Computer Systems - Architecture

Main Memory Tutorial - Solutions

- 1 (a) $4G \times 32$ -bit = $4 \times 2^{30} = 2^2 \times 2^{30} = 2^{32}$ Therefore **32 bits** are required to uniquely address each 32-bit word.
 - (b) Each word is 32 bits = 4 bytes, so if main memory is byte-addressable we have 4×4 Gigabytes i.e. $4 \times 4 \times 2^{30} = 2^2 \times 2^2 \times 2^{30} = 2^{34}$ Therefore **34 bits** are required to uniquely address each byte.

2 (a) Big-endian

Word 0 = Byte 0 Byte 1

Hex FF 01

Binary 1111 1111 0000 0001 -ve => take 2's complement

2s Complement 0000 0000 1111 1111 is 255 in decimal => negate to get result

Therefore Word 0 holds the integer -255

10

(b) Little-endian

Word 0 = Byte 1 Byte 0

Hex 01 FF

Binary 0000 0001 1111 1111 +ve => is 511 in decimal

Therefore Word 0 holds the integer +511

10

- 3 a) RAM chips per memory module = 32bit/4bit = 8
 - b) Memory Modules = Memory rows / Module Rows = 1G/256M = 4
 - c) RamChips = MemoryModules x ChipsPerModule = 4x8 = **32** or (1Gx32) / (256Mx4) = **32**
 - d) 256M module rows = 2^{28} . Therefore **28** address bits are needed.
 - e) Memory is word-addressed, 1G words = 2^{30} Therefore **30** address bits are needed
 - f) 14 div 256M (Module Length) = Memory Module 0
 - g) 14 mod 4 (Memory Modules) = Memory Module 2
 - a) If memory is byte-addressable, 1Gx4 bytes = $2^{30}x2^2=2^{32}$ Therefore **32** address bits are needed

For (b) & (c) we need to divide the address by the number of bytes in a memory word since we have byte addressing, e.g. in this case divide by 4 since there are 4 bytes in a 32-bit memoryword.

- b) (14/4) div 256M (Module Length) = Memory Module 0
- c) (14/4) mod 4 (Memory Modules) = Memory Module 3 (see below)
- For some types & sizes of data we would have to re-order the transmitted data. Students should be able to give examples of which types of data need to be re-ordered.

Memory layout for question 4(c)

4

Module	Word				Byte			
0	0	0	0	0	0	1	2	3
	4	4	4	4	16	17	18	19
	8	8	8	8	32	33	34	35
	12	12	12	12	48	49	50	51
1	1	1	1	1	4	5	6	7
	5	5	5	5	20	21	22	23
	9	9	9	9	36	37	38	39
	13	13	13	13	52	53	54	55
2	2	2	2	2	8	9	10	11
	6	6	6	6	24	25	26	27
	10	10	10	10	40	41	42	43
	14	14	14	14	56	57	58	59
3	3	3	3	3	12	13	14	15
	7	7	7	7	28	29	30	31
	11	11	11	11	44	48	46	47
	15	15	15	15	60	64	62	63