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Question

Do you have your laptop here?

A yes    B no    C what’s a laptop    D where is here? 

E none of the above
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Floating Point Numbers
6.626068 x 10-34

• Eddie Edwards

• eedwards@doc.ic.ac.uk

• https://www.doc.ic.ac.uk/~eedwards/compsys

• Heavily based on notes from Naranker Dulay
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Learning Outcomes

� At the end of this lecture you should
� Understand the representation of real numbers in other bases

(e.g 2) 

� Know the mantissa/exponent representation (in base 10, 2 etc.) 

� Be able to express numbers in normalised/un-normalised form

� Be able to convert fractions/decimals between bases

� Know the IEEE 754 floating point format (32 and 64 bit) 

� Know the special values and when they should occur

� Understand the issues of accuracy in floating point representation
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Number Representation - recap

� We have seen how to represent integers
� positive integers as binary, octal  and hexadecimal

� negative integers as one's complement, two's complement, Excess-n

� BCD, ASCI.....

� We have also seen how to perform arithmetic
� Addition

� by adding the binary bits

� overflow conditions

� Multiplication/division

� same “long hand” techniques as base 10

� slightly complicated in two's compliment

� can take the absolute values, perform calculation, then sort out the sign 
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Numbers:  Large, Small, Fractional

Population of the World 6,879,009,033 people

US National Debt (1990) $3, 144, 830, 000, 000

1 Light Year 9, 130, 000, 000, 000 km

Mass of the Sun 2, 000, 000, 000, 000, 000, 000, 000, 000, 
000 kg

Diameter of an Electron 0.000, 000, 000, 000, 000, 000, 01 m

Mass of an Electron 0.000, 000, 000, 000, 000, 000, 000, 000,
000, 000, 9 kg

Smallest Measurable 0.000, 000, 000, 000, 000, 000, 000, 000, 
length of Time 000, 000, 000, 000, 000, 000, 1 sec

Pi (to 8 decimal places) 3.14159265...

Standard Rate of VAT 17.5
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Large Integers

Example: How can we represent integers up to 30 decimal digits long?

� Binary log2 (10
30

) = ~ 100 bits (1 decimal digit = 3.322 bits) 

� BCD 30 x 4-bit = 120 bits

� ASCII 30 x 8-bit = 240 bits

The Pentium includes instructions for writing multi-precision integer 
routines using Binary Coded Decimal (BCD) Arithmetic & ASCII arithmetic

Eddie Edwards 2008 Floating Point Numbers 7.7

Floating Pointing Numbers

� M is the Mantissa (or Significand or Fraction or Argument ) 

� E is the Exponent (or Characteristic) 

� 10 (or for binary, 2) is the Radix (or Base)

� Digits (bits) in Exponent -> Range (Bigness/Smallness) 

� Digits (bits) in Mantissa -> Precision (Exactness) 

Number = M x 10E

Number = M x   2E

Scientific Notation

Decimal

Binary
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Zones of Expressibility

� Example: Assume numbers are formed with a Signed 3-digit Mantissa
and a Signed 2-digit Exponent

� Numbers span from ±.001 x 10
–99

to ±.999 x 10
+99

–.001 x 10 –99–.999 x 10+99 +.001 x 10 –99 +.999 x 10+99

Negative 
Overflow

Expressible
–ve Nums

Negative
Underflow

Positive
Underflow

Expressible 
+ve Nums

Positive
Overflow

Zones of Expressibility

0

Zero
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Mathematical Real Floating-point Number

Range -Infinity .. +Infinity Finite

No. of Values Infinite Finite

Spacing Constant & Infinite Gap between numbers varies

Errors ? Incorrect results are     
possible

Reals vs. Floating Point Numbers
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Normalised Floating Point Numbers

� Floating Point Numbers can have multiple forms, e.g.

0.232 x 10
4

= 2.32 x 10
3

= 23.2 x 10
2

= 2 320 x 10
0

= 232 000 x 10
-2

� For hardware implementation its desirable for each number to have a 
unique representation => Normalised Form

� We’ll normalise Mantissa's in the Range [ 1 .. R ) where R is the Base, 
e.g.:

[ 1 .. 10 ) for DECIMAL

[ 1 .. 2 ) for BINARY
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Normalised Forms (Base 10) 

Number Normalised Form

23.2 x 10
4

2.32 x 10
5

–4.01 x 10
-3

–4.01 x 10
-3

343 000 x 10 3.43 x 10
5

0.000 000 098 9 x 10
0

9.89 x 10
-8
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Binary & Decimal Fractions
Binary Decimal

0.1 0.5

0.01 0.25

0.001 0.125

0.11 0.75

0.111 0.875

0.011 0.375

0.101 0.625
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Binary Fraction to Decimal Fraction

� Example:  What is the binary value 0.0110100.0110100.0110100.011010 in decimal ?

� Example:  What is 0 0 0 0 . . . . 0 0011 0011 000 0011 0011 000 0011 0011 000 0011 0011 00 in decimal ?

Sum = 8888++++4444++++1 1 1 1 = = = = 13131313

Answer: 13 / 32 = 0.40625

. 0 1 1 0 1

32 16 8 4 2 1

Answer:    ((((32323232++++16161616++++2222++++1111)))) / / / / 512512512512 = = = = 51 51 51 51 //// 512512512512 = = = = 0.0996093750.0996093750.0996093750.099609375
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Decimal Fraction to Binary Fraction

� Example: What is 0.687510 in binary ?

0.6875 * 2= 1 .3750

0.3750 * 2= 0 .7500

0.7500 * 2= 1 .5000

0.5000 * 2=   1 .0000

0.0000 * 2= 0

Answer: 0.10112

� Example: What is 0.1
10

in binary ?
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What is 0.110 in binary ?

0.1 * 2 = 0 0 0 0 .2

0.2 * 2 = 0 0 0 0 .4

0.4 * 2 = 0 0 0 0 .8

0.8 * 2 = 1 1 1 1 .6

0.6 * 2 = 1 1 1 1 .2

0.2 * 2 = 0 0 0 0 .4 and then repeating 0.4, 0.8, 0.6

� Answer   0.0  0011  0011  0011  0011  0011  0011   ..... 2

0.110 in binary?
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Number Normalised Binary Normalised Decimal

100.01 x 21 1.0001 x 23 8.5 x 100

1010.11 x 22 1.01011 x 25 4.3 x 101

0.00101 x 2-2 1.01 x 2-5 3.90625 x 10-2

1100101 x 2-2 1.100101 x 2+4 9.86328125 x 10-2

Normalised Binary Floating Point Numbers
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Floating Point Multiplication

N1 x N2 = (M1 x 10
E1

) x  (M2 x 10
E2

) 

=  (M1 x M2)  x  (10
E1

x 10
E2

) 

=  (M1 x M2)  x  (10
E1+E2

)

i.e. We multiply the Mantissas and Add the Exponents

Example: 20  *  6 =  (2.0 x 10
1
)  x  (6.0 x 10

0
) 

=  (2.0 x 6.0)  x  (10
1+0

) 

=  12.0 x 10
1

We must also normalise the result, so the final answer = 1.2 x 10
2
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Truncation and Rounding

� For many computations the result of a floating point operation can be 
too large to store in the Mantissa. 

� Example: with a 2-digit mantissa

2.3 2.3 2.3 2.3 x x x x 10101010
1111 **** 2.3 2.3 2.3 2.3 x x x x 10101010

1111 =  =  =  =  5.29 5.29 5.29 5.29 x x x x 10101010
2222

� TRUNCATION => 5.2 x 10
2 (Biased Error) 

� ROUNDING => 5.3 x 10
2 (Unbiased Error) 
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Floating Point Addition

� A floating point addition such as 4.5 4.5 4.5 4.5 x x x x 101010103333 ++++ 6.7 6.7 6.7 6.7 x x x x 101010102222 is not a simple mantissa 
addition, unless the exponents are the same 
=> we need to ensure that the mantissas are aligned first.

NNNN1111 ++++ NNNN2222 =  (=  (=  (=  ( MMMM1 1 1 1 x x x x 10101010EEEE1 1 1 1 )  +  ()  +  ()  +  ()  +  ( MMMM2 2 2 2 x x x x 10101010EEEE2 2 2 2 )))) 

=  (=  (=  (=  ( MMMM1111 ++++ MMMM2222 x x x x 10101010 EEEE2222----EEEE1111) x) x) x) x 10101010EEEE1111

� To align, choose the number with the smaller exponent & shift mantissa the 
corresponding number of digits to the right.

Example: 4.5 4.5 4.5 4.5 xxxx 101010103333 ++++ 6.7 6.7 6.7 6.7 x x x x 101010102222 ==== 4.5 4.5 4.5 4.5 xxxx 101010103333 ++++ 0.67 0.67 0.67 0.67 xxxx 101010103333

= = = = 5.17 5.17 5.17 5.17 x x x x 101010103333

= = = = 5.2 5.2 5.2 5.2 x x x x 101010103333 (rounded) 
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Exponent Overflow & Underflow

� EXPONENT OVERFLOW occurs when the Result is too Large  
i.e.  when the Result’s Exponent > Maximum Exponent

Example: if Max Exponent is 99 then 1099 * 1099 = 10198 (overflow)

On Overflow => Proceed with incorrect value or infinity value or raise an 
Exception

� EXPONENT UNDERFLOW occurs when the Result is too Small
i.e.  when the Result’s Exponent < Smallest Exponent

Example: if Min Exp. is –99 then 10-99 * 10-99 = 10-198 (underflow)

On Underflow => Proceed with zero value or raise an Exception
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Comparing Floating-Point Values

� Because of the potential for producing in-exact results, comparing 
floating-point values should account for close results.

� If we know the likely magnitude and precision of results we can adjust 
for closeness (epsilon), for example, for equality we can:

a = b a > ( b - e ) AND a < ( b + e )

a = 1 a > (1 - 0.000005) AND  a < 1 + 0.000005
a > 0.999995 AND  a < 1.000005

Alternatively we can calculate | a - b | < e     e.g. | a - 1 | < 0.000005

� A more general approach is to calculate the closeness based on the 
relative size of the two numbers being compared.
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Floating point numbers - questions
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� What is the binary notation for 3.625

� A 11.011 B 10.101 C 11.101 D 101.11 E 11.11

� What is binary 0.1101 in decimal?

� A 0.8125 B 0.8 C 0.8625 D 0.9125 E 0.7865
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IEEE Floating-Point Standard

� IEEE: Institute of Electrical & Electronic Engineers (USA) 

� Comprehensive standard for Binary Floating-Point Arithmetic

� Widely adopted => Predictable results independent of architecture

� The standard defines:

The format of binary floating-point numbers

Semantics of arithmetic operations

Rules for error conditions
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Single Precision Format (32-bit) 

� The mantissa is called the SIGNIFICAND in the IEEE standard

� Value represented = ± 1111.F x .F x .F x .F x 2 2 2 2 EEEE----127127127127 127127127127 = = = = 2222
8888----1111 ---- 1111

� The Normal Bit (the 1.) is omitted from the Significand field => a HIDDEN bit

� Single precision yields 24-bits = ~ 7 decimal digits of precision

� Normalised Ranges in decimal are approximately:

––––10101010++++38383838 to to to to ----10101010----38383838,      ,      ,      ,      0000, , , , ++++10101010----38383838 to +to +to +to +10101010++++38383838

Sign
S

1 bit

Exponent
E

8 bits

Significand
F

23 bits
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Exponent Field

� In the IEEE Standard, exponents are stored as Excess (Bias) Values, not as 2’s 
Complement Values

� Example: In 8-bit Excess 127
–127 would be held as 0000  0000

... ...
0 would be held as 0111  1111
1 would be held as 1000  0000

... ...
128would be held as 1111 1111

� Excess notation allows non-negative floating point numbers to be compared using 
simple integer comparisons, regardless of the absolute magnitude of the 
exponents.
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Double Precision Format (64-bit) 

Value represented = ± 1111.F x .F x .F x .F x 2222
EEEE----1023102310231023 1023 1023 1023 1023 = = = = 2222

11111111----1111 ---- 1111

� Yields 53 bits of precision = ~ 16 decimal digits of precision

� Normalised Ranges in decimal are approximately:

––––10101010++++308308308308 to to to to ----10101010----308308308308,  ,  ,  ,  0000, , , , ++++10101010----308308308308 to +to +to +to +10101010++++308308308308

� Double-Precision format is preferred for its greater precision. Single-precision 
is useful when memory is scarce and for debugging numerical calculations since 
rounding errors show up more quickly.

Sign
S

1 bit

Exponent
E

11 bits

Significand
F

52 bits

Eddie Edwards 2008 Floating Point Numbers 7.28

What is +42.6875 in IEEE Single Precision Format?

First convert to a binary number: 42.6875 42.6875 42.6875 42.6875 = = = = 10101010____1010 1010 1010 1010 . . . . 1011101110111011

Next normalise: 1 1 1 1 .... 0101010101010101____0101010101010101____1111 x x x x 2222
5555

Significand field is therefore: 0101010101010101____0101010101010101____1111000000000000____0000000000000000____0000000000000000____000000000000

Exponent field is (5+127=132): 1000100010001000____0100010001000100

Value in IEEE Single Precision is:

Example: Conversion to IEEE format

Sign Exponent Significand
0000 1000100010001000____0100010001000100 0101010101010101____0101010101010101____1111000000000000____0000000000000000____0000000000000000____000000000000

In hexadecimal this value is 422A_C000422A_C000422A_C000422A_C000

0100010001000100________0010001000100010________0000 010010010010________1010101010101010________1100110011001100________0000000000000000________0000000000000000________0000000000000000
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Example: Conversion from IEEE format

Convert the IEEE Single Precision Value given by BECBECBECBEC0000____0000000000000000 to Decimal

BECBECBECBEC0000____0000000000000000 ==== 1111011011011011____1110111011101110____1111 100100100100____0000000000000000____0000000000000000____0000000000000000____0000000000000000____0000000000000000

Sign Exponent Significand
1111 0111011101110111____1101110111011101 1000100010001000____0000000000000000____0000000000000000____0000000000000000____0000000000000000____000000000000

Exponent Field = 0111_1101 = 125
True Binary Exponent = 125 – 127 = –2

Significand Field = 1000100010001000____0000000000000000____0000000000000000____0000000000000000____0000000000000000____000000000000
Adding Hidden Bit = 1.1.1.1.1000100010001000____0000000000000000____0000000000000000____0000000000000000____0000000000000000____000000000000

Therefore unsigned value = 1.1 x 2–2 = 0 . 011 (binary) 
= 0.25 + 0.125 = 0.375  (decimal) 

Sign bit = 1 therefore number is –0.375
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� Carry out the addition 42.6875 + 0.375 in IEEE single precision arithmetic.

Number Sign Exponent Significand

42.687542.687542.687542.6875 0000 1000100010001000____0100010001000100 0101010101010101____0101010101010101____1000100010001000____0000000000000000____0000000000000000____000000000000

0.3750.3750.3750.375 0000 0111011101110111____1101110111011101 1000100010001000____0000000000000000____0000000000000000____0000000000000000____0000000000000000____000000000000

� To add these numbers the exponents of the numbers must be the same => Make 
the smaller exponent equal to the larger exponent, shifting the mantissa 
accordingly.  

� Note: We must restore the Hidden bit when carrying out floating point 
operations.

Example: Addition
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� Significand of Larger No = 1 . 0101_0101_1000_0000_0000_000
Significand of Smaller No = 1 . 1000_0000_0000_0000_0000_000

� Exponents differ by +7 (1000_0100 – 0111_1101). Therefore shift binary 
point of smaller number 7 places to the left:

� Significand of Smaller No = 0 . 0000_0011_0000_0000_0000_000

Significand of Larger No = 1 . 0101_0101_1000_0000_0000_000

Significand of SUM = 1 . 0101_1000_1000_0000_0000_000

� Therefore SUM = 1 . 0101010101010101____1000100010001000____1111 x 25 = 10_1011.0001 = 43.0625

Sign Exponent Significand
0 1000_0100 0101_1000_1 000_0000_0000_000 = 422C 4000H

Example: Addition Contd.
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Special Values

� The IEEE format can represent five kinds of values: Zero, Normalised Numbers,
Denormalised Numbers, Infinity and Not-A-Numbers (NANs).

� For single precision format we have the following representations:

IEEE Value Sign Exponent Significand True
Field Field Field Exponent

± Zero 0 or 1 0 0 (All zeroes) 

± Denormalised No 0 or 1 0 Any non-zero bit pat. -126

± Normalised No 0 or 1 1 .. 254 Any bit pattern -126 .. + 127

± Infinity 0 or 1 255 0 (All zeroes) 

Not-A-Number 0 or 1 255 Any non-zero bit pat.
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Denormalised Numbers

� An Exponent of All 0’s is used to represent Zero and Denormalised numbers, 
while All 1’s is used to represent Infinities and Not-A-Numbers (NaNs) 

� This means that the maximum range for normalised numbers is reduced, i.e. for 
Single Precision the range is –126 .. +127 rather than 
–127 .. +128 as one might expect for Excess 127.

� Denormalised Numbers represent values between the Underflow limits 
and zero, i.e. for single precision we have:  

± 0.F x 20.F x 20.F x 20.F x 2
––––126126126126

Traditionally a “flush-to-zero” is done when an underflow occurs
� Denormalised numbers allow a more gradual shift to zero, and are useful 

in a few numerical applications
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IEEE 754 floating point numbers -
questions
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� What decimal is represented by the hex word 
C0CA0000

Answer - -6.3125

� What hex word is -0.75 in IEEE-754?

Answer - BFE8000000000000
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Infinities and NaN’s

� Infinities (both positive & negative) are used to represent values that exceed 
the overflow limits, and for operations like Divide by Zero

� Infinities behave as in Mathematics, e.g. 

Infinity + 5 = Infinity, -Infinity + -Infinity = -Infinity

� Not-A-Numbers (NaNs) are used to represent the results of operations which 
have no mathematical interpretation, e.g. 

0 / 0, +Infinity + -Infinity, 0 x Infinity, Square root of a -ve number,

� Operations with a NaN operand yield either a NaN result (quiet NaN operand) 
or an exception (signalling NaN operand) 
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This lecture - feedback

The pace of the lecture was:

A. much too fast    B. too fast  C. about right   D. too slow    E. much too slow

� The learning objectives were met:

A. Fully  B. Mostly   C. Partially   D. Slightly   E. Not at all


