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Abstract 

 
Intention recognition has significant applications in 

ambient intelligence, for example in assisted living and 
care of the elderly, in games and in intrusion and other 
crime detection. In this paper we propose an intention 
recognition system based on the event calculus. The 
system, called WIREC, exploits profiles, contextual 
information, heuristics and any available integrity 
constraints together with plan libraries and a basic 
theory of actions, causality and ramifications. 
Whenever the profile and context suggest there is a 
usual pattern of behaviour on the part of the actor the 
search for intention can be focused on existing plan 
libraries. On the other hand, when no such information 
is available or if the behaviour of the actor deviates 
from the usual pattern the search for intention can 
revert to the basic theory of actions, in effect 
dynamically constructing partial plans corresponding 
to the actions executed by the actor.  
 

1. Introduction 
 
Intention recognition is the task of recognizing the 

intentions of an agent by analyzing their actions and/or 
analyzing the changes in the state (environment) 
resulting from their actions. Research on intention 
recognition has been going on for the last 30 years or 
so. Early applications included story understanding and 
automatic response generation, for example in Unix 
help facilities. Examples of early work can be found in 
[11, 20]. More recently a host of new applications of 
intention recognition has attracted much interest.  

These more recent applications include assisted 
living and ambient intelligence, increasingly 
sophisticated computer games, and intrusion and 
terrorism detection and more militaristic applications. 
All these have brought new and exciting challenges to 
the field. For example assisted living applications 
require recognizing the intentions of residents in 
domestic environments in order to anticipate and assist 

with their needs. Applications in computer systems 
intrusion or terrorism detection require recognizing the 
intentions of the would-be-attackers in order to prevent 
them. Military applications need recognizing the 
intentions of the enemy maneuvers in order to plan 
counter-measures and react appropriately. 

Examples of literature on intention recognition for 
these applications are [16] and [7], for the care of the 
elderly, [8] and [18] for assistance for cognitively 
impaired individuals, for example Alzheimer patients, 
[6] for computer system intrusion detection, [10] for 
terrorism detection, [3] for real-time computer strategy 
games, [15] for anticipating military movements, and 
[21] for riot control in urban environments. 

Cohen, et al. [4] classify intention recognition as 
either intended or keyhole. In the intended case the 
agent which is being observed wants his intentions to 
be identified and intentionally gives signals to be 
sensed by other (observing) agents. In the keyhole case 
the agent which is being observed either does not 
intend for his intentions to be identified, or does not 
care; he is focused on his own activities, which may 
provide only partial observability to other agents. Our 
approach is applicable to both cases of intention 
recognition, but we describe it for the first case only. 

The intention recognition problem has been cast in 
different formalisms and methodologies. Prominent 
amongst these are logic-based, case-based and 
probabilistic approaches. Regardless of the formalism, 
much of the work on intention recognition is based on 
using pre-specified plan libraries that aim to predict the 
intentions and plans of the actor agent. Use of the plan 
libraries has obvious advantages, amongst them 
managing the space of possible hypotheses about the 
actor’s intentions. But it also has a number of 
limitations. For example anticipating, acquiring and 
coding the plan library are not easy tasks, and if 
intention recognition relies entirely on plan libraries 
then it cannot deal with cases where the actor’s habits 
are not well-known or if the actor exhibits new, 
unanticipated behaviour.  



In this paper we propose a new logic-based 
approach to intention recognition based on deduction 
and the Event Calculus (EC) [13] which is a formalism 
for reasoning about events, causality and ramifications. 
The contributions of the paper are as follows. It 
proposes a system called WIREC (Weighted Intention 
Recognition based on Event Calculus). WIREC 
exploits any available information about the actor, his 
actions, the context, including the actor’s context-based 
usual behaviour, and constraints, for example his 
inability to perform certain tasks in certain 
circumstances.  

WIREC can exploit plan libraries if any plans 
correspond to the known profile of the actor, and it can 
revert to a basic theory of causality if no such plans are 
available or if the actor’s behaviour deviates from his 
known profile. We also briefly describe how it 
incorporates a concept of “weight-of-evidence” to 
focus the search for intentions and to rank the 
hypotheses about intentions. A longer paper [19] gives 
details on this, and also describes how WIREC takes 
into account the actor’s knowledge-seeking actions, as 
well as his physical actions,  and reasons with what it 
infers about the actor’s knowledge. 

Chen et al. [2] also use the event calculus for 
reasoning about intentions and actions, in a framework 
for assisted living, but in their work they know the 
intention of the actor a priori, and use the event 
calculus to plan for the intention in order to guide the 
actor through the required actions. Hong [9] shares 
with us concerns about the limitations of intention 
recognition being based entirely on plan libraries. In 
his work he does not use plan libraries and uses a form 
of graph search through state changes. But his aim is to 
identify fully or partially achieved goals, by way of 
explaining executed actions rather than to predict 
future intentions and actions. 

 
2. Motivating Example 
 

Suppose John is at home and we observe that he is 
boiling some water. The immediate intention is, of 
course, to have boiled water. But several “longer term” 
intentions may be possible, for example to make a meal 
or to make a hot drink. Several factors can help us 
narrow the space of possible hypotheses about John’s 
intentions and to rank them. We focus on two factors.  

One factor is any knowledge about the current 
context and about John’s profile. For example if it is 9 
am and John “normally” has tea around this time, then 
one reasonable possible intention to investigate is that 
of John having tea. On the other hand, if it is a hot day 
and John does not have hot drinks when it is hot, then it 

would be reasonable to consider other intentions 
instead. 

The other factor is “weight of evidence”, which can 
be used if John’s profile is not known, or in 
conjunction with his profile, or if John is behaving in a 
way unanticipated by his known profile. Weight of 
evidence is based on what we observe John do. John 
may perform “knowledge seeking” actions. Observing 
such actions provides us with information about what 
he knows, and that can be used in calculating weight of 
evidence. For example if before boiling the water John 
opens the cupboard where the tea and other groceries 
are kept and looks inside, then we know that he knows 
the status of the tea. In particular if we also know that 
there is no tea in the cupboard (via RFID tag readers, 
say) then that eliminates the possibility that John wants 
to make tea.  

John may also perform further “physical” actions. 
For example if after boiling the water he opens the 
cupboard where the pasta is kept then that lends weight 
to the hypothesis that he intends to make a meal. On the 
other hand if after boiling the water he takes the water 
to the sink then that weakens the meal hypothesis and 
strengthens the possibility that he wants to pour the 
water down the sink, possibly to unblock the drain. 

 

3. Background 
 

The approach we take in this paper is based on the 
event calculus (EC). This formalism allows us to 
specify the semantics of actions in terms of their 
preconditions and the fluents (time-dependent 
properties) they initiate and terminate. EC has been 
used for planning, by [14], for example. The ontology 
contains a set of action operators, symbolized by A, a, 
a1, a2, b, c, etc, a set of fluents, symbolized by P, p, 
p1, p2, .., q, r, neg(p), etc, and a set of time points.  
Initiation, termination and preconditions can be 
specified by domain-dependent rules of the form: 

  
Initiation:  
initiates(A,P,T)←holds(P1,T)∧…∧ holds(Pn,T) 
Termination:  
terminates(A,P,T) ← holds(P1,T) ∧ …∧ holds(Pn,T) 
Precondition: precondition(A,P) 
 

The first two rules, above, state that action A 
initiates (resp. terminates) fluent P at time T if fluents 
P1, ..., Pn hold at T. The conditions holds(P1,T)∧ … ∧ 
holds(Pn,T), above, are called qualifying conditions. 
The fluents P in the conclusion of initiation and 
termination rules are called primitive fluents. 



Further we can specify how actions affect primitive 
fluents (using the holds predicate). We give some of 
the rules below. In these rules all variables are assumed 
universally quantified in front of the rule, unless 
specified otherwise. The first rule states that a fluent P 
holds at time T2 if an action A initiating it is done at an 
earlier time T1, and all of the action’s preconditions 
held at that time, and the fluent P has not been clipped 
in the interval between T1 and T2. A fluent is clipped in 
a time interval if an action occurs in that interval that 
terminates the fluent.  
 
holds(P,T2) ← do(A,T1) ∧ initiates(A, T1, P) ∧ 
 T1<T2 ∧ (∀P  precondition(A,P) →holds(P, 
 T1) ) ∧ not clipped(T1, P, T2) 
clipped(T1, P, T2) ← do(B,T) ∧  

terminates(B, T, P) ∧ T1 <T∧ T=<T2 
   

Finally we can specify ramifications, i.e. fluents 
holding as a result of others that hold. To do so we use 
domain-dependent rules of the form: 

  
Ramification:  
holds(Q, T) ← holds(P1,T) ∧ …∧ holds(Pn,T) 
  

As an example of EC specification consider the 
following (self-explanatory) domain-dependent rules: 

 
Example 1.  
initiates(pushOnButton(Actor, radio), on(radio), T) ←               
holds(hasBattery(radio), T) ∧ holds(neg(on(radio)), T) 
terminates(pushOnButton(Actor, radio), on(radio), T) 
   ← holds(on(radio),T) 
precondition(pushOnButton(Actor,radio), 
   co-located(Actor, radio)) 
holds(co-located(X,Y), T) ← holds(loc(X,L), T) ∧ 
   holds(loc(Y,L),T) 
 

4. Intention recognition: our approach 
 
We make the following assumptions. There are two 

agents, the observer (which is the WIREC system), and 
the actor, who is assumed to be rational, and may have 
multiple (concurrent) intentions. We observe the 
actions of the actor in the order they take place, and the 
actions are successfully executed.  

Although our approach works with both full and 
partial observability, here, for simplicity, we deal with 
the former only. As well as actions, we also observe 
fluents. In an ambient intelligence assisted living 
scenario, for example, the house will have a collection 
of sensors, and readings from these can periodically 
update the representation of state kept by the system. In 

our work such observed fluents will typically be 
properties that can change without the intervention of 
the actor, for example, whether the actor is alone or has 
company, whether it is a hot day, and so on. Note that 
observation of fluents also facilitates dealing with 
partial observability of actions, not explored here. 

In this paper an intention may be an action or a 
fluent. In the former case, the actor’s actions are 
directed towards achieving the preconditions of the 
intended action, thus making the action executable.  In 
the latter case the actor’s actions are directed towards 
achieving the intended fluent. 

 
4.1. Graph representation of the event calculus 
 

In this work we adopt a graph-like representation of 
the event calculus axioms (and plans). This is given in 
Table 1. Each instance of a graph given in the last 
column is called a graph fragment. This graphic 
representation allows our intention recognition 
algorithm to be interpreted both in terms of reasoning 
and in terms of graph matching and path finding.  

 Table 1. EC graph-like representation 
 

EC  Axiom 
Name 

EC Axiom schema Graph 
Representation 

Initiation initiates(A,P,T) ← 
holds(P1,T) ∧ … ∧ 
holds(Pn,T)  

A 
P1 
.                     P 
. 
Pn 

Termination terminates(A,P,T) ← holds(P1,T) ∧  
… ∧ holds(Pn,T)  
 

A 
P1 
.                     P 
. 
Pn 

Precondition precondition(A,P1) 
precondition(A,P2) 
. 
. 
precondition(A,Pn) 
being all the 
precondition 
axioms for A 
 

 
P1 
.                     A 
. 
Pn 

Ramification holds(Q, T) ← 
holds(P1,T) ∧ … ∧ 
holds(Pn,T)  

P1 
.                     Q 
. 
Pn 

 
Plans (and thus plan libraries) can be constructed 

using this graph-like representation. For example Fig. 



1(i) shows a plan for achieving r by doing actions a1, 
a2, a3 in any order, and doing a4 after a1 and a2.  Fig. 
1(ii) gives a more conventional representation of the 
same plan used by other intention recognition systems.  
The approach in Fig. 1(i) compared to Fig. 1(ii) and to 
other approaches such as the Hierarchical Task 
Network models [5] has a number of advantages.   

The representation in Fig. 1(i) provides information 
about qualifying conditions (p1 and p2 for the initiation 
of q1), preconditions (q1 and q2 for the executability of 
action a4) and ramifications (r holding as a result of r1 
and r2). All this information can be useful in intention 
recognition. For example if the observer knows that the 
actor knows that p1 does not hold, then if the actor 
performs action a1 he certainly does not intend q1, nor 
a4, and thus is very unlikely to intend r. 

Also the observer may not see actions a1 and a2 
executed, but sees a4. The plan makes it clear that a1 
and a2 are needed only to establish the preconditions 
for the executability of a4. So not having observed 
them does not distract from the possibility of r being an 
intention. The preconditions of a4 may have already 
held and the actor opportunistically executed a4. 
 
a1          r 
p1 q1 
p2 

  a4 r1 
a2          q2             r          a1  a2   a3   a4 
 
a3                             r2 
 1(i)     1(ii) 
 Figure 1(i). An EC plan for achieving intention r 1(ii). A conventional representation of the plan  

 
4.2. Architecture of WIREC 
 
Fig. 2 illustrates the architecture of WIREC. When an 
action is observed WIREC uses it together with any 
available Profile and Integrity constraints to update the 
hypotheses about the intention(s) of the actor. Below 
we sketch some of the components of WIREC. More 
detailed descriptions can be found in [19]. 
 
4.3. Hypotheses 
 

The set of hypotheses is a set of weighted entities, 
each of the form <Entity, Weight>, where Entity is a 
ground fluent or ground action operator, and Weight is 
a number between 0 and 1. Each hypothesis represents 
a possible intention. Intuitively, if <E,W> is a 
hypothesis then the actor’s actions have contributed 

towards the (current or future) achievement of E (or 
achievement of the preconditions of E, if E is an 
action). Also W is a measure of the proportion of the 
conditions that have already been achieved, typically 
by the actor’s actions, towards the achievement of E. 
Example 2, later, illustrates these intuitions. 
 
 
           Sensor Data 
                                                       
                          
      
                                                      
    
 
    
 
                            Intention Recognizer 
  
 

 
 Figure 2. Architecture of WIREC 

 
4.4. Profile and Integrity Constraints 
 

The Profile includes any information available (or 
acquired through learning) about the actor’s usual 
behaviour in given contexts, in terms of what his 
intentions may be and how he may go about achieving 
them. Profile information (and Integrity Constraints) 
can be specified using (an extension of) the event 
calculus. For example: If it is  cold at night it is 
possible that John has a hot drink and it is possible that 
he makes himself a hot-water-bottle: 
holds(cold, T) ∧ T>22:00 ∧ T<1:00  → 
pos(have-hotDrink, T) ∧ pos(have-hotWaterBottle, T). 
If we also know how he usually goes about making his 
drink, for example, we can include the information: 
pos(have-hotDrink,T) ∧ T>22:00 ∧ T<1:00   → 

pos_plan(pherbTea,T)  ∧ pos_plan(pcocoa,T),  
where pherbTea and pcocoa are IDs of plans in the plan 
library which is part of the Intention Recognizer.  
Profile can be empty, if nothing is known about the 
actor. 

We assume that the information in the Profile is 
“positive”. “Negative” information, for example about 
what the actor cannot or would not do, is kept in 
Integrity Constraints.  For example he cannot climb a 
stool: do(climb(stool), T) => false.  

 
4.5. Heuristics 
 

Observed 
Actions 

Profile Integrity 
Constraints 

     Hypotheses 
other weighted entities 

Observed 
Fluents 

H
eu

ristics 



Our heuristics are in two parts: the domain-
dependent part and the domain-independent part. The 
domain-dependent part allows us to distinguish 
between consequences of actions and intentions 
motivating them. An action can have several effects, 
some of which may be incidental and merely side-
effects of the action as far as the actor is concerned. 
These we call consequences. Other effects may be the 
(immediate) intentions behind the execution of the 
action and possibly paving stones towards further 
actions and longer term intentions. 

For example when an actor turns up the thermostat 
on the water heater, one consequence is that his heating 
bill goes up, but an immediate intention is that the 
water temperature increases, and longer term intentions 
may be to have a bath and get dressed. The distinction 
between consequences and intentions has been 
discussed in the literature on double effect and moral 
computing [12, 17]. 

The domain-independent part of the Heuristics 
specifies cut-off points (currently based on a numerical 
Threshold), beyond which the Intention Recognizer 
does not look further into possible future intentions.  
 

5. Intention Recognizer 
 

The Intention Recognizer contains several 
knowledge bases, including S, a representation of the 
current state of the environment, PL, a (possibly-
empty) library of plans, where each plan is of the form 
of Fig. 1(i), and BL, a library of basic causality theory, 
consisting of instances of graphs given in Table 1.  

When a fluent is observed the Intention Recognizer 
updates S by assimilating the fluent.  When an action is 
observed the Intention Recognizer first updates S 
according to the initiates and terminates axioms of the 
event calculus, and then proceeds to update the 
hypotheses about the intentions of the actor. It does so 
in the following way. First it consults Profile to see if, 
in the current context (state S), there is any information 
about the actor’s possible intentions and plans, 
providing an (initial) focus for the search. If so then 
appropriate plans are selected from PL. If not, or if the 
sequence of actions observed thus far does not 
correspond to any plans that may be selected from PL, 
then the search uses BL.  Either way, the search focuses 
on the executed actions, effectively reasoning forwards 
from them (which can also be thought of as 
propagating them through graph matching) and 
propagating the “weight of evidence”. In this process, 
we also make use of any available Integrity Constraints 
and heuristic information to prune the search.  

Note that when the search uses BL, it amounts to 
dynamically constructing new partial plans matching 
the executed actions. Details of the algorithm are given 
in [19]. Here we illustrate it with an example. 

 
Example 2. 
 Table 2. Part of BL 
2i 2ii 2iii 2iv 2v 
p     a        
 

a         q q        b c       p1 a          t 

2vi 2vii 2viii 2ix 2x 
b       q1 
p1 

b       q2 
p2  

q2       r 
q3 

d        r1 
q4 

e       p3 
q1    

 
Suppose BL consists of the fragments in Table 2, 

where a,b,c,d,e are actions, and p, p1, p2, p3, q, q1, .., 
q4, r, r1, t are fluents. Suppose Heuristics informs us 
that t is a consequence and the other fluents can be 
considered as intentions. Fragment 2i and 2iii represent 
action preconditions, 2viii represents a ramification and 
the others represent fluent initiations.  

Suppose we observe that action a has been 
executed. Reasoning forward from a amounts to 
traversing (some of) the paths starting at a. We assign 
weights as we do the traversal:   <q,1> (because of 2ii, 
q actually holds now because of a), <b,1> (2iii, action 
b is enabled - i.e. its precondition(s) now hold - 
because of a), <q1,1/2> (2vi, action b is enabled by the 
actor but he has made no effort towards p1 yet, so only 
one half of the conditions for achieving q1 are in 
place), <q2,1/2> (2vii, similar to 2vi), <r,1/4>  (2viii, 
the actor has made some effort towards q2 but none 
towards q3 yet), <p3, 1/4> (2x, similar to 2viii). 

  Notice that we ignore 2i, 2iv, 2ix; this is because 
we focus on the changes that are brought about by the 
actor. We also ignore 2v because we are interested in 
changes only if they work towards possible intentions. 
Furthermore, if we knew that, say, action e is not 
possible for the actor (according to the information in 
Integrity Constraints) then we would also ignore 2x and 
not compute a weight for p3. Also the weights of r 
(1/4) may be too low according to our Heuristics and 
we may ignore r, and not reason any further with it, for 
the time being. Now suppose the actor does c next. 
This increases the weight of q1 to 1 (and p3 to 1/2 if 2x 
is still being considered). The other weights remain the 
same. 

Our approach has a flavour of GraphPlan [1], but 
with two significant differences. Firstly in GraphPlan in 
each state all actions whose preconditions are satisfied 
are considered. In our approach we consider only those 
actions whose preconditions are (fully or partially) 



satisfied because of the actor’s actions. Secondly 
GraphPlan completely constructs all states as it 
computes paths into possible futures. We simply 
partially skim paths into the future. These two 
considerations, together with the fact that GraphPlan is 
a fast planner, suggest our approach may have 
reasonable performance - this is being currently tested. 
 

6. Conclusion and further work 
 

In this paper we proposed an approach to intention 
recognition based on the event calculus. Ongoing work 
includes implementation and empirical studies, as well 
as an investigation into scalability and formal analysis. 
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