulted first to determine who is currently best off). To prove convergence,
we would have to resort to an auxiliary social welfare ordering (similarly to the use of the
leximin-ordering in the proof of Theorem 7).

Of course, in many cases there is a much simpler way of finding an allocation with
maximal elitist social welfare. For instance, if all agents use monotonic utility functions,
then moving all resources to the agent assigning the highest utility value to the full bundle
R would be optimal from an elitist point of view. More generally, we can always find an
elitist optimum by checking whose utility function has got the highest peak. That is, while
the highest possible elitist social welfare can easily be determined in a centralised manner,
our distributed approach can still provide a useful framework for studying the process of
actually reaching such an optimal allocation.

7.2 Reducing Envy amongst Agents

Our final example for an interesting approach to measuring social welfare in an agent society
is the issue of envy-freeness (Brams & Taylor, 1996). For a particular allocation of resources,
an agent may be “envious” of another agent if it would prefer that agent’s set of resources
over its own. Ideally, an allocation should be envy-free.

Definition 19 (Envy-freeness) An allocation of resources A is called envy-free iff we
have ui(A(i)) ≥ ui(A(j)) for all agents i, j ∈ A.

Like egalitarian social welfare, this is related to the fair division of resources amongst agents.
Envy-freeness is desirable (though not always achievable) in societies of self-interested agents
in cases where agents have to collaborate with each other over a longer period of time. In
such a case, should an agent believe that it has been ripped off, it would have an incentive
to leave the coalition which may be disadvantageous for other agents or the society as a
whole. In other words, envy-freeness plays an important role with respect to the stability of
a group. Unfortunately, envy-free allocations do not always exist. A simple example would
be a system with two agents and just a single resource, which is valued by both of them.
Then whichever agent holds that single resource will be envied by the other agent.

Furthermore, aiming at agreeing on an envy-free allocation of resources is not always
compatible with, say, negotiating Pareto optimal outcomes. Consider the following example
of two agents with identical preferences over alternative bundles of resources:
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u1({ }) = 0 u2({ }) = 0
u1({r1}) = 1 u2({r1}) = 1
u1({r2}) = 2 u2({r2}) = 2
u1({r1, r2}) = 0 u2({r1, r2}) = 0

For this example, either one of the two allocations where one agent owns all resources and
the other none would be envy-free (as no agent would prefer the other one’s bundle over
its own). However, such an allocation would not be Pareto optimal. On the other hand,
an allocation where each agent owns a single resource would be Pareto optimal, but not
envy-free (because the agent holding r1 would rather have r2).

We should stress that envy is defined on the sole basis of an agent’s private preferences,
i.e. there is no need to take other agents’ utility functions into account. Still, whether an
agent is envious does not just depend on the resources it holds, but also on the resources
it could hold and whether any of the other agents currently hold a preferred bundle. This
somewhat paradoxical situation makes envy-freeness far less amenable to our methodology
than any of the other notions of social welfare we have discussed in this paper.

To be able to measure different degrees of envy, we could, for example, count the number
of agents that are envious for a given allocation. Another option would be to compute for
each agent i that experiences any envy at all the difference between ui(A(i)) and ui(A(j))
for the agent j that i envies the most. Then the sum over all these differences would also
provide an indication of the degree of overall envy (and thereby of social welfare). In the
spirit of egalitarianism, a third option would be identify the degree of envy in society with
the degree of envy experienced by the agent that is the most envious (Lipton, Markakis,
Mossel, & Saberi, 2004). However, it is not possible to define a local acceptability criterion
in terms of the utility functions of the agents involved in a deal (and only those) that
indicates whether the deal in question would reduce envy according to any such a metric.
This is a simple consequence of the fact that a deal may affect the degree of envy experienced
by an agent not involved in the deal at all (because it could lead to one of the participating
agents ending up with a bundle preferred by the non-concerned agent in question).

8. Conclusion

We have studied an abstract negotiation framework where members of an agent society
arrange multilateral deals to exchange bundles of indivisible resources, and we have analysed
how the resulting changes in resource distribution affect society with respect to different
social welfare orderings.

For scenarios where agents act rationally in the sense of never accepting a deal that
would (even temporarily) decrease their level of welfare, we have seen that systems where
side payments are possible can guarantee outcomes with maximal utilitarian social welfare,
while systems without side payments allow, at least, for the negotiation of Pareto optimal
allocations. We have also considered two examples of special domains with restricted utility
functions, namely additive and 0-1 scenarios. In both cases, we have been able to prove the
convergence to a socially optimal allocation of resources also for negotiation protocols that
allow only for deals involving only a single resources and a pair of agents each (so-called
1-deals). In the case of agent societies where welfare is measured in terms of the egalitarian
collective utility function, we have put forward the class of equitable deals and shown that
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negotiation processes where agents use equitability as an acceptability criterion will also
converge towards an optimal state. Another result states that, for the relatively simple
0-1 scenarios, Lorenz optimal allocations can be achieved using one-to-one negotiation by
implementing 1-deals that are either inequality-reducing or that increase the welfare of
both agents involved. We have also discussed the case of elitist agent societies where social
welfare is tied to the welfare of the most successful agent. And finally, we have pointed
out some of the difficulties associated with designing agents that would be able to negotiate
allocations of resources where the degree of envy between the agents in a society is minimal.
Specifically, we have proved the following technical results:

• The class of individually rational deals14 is sufficient to negotiate allocations with
maximal utilitarian social welfare (Theorem 1).

• In domains with additive utility functions, the class of individually rational 1-deals is
sufficient to negotiate allocations with maximal utilitarian social welfare (Theorem 3).

• The class of cooperatively rational deals is sufficient to negotiate Pareto optimal allo-
cations (Theorem 4).

• In domains with 0-1 utility functions, the class of cooperatively rational 1-deals is
sufficient to negotiate allocations with maximal utilitarian social welfare (Theorem 6).

• The class of equitable deals is sufficient to negotiate allocations with maximal egali-
tarian social welfare (Theorem 7).

• In domains with 0-1 utility functions, the class of simple Pareto-Pigou-Dalton deals
(which are 1-deals) is sufficient to negotiate Lorenz optimal allocations (Theorem 9).

For each of the three convergence results that apply to deals without structural restrictions
(rather than to 1-deals), we have also proved corresponding necessity results (Theorems 2, 5,
and 8). These theorems show that any given deal (defined as a pair of allocations) that is not
independently decomposable may be necessary to be able to negotiate an optimal allocation
of resources (with respect to the chosen notion of social welfare), if deals are required
to conform to the rationality criterion in question. As a consequence of these results,
no negotiation protocol that does not allow for the representation of deals involving any
number of agents and any number of resources could ever enable agents (whose behaviour
is constrained by our various rationality criteria) to negotiate a socially optimal allocation
in all cases. Rather surprisingly, all three necessity results continue to apply even when
agents can only differentiate between resource bundles that they would be happy with and
those they they would not be happy with (using dichotomous utility functions). Theorems 2
and 5 also apply in case all agents are required to use monotonic utility functions.

A natural question that arises when considering our convergence results concerns the
complexity of the negotiation framework. How difficult is it for agents to agree on a deal
and how many deals are required before a system converges to an optimal state? The latter
of these questions has recently been addressed by Endriss and Maudet (2005). The paper

14. Recall that individually rational deals may include monetary side payments.
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establishes upper bounds on the number of deals required to reach any of the optimal allo-
cations of resources referred to in the four convergence theorems for the model of rational
negotiation (i.e. Theorems 1, 3, 4, and 6). It also discusses the different aspects of com-
plexity involved at a more general level (such as the distinction between the communication
complexity of the system, i.e. the amount of information that agents need to exchange to
reach an optimal allocation, and the computational complexity of the reasoning tasks faced
by every single agent). Dunne (2005) addresses a related problem and studies the number
of deals meeting certain structural requirements (in particular 1-deals) that are required to
reach a given target allocation (whenever this is possible at all —recall that our necessity
results show that excluding certain deal patterns will typically bar agents from reaching
optimal allocations).

In earlier work, Dunne et al. (2005) have studied the complexity of deciding whether
one-resource-at-a-time trading with side payments is sufficient to reach a given allocation
(with improved utilitarian social welfare). This problem has been shown to be NP-hard.
Other complexity results concern the computational complexity of finding a socially opti-
mal allocation, independently from the concrete negotiation mechanism used. As mentioned
earlier, such results are closely related to the computational complexity of the winner deter-
mination problem in combinatorial auctions (Rothkopf, Pekec̆, & Harstad, 1998; Cramton
et al., 2006). Recently, NP-completeness results for this optimisation problem have been
derived with respect to several different ways of representing utility functions (Dunne et al.,
2005; Chevaleyre et al., 2004). Bouveret and Lang (2005) also address the computational
complexity of deciding whether an allocation exists that is both envy-free and Pareto opti-
mal.

Besides presenting technical results, we have argued that a wide spectrum of social
welfare orderings (rather than just those induced by the well-known utilitarian collective
welfare function and the concept of Pareto optimality) can be of interest to agent-based
applications. In the context of a typical electronic commerce application, where partic-
ipating agents have no responsibilities towards each other, a system designer may wish
to ensure Pareto optimality to guarantee that agents get maximal payoff whenever this is
possible without making any of the other agents worse off. In applications where a fair
treatment of all participants is vital (e.g. cases where the system infrastructure is jointly
owned by all the agents), an egalitarian approach to measuring social welfare may be more
appropriate. Many applications are in fact likely to warrant a mixture of utilitarian and
egalitarian principles. Here, systems that enable Lorenz optimal agreements may turn out
to be the technology of choice. Other applications, however, may require social welfare to
be measured in ways not foreseen by the models typically studied in the social sciences.
Our proposed notion of elitist welfare would be such an example. Elitism has little room in
human society, where ethical considerations are paramount, but for a particular computing
application these considerations may well be dropped or changed.

This discussion suggests an approach to multiagent systems design that we call welfare
engineering (Endriss & Maudet, 2004). It involves, firstly, the application-driven choice (or
possibly invention) of a suitable social welfare ordering and, secondly, the design of agent
behaviour profiles and negotiation mechanisms that permit (or even guarantee) socially
optimal outcomes of interactions between the agents in a system. As discussed earlier,
designing agent behaviour profiles does not necessarily contradict the idea of the autonomy
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of an agent, because autonomy always has to be understood as being relative to the norms
governing the society in which the agent operates. We should stress that, while we have been
studying a distributed approach to multiagent resource allocation in this paper, the general
idea of exploring the full range of social welfare orderings when developing agent-based
applications also applies to centralised mechanisms (such as combinatorial auctions).

We hope to develop this methodology of welfare engineering further in our future work.
Other possible directions of future work include the identification of further social welfare
orderings and the definition of corresponding deal acceptability criteria; the continuation of
the complexity-theoretic analysis of our negotiation framework; and the design of practical
trading mechanisms (including both protocols and strategies) that would allow agents to
agree on multilateral deals involving more than just two agents at a time.
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