
Eddie Edwards (from N. Dulay 2007)  Computer Systems (M2) 

Imperial College London 
Department of Computing 

 
Computer Systems  (M2) 

Pentium programming lab exercise for Intel Macs 

 

 
You can try the following version of the program on Intel Macs running OS X  (Tiger, Leopard, Snow Leopard).  nasm is 
included on Intel Macs.  
 
* Type the program in the box below into a file called hello.s    Do not make any mistakes!!!! 

 
 segment .data 

msg     db 'Hello world!',0xA 
len     equ $-msg 
 
segment .text 
global start 
 
start: 
        mov  eax, 5 
outer: 
        mov  ebx, 1000000000 
 
inner: 
        dec  ebx 
        jg   inner 
        dec  eax 
        jg   outer 
 
        mov  eax, 4 
        push dword len 
        push dword msg 
        push dword 1 
        push dword 0 
        int  0x80 
        add  esp, 16 
 
        mov  eax, 1 
        push dword 0 
        push dword 0 
        int  0x80 
 

switch to data segment 
declare and initialise variable msg 
set constant len = number of bytes in msg 
 
switch to text (i.e. code) segment 

make start visible outside of this file 
 
program starts here 
number of times to repeat outer loop 
 

repeat inner loop 1 billion times. type 1 followed 
by 9 zeros - do not type any more zeros! 

 
execute this & next instruction 1 billion times  
jump if ebx greater than zero to label ‘inner’ 

decrement eax outer loop counter 
jump if eax greater than zero to label ‘outer’ 
 
OSX system call 4, i.e. write () 
number of bytes in message to write 

address of variable ‘msg’  
file descriptor 1, i.e. standard output 
not used – compatibility for C return addresses 
interrupt OSX, i.e. OSX will write the message 
remove parameters from stack 

  
OSX system call 1  i.e. exit () 
error code 0, i.e. no errors 
not used – compatibility for C return addresses 
interrupt OSX, i.e. OSX will exit the program 

 

* Assemble into an object file version with: 

    nasm –f macho hello.s  

nasm is  the Netwide assembler.  The command will produce an 
object file named hello.o if there are no errors in file hello.s 

* Then link into an executable program with: 
    ld –o hello hello.o 

ld is the OS object file ‘linker’ which can (amongst other things) 
link several object files into one executable program. 

 Run the program with: 
     hello      or  ./hello 

The program executes over 10 billion Intel machine instructions!   5 
billion dec instructions and 5 billion jg instructions. 

* Find the size of the executable file with:          
      wc –c hello 

 

* Find the size of the code and data with:    
     size –m hello  
Why is there a difference between the sum 
of these sizes and the size of the executable 
program file? 

The code size (in bytes) is given after  ‘__text’ 
 

Try the command     file hello also.      

* Run and time the program with: 

   /usr/bin/time –p hello  

If you run the program several times, the 
times may differ. Why? 

View the cpu type using  
/usr/sbin/system_profiler SPHardwareDataType 

 


