
Abductive Logic Programming with CIFF:
System Description

U. Endriss1, P. Mancarella2, F. Sadri1, G. Terreni2, and F. Toni1,2

1 Department of Computing, Imperial College London
Email: {ue,fs,ft}@doc.ic.ac.uk

2 Dipartimento di Informatica, Università di Pisa
Email: {paolo,terreni,toni}@di.unipi.it

1 Introduction

Abduction has long been recognised as a powerful mechanism for hypothetical
reasoning in the presence of incomplete knowledge. Here, we discuss the im-
plementation of a novel abductive proof procedure, which we call CIFF, as it
extends the IFF proof procedure [7] by dealing with Constraints, as in constraint
logic programming. The procedure also relaxes the strong allowedness restric-
tions on abductive logic programs imposed by IFF. The procedure is described
in detail in [6]. It is currently employed to realise a number of reasoning tasks of
KGP agents [8] within the platform for developing agents and agent applications
PROSOCS [12]. These tasks include (partial) planning in a dynamic environment
[9, 5], reactivity to changes in the environment [5], temporal reasoning in the ab-
sence of complete information about the environment [2, 1], communication and
negotiation [11], and trust-mediated interaction [10]. Some details on an earlier
version of the system and the planning application can be found in [5]. Although
the implementation of CIFF that we describe here has been tested successfully
within PROSOCS in a number of settings, this is an initial prototype and more
research into proof strategies and heuristics as well as fine-tuning are required
to achieve satisfactory runtimes for larger examples.

2 Abductive Logic Programming with CIFF

An abductive logic program is a triple 〈P, I, A〉, where P is a normal logic program
(with constraints à-la CLP), I is a finite set of sentences in the language of P
(called integrity constraints), and A is a set of abducible atoms in the language
of P . A query Q is a conjunction of literals, possibly containing (implicitly exis-
tentially quantified) variables. An abductive answer to a query Q for a program
〈P, I, A〉, containing constraint predicates defined over a structure <, is a pair
〈∆, σ〉, where ∆ is a set of ground abducible atoms and σ is a substitution for
the variables in Q such that P ∪ ∆σ |=< I ∧ Qσ. In our case, |=< represents
entailment with respect to the completion semantics [4], extended à-la CLP to
take the constraint structure into account.

Like IFF [7], CIFF uses an alternative representation of an abductive logic
program 〈P, I, A〉, namely a pair 〈Th, I 〉, where Th is a set of iff-definitions,

p(X1, . . . , Xk) ⇔ D1 ∨ · · · ∨Dn, obtained by selectively completing P [4, 7] with
respect to all predicates except special predicates (true, false, constraint and
abducible predicates). CIFF deals with integrity constraints I which are impli-
cations: L1 ∧ · · · ∧ Lm ⇒ A1 ∨ · · · ∨ An, with Li literals and Aj atoms. Any
variables are implicitly universally quantified with scope the entire implication.

In CIFF, the search for abductive answers for queries Q amounts to con-
structing a proof tree, starting with an initial tree with root consisting of Q∧ I.
The procedure then repeatedly manipulates a currently selected node by ap-
plying equivalence-preserving proof rules to it. The nodes are sets of formulas
(so-called goals) which may be atoms, implications, or disjunctions of literals.
The implications are either integrity constraints, their residues obtained by prop-
agation, or obtained by rewriting negative literals not p as p ⇒ false.

IFF requires abductive logic programs and queries to meet a number of
allowedness conditions (avoiding certain problematic patterns of quantification).
CIFF relaxes these conditions checking them dynamically, i.e. at runtime, by
means of a dynamic allowedness rule included amongst its proof rules. This rule
labels nodes with a problematic quantification pattern as undefined. Undefined
nodes are not selected again. In addition to the dynamic allowedness rule, CIFF
includes, e.g., the following proof rules (for full details and other rules see [6]):
– Unfolding: Replace any atomic goal p(~t), for which there is an iff-definition

p(~X) ⇔ D1 ∨ · · · ∨Dn in Th, by (D1 ∨ · · · ∨Dn)[~X/~t].
– Propagation: Given goals [p(~t) ∧A ⇒ B] and p(~s), add [(~t = ~s) ∧A ⇒ B].
– Constraint solving: Replace a node with unsatisfiable constraints by false.

In a proof tree for a query, a node containing false is called a failure node. If all
leaf nodes in a tree are failure nodes, then the search is said to fail. A node to
which no more proof rules can be applied is called a final node. A non-failure
final node not labelled as undefined is called a success node. CIFF has been
proved sound [6]: it is possible to extract an abductive answer from any success
node and if the search fails then there exists no such answer.

3 Implementation of CIFF

We have implemented the CIFF procedure in Sicstus Prolog 3 relying upon its
built-in constraint logic programming solver over finite domains (CLPFD) [3].
Our implementation includes a simple module that translates abductive logic
programs into completed logic programs, which are then fed as input to CIFF.
The main predicate of our implementation is ciff/4:

ciff(+Defs, +ICs, +Query, -Answer).

The first argument is a list of iff-definitions, the second is a list of integrity
constraints, and the third is the list of literals in the given query. Alternatively,
the first two arguments may be replaced with the name of a file containing an
abductive logic program. The Answer consists of three parts: a list of abducible
atoms, a list of restrictions on variables, and a list of (arithmetic) constraints (the
latter two can be used to construct the σ component in an abductive answer). Iff-
definitions are terms of the form A iff B, where A is an atom and B is a list of
3 The system is available at http://www.doc.ic.ac.uk/∼ue/ciff/

lists of literals (representing a disjunction of conjunctions). Integrity constraints
are expressions of the form A implies B, where A is a list of literals (representing
a conjunction) and B is a list of atoms (representing a disjunction). The syntax
chosen to represent atoms is that of Prolog. Negative literals are represented as
Prolog terms of the form not(P) Atoms can be (arithmetic) constraints, such
as T1 #< T2 + 5. The available constraint predicates are #=, #\=, #<, #=<, #>, and
#>=, each of which takes two arguments that may be any arithmetic expressions
over variables and integers (using any arithmetic operation that CLPFD can
handle [3]). Note that, for equalities over terms that are not arithmetic terms,
the usual equality predicate = should be used (e.g. X = bob). The Prolog predicate
implementing the proof rules is:

sat(+Node, +EV, +CL, +LM, +Defs, +FreeVars, -Answer).

Node is a list of goals, representing a conjunction. EV is used to keep track
of existentially quantified variables in the node (to assess the applicability of
some of the proof rules). CL (for constraint list) is used to store the constraints
accumulated so far. The next argument, LM (for loop management), is a list
of expressions of the form A:B recording pairs of formulas that have already
been used during a computation allowing us to avoid loops that would result if
rules, for instance the propagation rule, were applied over and over to the same
arguments. Defs is the list of iff-definitions in the theory. FreeVars is used to
store the list of variables appearing in the original query. Finally, running sat/7
will result in the variable Answer to be instantiated with a representation of
the abductive answer found by the procedure. Each proof rule corresponds to a
Prolog clause in sat/7. E.g., the unfolding rule (for atoms) is implemented as
follows:

sat(Node, EV, CL, LM, Defs, FreeVars, Answer) :-

member(A, Node), is_atom(A), get_def(A, Defs, Ds),

delete(Node, A, Node1), NewNode = [Ds|Node1], !,

sat(NewNode, EV, CL, LM, Defs, FreeVars, Answer).

is atom(A) succeeds if A is an atomic goal. get def(A,Defs,Ds) will instanti-
ate Ds with the list of lists according to the iff-definition for A in Defs when-
ever there is such a definition (i.e. the predicate will fail for abducibles). Once
get def(A,Defs,Ds) succeeds we know that the unfolding rule is applicable:
there exists an atomic conjunct A in the current Node and it is not abducible.
The cut in the penultimate line ensures that we will not backtrack over the order
in which rules are being applied. We generate the successor NewNode deleting the
atom A from Node and replacing it with the disjunction Ds. The predicate sat/7
then recursively calls itself with the new node.

The proof rules are repeatedly applied to the current node. Whenever a dis-
junction is encountered, it is split into a set of successor nodes (one for each
disjunct). The procedure then picks one of these successor nodes to continue the
search and backtracking over this choicepoint results in all possible successor
nodes being explored. In theory, the choice of which successor node to explore
next is taken nondeterministically; in practice we simply move through nodes
from left to right. The procedure terminates when no more proof rules apply
(to the current node) and finishes by extracting an answer from this node. En-

forced backtracking will result in the next branch (if any) of the proof tree being
explored, i.e. in any remaining abductive answers being enumerated.

The Prolog clauses in the implementation of sat/7 may be reordered almost
arbitrarily (only the clause used to implement answer extraction has to be listed
last). Each order of clauses corresponds to a different proof strategy. This feature
of our implementation allows for an experimental study of which strategies yield
the fastest derivations. With respect to the implementation in [5], the current
implementation integrates rules (that humans would combine automatically)
into more complex rules avoiding to waste time checking for their applicability.
E.g. rewriting a disjunction consisting of one disjunct as that very disjunct has
been integrated into the unfolding rule as we have noted that rewriting unary
disjunctions often occurs after an unfolding step. Another improvement concerns
the propagation rule: we now only allow for propagation with respect to the
leftmost atom in the antecedent of an implication. This refinement does not
affect soundness and can reduce the number of implications in nodes. We plan
to explore further optimisation techniques in the future.
Acknowledgments. This work was partially funded by the IST programme of the EC,

FET under the IST-2001-32530 SOCS project, within the GC proactive initiative. The

last author was also supported by the Italian MIUR programme “Rientro dei cervelli”.

We thank M. Gavanelli and M. Milano for suggestions on the constraint solver.

References

1. A. Bracciali, N. Demetriou, U. Endriss, A. Kakas, W. Lu, P. Mancarella, F. Sadri,
K. Stathis, G. Terreni, and F. Toni. The KGP model of agency for GC: Compu-
tational model and prototype implementation. In Proc. Global Computing 2004
Workshop, LNCS. Springer Verlag.

2. A. Bracciali and A. C. Kakas. Frame consistency: Computing with causal expla-
nations. In Proc. NMR2004.

3. M. Carlsson, G. Ottosson, and B. Carlson. An open-ended finite domain constraint
solver. In Proc. PLILP97.

4. K. L. Clark. Negation as failure. In Logic and Data Bases. Plenum Press, 1978.
5. U. Endriss, P. Mancarella, F. Sadri, G. Terreni, and F. Toni. Abductive logic

programming with CIFF: Implementation and applications. In Proc. CILC04.
6. U. Endriss, P. Mancarella, F. Sadri, G. Terreni, and F. Toni. The CIFF proof

procedure for abductive logic programming with constraints. In Proc. JELIA04.
7. T. H. Fung and R. A. Kowalski. The IFF proof procedure for abductive logic

programming. Journal of Logic Programming, 33(2):151–165, 1997.
8. A. C. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. The KGP model of

agency. In Proc. ECAI2004.
9. P. Mancarella, F. Sadri, G. Terreni, and F. Toni. Planning partially for situated

agents. Technical report, SOCS, 2004.
10. F. Sadri and F. Toni. A logic-based approach to reasoning with beliefs about trust.

In Proc. ARSPA04, Workshop affiliated to IJCAR04, 2004.
11. F. Sadri, F. Toni, and P. Torroni. An abductive logic programming architecture for

negotiating agents. In Proc. JELIA2002, volume 2424 of LNCS. Springer-Verlag.
12. K. Stathis, A. C. Kakas, W. Lu, N. Demetriou, U. Endriss, and A. Bracciali.

PROSOCS: A platform for programming software agents in computational logic.
In Proc. AT2AI-2004.

