Imperial College

London
Department of Computing
Computer Systems 113

Architecture 110

SELF-STUDY NOTES
Version 1

Dr. N. Dulay

October 2007

Self-Study

Welcome to the Computer Systems / Architecture course. Before the lectures start in November students are required to study some topics on their own. The topics are straightforward and shouldn’t require too much effort. If you’re stuck however, then you can contact me by email (nd@doc.ic.ac.uk). There are some simple exercises at the end of the notes for you to try.

The website for the course is:

https://www.doc.ic.ac.uk/~nd/architecture

Note: the URL starts https.

If you want more in-depth information on the topics then an excellent resource is Wikipedia at

http://en.wikipedia.org/

The topics cover:

Unsigned Integer Representation –You should be able to perform radix conversion between decimal, binary and hexadecimal (base 16). You should be able to perform the four basic arithmetic operations on positive numbers in binary.

Signed Integer Representation –You should be able to represent signed decimal integers in two’s complement, sign-and-magnitude, excess/bias and BCD. You should be able to add and subtract two’s complement numbers and recognise overflows.

Character Representation – You should understand how computers represent characters and know of the ASCII and Unicode character sets.

Unsigned Integers

Computers process “binary” patterns, i.e. of patterns of 0’s and 1’s. To represent data
 within a computer we need to code it as a binary pattern.

The representation of integers
 and characters are the most important to consider because more complicated data representations can be built from them, e.g. complex numbers, dates, times, addresses, sound, video, typefaces.
Computer architects have employed many different schemes for representing numerical values, and there are advantages and disadvantages to each representation. Before considering these, we need to remind ourselves about binary numbers.

Binary numbers

As you know, unsigned integer numbers can be represented in bases (radices) other than base ten (decimal), for example the decimal number 14 can be represented as 16 in base 8 (octal) as 24 in base 5, as 112 in base 3 (ternary), and as 1110 in base 2 (binary). These follow from the standard technique of coding each position of the number as a power of the base:

.

For a decimal number we have:

 , while for a binary number

The second sum (for a binary number) also gives us a simple method to convert integers from base 2 to base 10.

Example: for the decimal number 252 we have:

252

 1111 1100

	Decimal (Base 10)
	
	Binary (Base 2)

	MS
	
	LS
	
	MS
	
	
	
	
	
	
	LS

	2
	5
	2
	
	1
	1
	1
	1
	1
	1
	0
	0

	100
	10
	1
	
	128
	64
	32
	16
	8
	4
	2
	1

	102
	101
	100
	
	27
	26
	25
	24
	23
	22
	21
	20

Here MS stands for Most Significant and signifies the leftmost digit or bit. LS stands for Least Significant and signifies the rightmost digit or bit.

We can make the base of a number explicit by suffixing it to the number as a subscript:

1410= 168= 245= 1123= 11102

In some computer languages we suffix the letter B (or b) to binary values e.g. 101B

Decimal to Binary Conversion (Division)

There are several ways of converting decimal numbers to binary. A simple technique involves repeated division by 2.

Example:
What is 9810 in binary?

Steps:

•
Divide the number by 2 giving the quotient and the remainder.

•
Repeat previous step with the new quotient until a zero quotient is obtained.

•
The answer is obtained by reading the remainder column from the bottom to the top.

	
	Quotient
	Remainder

	98 ÷ 2
	49
	0

	49 ÷ 2
	24
	1

	24 ÷ 2
	12
	0

	12 ÷ 2
	6
	0

	6 ÷ 2
	3
	0

	3 ÷ 2
	1
	1

	1 ÷ 2
	0
	1

Answer: 110 00102 reading the remainder column from bottom to the top MS-bit to LS-bit
Decimal to Binary Conversion (Subtraction)

Here is a second technique that subtracts descending powers of 2 from the number.

Example:
What is 9810 in binary?
Steps:

• Determine C.
C can be ≥ or <. If ≥ then B is 1. If < then B is 0.

• If C is ≥ then set next N to N - P. If C is < then continue with current N.

• Repeat for descending powers of 2 in column P.

• Answer is in column B reading from top to bottom (MS-bit to LS-bit)

	N
	C
	P
	
	B

	98
	≥
	64
	
	1

	98 - 64 = 34
	≥
	32
	
	1

	34 - 32 = 2
	<
	16
	
	0

	2
	<
	8
	
	0

	2
	<
	4
	
	0

	2
	≥
	2
	
	1

	2 - 2 = 0
	<
	1
	
	0

Answer: 110 00102
Binary Octal (Base 8) Conversion

In the past
 programmers sometimes used octal as a more convenient base for representing long binary values. The octal representation is shorter and the conversion from binary to octal and vice-versa is straightforward. The basic rule of thumb for an octal value is:

Starting from the rightmost (least significant) end, each group of 3 bits represents 1 octal digit (called an octet).

 000 (0), 001 (1), 010 (2), 011 (3), 100 (4), 101 (5), 110 (6), 111 (7)

Example: What is 101012 in octal?
	10
	101

	
	

	2
	5

Answer:
258
Example: What is 3578 in binary?

	
	
	

	
	
	

	
	
	

Answer:
111011112

Hexadecimal (Base 16)

Hexadecimal (hex) has overtaken octal as the radix used by programmers to represent long binary values. Binary values can be integers, characters, real numbers, memory addresses, instructions, etc

We will use hexadecimal extensively, so it is important to master conversions. It is also important to understand that hexadecimal and decimal are conveniences for humans, the computer represents everything in binary only. We will not perform arithmetic in hexadecimal, only use it as a shorthand for writing binary vlaues.

Starting from the rightmost (least significant) end, each group of 4 bits represents 1 hex digit. We use the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F for these. The letters A to F can be in uppercase or lowercase.

We can summarise the correspondence between hexadecimal, decimal and binary with the following table:

	Hex
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	A
	B
	C
	D
	E
	F

	Decimal
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	Binary
	0
	1
	10
	11
	100
	101
	110
	111
	1000
	1001
	1010
	1011
	1100
	1101
	1110
	1111

Example:
What is 25210 = 1111 11002 in hexadecimal?

	1111
	1100

	
	

	F
	C

Answer. FC16
Note: We will sometimes use the suffix the letter H (or h) after a hexadecimal value instead of the subscript 16, e.g. 2A3H. Another alternative that is used in some programming languages is to prefix the hexadecimal value with 0x, e.g. 0x2A3

Radix Arithmetic

Performing addition, subtraction, multiplication and division in bases other that 10 is identical to decimal arithmetic except that we use the particular base as the point of reference instead of 10. Some examples should make this clear.

	Addition AR + BR
Working from Right to Left

While digits remain to be added

Add current digits of A and B

If SUM is less than R

then record SUM

Otherwise

record difference SUM - R

add (carry) 1 to next column

End while

	
4
3
27
+
5
4
37

==================
1
3
0
57

	Subtraction AR - BR when A>B
Working from Right to Left

While digits remain to be subtracted

If digitof (A) >= digitof (B)

then record A - B

Otherwise

record (R + A) – B

 subtract 1 from digits to A’s left (or

 add 1 to digits to B’s left)

End while

	1
4
3
28
–
5
7
68

==================

6
3
48

Binary Addition Example

Addition of unsigned binary numbers is straightforward.

Example: Perform the binary addition 11 1011 + 10 1010
	Carry
	
	1
	1
	1
	
	1
	
	

	A
	
	
	1
	1
	1
	0
	1
	1

	B
	
	+
	1
	0
	1
	0
	1
	0

	Sum
	
	1
	1
	0
	0
	1
	0
	1

	Step
	
	7
	6
	5
	4
	3
	2
	1

	Step k
	Ak+Bk+Carryk = Carryk+1Sumk

	1
	1 + 0 = 1

=> sum 1

	2
	1 + 1 = 10
=> carry 1 sum 0

	3
	0 + 0 + 1 = 1
=> sum 1

	4
	1 + 1 = 10

=> carry 1 sum 0

	5
	1 + 0 + 1 = 10
=> carry 1 sum 0

	6
	1 + 1 + 1 = 11

=> carry 1 sum 1

	7
	 1 = 1

=> sum 1

Binary Subtraction Example

Binary subtraction is straightforward too. We’ll assume that the minuend is greater than the subtrahend, i.e. the result is not negative.

Example: Perform the binary subtraction 101 0101 – 1 1100
	A’’
	
	0
	1
	10
	
	
	
	

	A’
	
	1
	0
	0
	10
	
	
	

	A
	
	1
	0
	1
	0
	1
	0
	1

	B
	
	
	–
	1
	1
	1
	0
	0

	Diff
	
	0
	1
	1
	1
	0
	0
	1

	Step
	
	7
	6
	5
	4
	3
	2
	1

.

	Step k
	Ak– Bk = Diffk

	1
	1 – 0 = 1

	2
	0 –0 = 0

	3
	1 – 1 = 0

	4
	0 – 1

Borrow by subtracting 1 from A7..5=101 to give

A’7..5=100 and A’4=10.

Now use A’ instead of A, e.g. A’4 – B4

10 – 1 =1

	5
	0 – 1

Subtract 1 from A’7..6 =10 to give A’’7..6 =01, A’’5=10.

Now use A’’ instead of A’,
 e.g. A’’5 – B5

10 – 1 =1

	6
	1 – 0 = 1
i.e. A’’6 – B6

	7
	0 – 0 = 0

If you’re used to borrowing by adding back to B (the subtrahend), then that method will work also and you are welcome to use it.

Warning: many students have forgotten how to subtract numbers and become reliant on calculators. Make sure you can subtract without a calculator!

Binary Multiplication Example

Example: Perform the binary multiplication 1 1101 x 111
	A
	
	
	
	1
	1
	1
	0
	1

	B
	
	
	
	
	
	1
	1
	1

	
	
	1
	1
	1
	0
	1
	0
	0

	
	
	
	1
	1
	1
	0
	1
	0

	
	
	
	
	1
	1
	1
	0
	1

	Answer
	1
	1
	0
	0
	1
	0
	1
	1

	Carry
	1
	10
	10
	1
	1
	
	
	

Binary Division Example

Recall that division is

or

The main difficulty with human division is in estimating how many times the divisor goes into the partial dividend. Most people do this mentally. Luckily for binary numbers, this is easier since we only have two choices. We will postpone the consideration of fractional results until later in the course.

Example: Perform the binary division 10 0011 1111 / 1 1001 i.e. decimal 575/25
	Quotient->
	
	
	
	
	
	1
	0
	1
	1
	1

	11001
	1
	0
	0
	0
	1
	1
	1
	1
	1
	1

	
	
	1
	1
	0
	0
	1
	
	
	
	

	
	
	
	1
	0
	1
	0
	1
	1
	
	

	
	
	
	
	1
	1
	0
	0
	1
	
	

	
	
	
	
	1
	0
	0
	1
	0
	1
	

	
	
	
	
	
	1
	1
	0
	0
	1
	

	
	
	
	
	
	
	1
	1
	0
	0
	1

	
	
	
	
	
	
	1
	1
	0
	0
	1

	Remainder->
	
	
	
	
	
	
	
	
	
	0

Although the numbers in the example above are binary, you may find it useful to pretend they are decimal when performing comparisons, i.e. will 11,001 go into 10,001 (no), will it go into 100,011 (yes). If you’re Greek, then the division technique taught in Greek schools works fine (try it!).

Signed Integers
Up until now we have been assuming that integers are unsigned. In addition to representing the magnitude of numbers, computer architects also need to consider the representation of the sign of a number (+ or -) and for real numbers the representation of fractional values and the representation of exponents. In this section we’ll consider the representation of signed integers.

Bit Groups

Numbers within a computer system are not normally allowed to be of arbitrary length (size). Instead numbers are represented and manipulated in finite bit groups. The most common bit groups are the bit (1-bit), the byte (8-bit), and the word. Word size is architecture dependent but popular examples are 16-bit words, 32-bit words, and 64-bit words
. Architectures often employ their own unique names for the differing sizes, for example, on the Pentium 16-bit groups are called words, 32-bit groups are called doublewords and 64-bit groups are called quadwords.

	Bit
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	3
	2
	1
	0
	
	
	
	
	
	
	
	

	Nibble

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	7
	6
	5
	4
	3
	2
	1
	0
	
	
	
	
	
	
	
	

	Byte
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	16-bit
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Word
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

The numbers above the bits indicate the bit position, with the least significant bit at position 0 (the rightmost end).

Representing Unsigned Integers

If we are only interested in natural (unsigned) numbers, then we can represent values by their binary value within the computer, padding the number to the left with 0’s to fill the byte or word. The following table summarises the ranges of natural numbers
 for several bit group sizes:

	Bit group
	Bits
	Hex
digits
	No of possible bit patterns
	Representable
unsigned integers

	Bit

	1
	1
	21=2
	0 and 1

	Nibble

	4
	1
	24= 16
	0 to 15

	Byte

	8
	2
	28 = 256
	0 to 255

	Word(16bit)

	16
	4
	216= 65,536
	0 to 65,535

	Word(32bit)

	32
	8
	232 = 4,294,967,296
	0 to 4,294,967,295

	N bits

	N
	N/4

	2N
	0 to 2N – 1

Example: Show the bit pattern for the number thirteen using groups of 3,4, 5 and 6 bits.

3 bits
(we can’t do this, since we do not have sufficient bits)

4 bits
1101

5 bits
01101

6 bits
001101

In computing we use the following definitions for kilo (K), mega (M), giga (G) and tera (T):

Kilo
K=210 =1024

Mega
M=220 =10242 which is just over 1 million

Giga
G=230 =10243 which is just over 1 billion

Tera
T=240 =10244 which is just over 1 trillion

A common convention is to use B to signify Bytes and b for bits. For example, 4 MB means 4 Megabytes, while 4 Mb means 4 Megabits.

Representing Signed Integers

Although most computers provide some support for representing unsigned integers, good support for the representation of signed integers within a computer is more important. We shall outline several representations: Sign & Magnitude, One’s Complement, Two’s Complement, Bias-N (Excess-N), and Binary Coded Decimal (BCD). The most important and most used representation is Two’s Complement.

In any representation the properties we would ideally like to have are:

•
only 1 bit pattern for each value

•
equal number of positive and negative values

•
maximum range of values

•
no gaps in the range

In addition, and perhaps most important we would like to have a fast and economical hardware implementation
 of integer arithmetic.

We will use as an example the 4-bit group, i.e. the following bit-patterns:

	Bit Pattern
	Unsigned

	0000
	+0

	0001
	+1

	0010
	+2

	0011
	+3

	0100
	+4

	0101
	+5

	0110
	+6

	0111
	+7

	1000
	+8

	1001
	+9

	1010
	+10

	1011
	+11

	1100
	+12

	1101
	+13

	1110
	+14

	1111
	+15

Representing Integers I - Sign & Magnitude

In the sign & magnitude representation we use 1 bit (invariably the leftmost bit) of the bit group to represent the sign of the integer and the remaining bits to represent the magnitude.

Example: What integers can we represent in 4 bits using sign & magnitude?
	Bit Pattern
	Unsigned
	Sign & Magnitude

	0000
	+0
	+0

	0001
	+1
	+1

	0010
	+2
	+2

	0011
	+3
	+3

	0100
	+4
	+4

	0101
	+5
	+5

	0110
	+6
	+6

	0111
	+7
	+7

	1000
	+8
	–0

	1001
	+9
	–1

	1010
	+10
	–2

	1011
	+11
	–3

	1100
	+12
	–4

	1101
	+13
	–5

	1110
	+14
	–6

	1111
	+15
	–7

Perhaps the first thing we notice about sign & magnitude is that we have two bit patterns for zero (labelled +0 and –0). This wastes a value and requires that the hardware treat both bit patterns as zero.

Sign & magnitude is the simplest representation for humans to understand, and a little bit-more costly (in transistors) than other methods to implement. Why? Because signs need to be taken into account explicitly leading to the need to implement subtractors as well as adders, for example, for addition we need to compare signs and absolute values of the numbers and then add or subtract accordingly. Comparing two absolute values is also a costly operation. Two’s complement representation doesn’t have these disadvantages.

For an n-bit group, the sign & magnitude numbers will range from –(2n–1–1) to +(2n–1–1)

Representing Integers II - One's Complement (historical)

In one’s complement we represent (in a finite bit group) we can negate a number by complementing (or inverting) each bit. The complement of 1 is 0; the complement of 0 is 1.

Example: What integers can we represent in 4 bits using one's complement?
	Bit Pattern
	Unsigned
	Sign & Magnitude
	One's Complement

	0000
	+0
	+0
	+0

	0001
	+1
	+1
	+1

	0010
	+2
	+2
	+2

	0011
	+3
	+3
	+3

	0100
	+4
	+4
	+4

	0101
	+5
	+5
	+5

	0110
	+6
	+6
	+6

	0111
	+7
	+7
	+7

	1000
	+8
	–0
	–7

	1001
	+9
	–1
	–6

	1010
	+10
	–2
	–5

	1011
	+11
	–3
	–4

	1100
	+12
	–4
	–3

	1101
	+13
	–5
	–2

	1110
	+14
	–6
	–1

	1111
	+15
	–7
	–0

Like sign & magnitude, one’s complement yields two representations for zero, and a 1 for the leftmost bit indicates a negative value. One’s complement is less intuitive (for humans) than sign & magnitude, but less costly to implement in hardware. Because of the two representations for zero, with one’s complement the result after an operation is not always correct e.g. we must add 1 to the result of an addition if the carry out from the most significant bit is 1. It is desirable to avoid such complications in hardware.

Like sign & magnitude, for an n-bit group the one's complement numbers will range from

–(2n–1– 1) to +(2n–1–1)

One’s complement was used on some old computers and is no longer used.

Representing Integers III - Two’s Complement

Two’s complement representation is the most popular representation for signed integers. In two’s complement representation we obtain the negative of an integer by complementing each of its bits and adding 1 to the result. The 2s complement for an n-bit binary number X is defined as (2n –X)

Example: What integers can we represent in 4 bits using two's complement?

	Bit Pattern
	Unsigned
	Sign & Magnitude
	One's Complement
	Two's Complement

	0000
	+0
	+0
	+0
	+0

	0001
	+1
	+1
	+1
	+1

	0010
	+2
	+2
	+2
	+2

	0011
	+3
	+3
	+3
	+3

	0100
	+4
	+4
	+4
	+4

	0101
	+5
	+5
	+5
	+5

	0110
	+6
	+6
	+6
	+6

	0111
	+7
	+7
	+7
	+7

	1000
	+8
	–0
	–7
	–8

	1001
	+9
	–1
	–6
	–7

	1010
	+10
	–2
	–5
	–6

	1011
	+11
	–3
	–4
	–5

	1100
	+12
	–4
	–3
	–4

	1101
	+13
	–5
	–2
	–3

	1110
	+14
	–6
	–1
	–2

	1111
	+15
	–7
	–0
	–1

The first thing that strikes us with two’s complement is that we only have 1 bit pattern for zero. The second thing that strikes us, is that the representation is asymmetric
 i.e. there is one extra negative value. Luckily the asymmetric range is a minor disadvantage compared to the nice properties that two’s complement provides.

Perhaps the most useful property of two’s complement is that subtraction can be performed by forming the 2's complement of the subtrahend and using addition instead. i.e.

 X – Y = X + (–Y)

Forming the 2’s complement turns out be a simple operation to implement so there is no need for a separate subtractor (as in sign & magnitude) or carry-out adjustments (as in one’s complement).

Two’s complement is also a true complement in the sense that +X+(–X) = 0 and –(–X) = X.

For n-bits, two's complement numbers range from –2n–1 to +(2n–1–1)

Two’s complement – clock layout

The two’s complement range can viewed on a “clock” (see below). When we do this can model addition by counting clockwise and subtraction by counting anti-clockwise. Note also that how the two’s complement of a number is horizontally opposite the number and that such pairs add upto 24=16 as unsigned integers.

Example: Calculate 5 + (–4) and 5 – (–2) using the two’s complement clock.
Conceptually we perform the addition by counting clockwise, i.e. +5 + –4 is 0101 + 1100, i.e. move 1100 (twelve) places clockwise from 0101 which arrives at 0001 = +1.

Similarly for the subtraction we count anticlockwise, e.g. +5 – (–2) is 0101 – 1110 e.g. move 1110 (fourteen) places anticlockwise from 0101 which arrives at 0111=+7.

Ten’s Complement

It is interesting to know that we can also have complements in other bases, e.g. ten’s complement. The 10s complement of an n-digit decimal number X is defined as (10n–X), e.g. for the 4-digit decimal number 1234 the 10’s complement is 8766. Recall that the 2s complement for an n-bit binary number X is defined as (2n –X).

Two’s Complement to Decimal

To convert a two’s complement number to decimal we can use the formula:

[image: image1.wmf]

n

-

1

-

b

*

n

-

1

2

+

k

b

k

=

0

n

-

2

å

*

k

2

Example: Convert the 4-bit two's complement value 1011 to decimal.

= (​–1 * 8) + (0 * 4) + (1 * 2) + (1 * 1)

= –8 + 2 + 1

= –5

Alternatively for negative values we can negate the number (make it positive), convert to decimal & negate it. For example for 1101 we can

· Negate 1101 by inverting each bit and adding one giving 0101

· Convert 0101 to decimal i.e. 1*4 + 1*1 = 5

· Negate 5 to give –5

Representing Integers IV - Excess-n or Bias-n
In Excess-n (also called Bias-n) representation we represent an integer X by X+n. n>0.

Example:
What integers can we represent in 4 bits using an Excess-8 representation?
	Bit Pattern
	Unsigned
	Sign & Magnitude
	One’s Complement
	Two's Complement
	Excess 8

	0000
	0
	+0
	+0
	+0
	–8

	0001
	+1
	+1
	+1
	+1
	–7

	0010
	+2
	+2
	+2
	+2
	–6

	0011
	+3
	+3
	+3
	+3
	–5

	0100
	+4
	+4
	+4
	+4
	–4

	0101
	+5
	+5
	+5
	+5
	–3

	0110
	+6
	+6
	+6
	+6
	–2

	0111
	+7
	+7
	+7
	+7
	–1

	1000
	+8
	–0
	–7
	–8
	0

	1001
	+9
	–1
	–6
	–7
	+1

	1010
	+10
	–2
	–5
	–6
	+2

	1011
	+11
	–3
	–4
	–5
	+3

	1100
	+12
	–4
	–3
	–4
	+4

	1101
	+13
	–5
	–2
	–3
	+5

	1110
	+14
	–6
	–1
	–2
	+6

	1111
	+15
	–7
	–0
	–1
	+7

Like two's complement, excess-n is asymmetric. Excess-n is used where it is important to be able to compare (and sort) values easily. We will return to it when we consider the representation of exponents for “real” numbers later in the course. Some calculators also employ excess-n numbers.

Note: if n is chosen to be equal to 2m–1 where m is the number of bits in the representation then Excess-n representation is the same as two's complement but with the sign-bit inverted.

Representing Integers V - Binary Coded Decimal (BCD)

Some architectures support an integer representation called Binary Coded Decimal (BCD). BCD is often provided to support commercial applications programmed in the COBOL language since these applications tend be I/O intensive with little arithmetic processing, and the use of BCD avoids costly binary-to-decimal and decimal-to-binary conversions. Also BCD implementations tend to support variable-sized bit groups, e.g. we can easily represent integers with 300 digits.

The idea behind BCD is very simple. We represent each decimal digit by 4 bits (a nibble) that encode each decimal digit i.e. we have

	Bit Pattern
	Unsigned
	Sign & Magnitude
	One's Complement
	Two's Complement
	Excess-8
	BCD

	0000
	0
	+0
	+0
	+0
	–8
	0

	0001
	+1
	+1
	+1
	+1
	–7
	+1

	0010
	+2
	+2
	+2
	+2
	–6
	+2

	0011
	+3
	+3
	+3
	+3
	–5
	+3

	0100
	+4
	+4
	+4
	+4
	–4
	+4

	0101
	+5
	+5
	+5
	+5
	–3
	+5

	0110
	+6
	+6
	+6
	+6
	–2
	+6

	0111
	+7
	+7
	+7
	+7
	–1
	+7

	1000
	+8
	–0
	–7
	–8
	0
	+8

	1001
	+9
	–1
	–6
	–7
	+1
	+9

	1010
	+10
	–2
	–5
	–6
	+2
	spare

	1011
	+11
	–3
	–4
	–5
	+3
	spare

	1100
	+12
	–4
	–3
	–4
	+4
	spare

	1101
	+13
	–5
	–2
	–3
	+5
	spare

	1110
	+14
	–6
	–1
	–2
	+6
	spare

	1111
	+15
	–7
	–0
	–1
	+7
	spare

BCD is obviously very easy for humans to comprehend, although a smaller range of numbers is representable compared with other binary representations, e.g. 16 bits can only represent the natural numbers 0 to 9999. Signs are handled by using two of the unused bit patterns, for example, on the VAX Architecture, the bit pattern 1100 is used for the + sign and 1101 for the – sign. Confusingly however, in the VAX architecture the sign nibble occurs at the least significant end.

Example. What is 83710 and –83710 in VAX BCD?

Unsigned value 83710 is 1000 0011 0111 in BCD.

+837 = 1000 0011 0111 1100 in VAX BCD (+ at end)

–837 = 1000 0011 0111 1101 in VAX BCD (– at end)

 Signed Integer Arithmetic

Because of the dominance of two’s complement representation we shall only consider arithmetic for it, in this course. The nice feature with two's complement is that addition and subtraction of two's complement numbers works without having to separate the sign bits (the sign of the operands and results is effectively subsumed addition/subtraction calculation). If the result of an arithmetic operation is to too large or too small to fit into the resultant bit-group, then we have an arithmetic overflow. It is normally left to the programmer to decide how to deal with this situation
.

Two's Complement Addition

For two’s complement addition we add the values and discard any carry-out bit.

Example: Calculate 3+(–8) and –2+(–5) using an 8-bit two’s complement representation.
	(+3)
	0000 0011
	
	(–2)
	1111 1110

	+(–8)
	1111 1000
	
	+(–5)
	1111 1011

	(–5)
	1111 1011
	
	(–7)
	1 1111 1001

	
	
	
	
	Discard Carry-Out

Overflow Rule: If 2 two’s complement numbers are added, and they are both positive or both negative, then overflow occurs if and only the result has the opposite sign, i.e.

(+A) + (+B) = –C

or

(–A) + (–B) = +C

Example: Calculate –7+(–6) using a 4-bit two's complement representation.
	(–7)
	1001
	

	+(–6)
	1010
	

	(+3)
	1 0011
	“Overflow”

Two's Complement Subtraction

Subtraction in two's complement is accomplished by negating the subtrahend and adding it to the minuend. Any carry-out bit is discarded.

Example: Calculate 8 – 5 using an 8-bit two’s complement representation
	(+8)
	0000 1000
	
	0000 1000

	–(+5)
	0000 0101
	-> Negate ->
	+ 1111 1011

	(+3)
	
	
	1 0000 0011

Discard

Overflow Rule:

If 2 two’s complement numbers are subtracted, and their signs are different, then overflow occurs if and only if the result has the same sign as the subtrahend.

(+A) – (–B) = –C

or

(–A) – (+B) = +C

Example: Calculate 7–(–6) using a 4-bit two's complement representation.
	(​+7)
	0111

	–(–6)
	0110 (Negated)

	(–3)
	1101 “Overflow”

Two’s Complement Multiplication & Division

Multiplication in two’s complement cannot be accomplished with the standard technique.

For example consider X * (–Y). The two's complement of –Y is 2n–Y. Therefore X (Y) = X(2n–Y) = 2nX – XY. However the expected result should be 22n – XY. We can perform multiplication by converting the two's complement numbers to their absolute values and then negate the result if the signs of the operands are different. A similar situation exists for two’s complement division. To do division by hand, it is easier convert the values to absolute values, perform the division, and then negate if the operand signs are different.

Most architectures implement more sophisticated algorithms. Fortunately for us, it is beyond the scope of this course to examine these algorithms. If you need to perform multiplication and division, use the schoolboy method on positive values and set the signs accordingly.

Characters
Computers map characters to bit patterns (unsigned integers effectively). The most common mappings in use are ASCII
 (pronounced as-key) and Unicode. An older mapping is IBM’s EBCDIC.

ASCII uses 7-bits (128 bit patterns) although most computers extend this to 8 bits yielding an extra 128 bit-patterns. ASCII has 26 lowercase letters, 26 uppercase letters, 10 digits, and 32 punctuation marks. The remaining 34 bit patterns represent whitespace characters e.g. space (SP), tab (HT), return (CR), linefeed (LF) and special control characters that are used in interfacing to I/O devices. Note that the uppercase letters A-Z, lowercase letters a-z and the digits 0-9 have contiguous values.

Strings are represented as sequences of characters. E.g. The name Fred is encoded as follows:

	English
	F
	r
	e
	d

	ASCII (Binary)
	0100 0110
	0111 0010
	0110 0101
	0110 0100

	ASCII (Hex)
	46
	72
	65
	64

The 7-bit ASCII Character Set

	
Bit positions 654
	Bit positions

	000
	001
	010
	011
	100
	101
	110
	111
	3210

	NUL
	DLE
	SP
	0
	@
	P
	‘
	p
	0000

	SOH
	DC1
	!
	1
	A
	Q
	a
	q
	0001

	STX
	DC2
	“
	2
	B
	R
	b
	r
	0010

	ETX
	DC3
	#
	3
	C
	S
	c
	s
	0011

	EOT
	DC4
	$
	4
	D
	T
	d
	t
	0100

	ENQ
	NAK
	%
	5
	E
	U
	e
	u
	0101

	ACK
	SYN
	&
	6
	F
	V
	f
	v
	0110

	BEL
	ETB
	‘
	7
	G
	W
	g
	w
	0111

	BS
	CAN
	(
	8
	H
	X
	h
	x
	1000

	HT
	EM
)
	9
	I
	Y
	i
	y
	1001

	LF
	SUB
	*
	:
	J
	Z
	j
	z
	1010

	VT
	ESC
	+
	;
	K
	[
	k
	{
	1011

	FF
	FS
	,
	<
	L
	\
	l
	|
	1100

	CR
	GS
	-
	=
	M
]
	m
	}
	1101

	SO
	RS
	.
	>
	N
	^
	n
	~
	1110

	SI
	US
	/
	?
	O
	_
	o
	DEL
	1111

Unicode is a newer, more complex, standard that is attempting to provide a number for every character no matter what the language. About 100,000 characters have already been defined. The first 65,536 (16-bit) characters cover the major alphabets of the world.

It is becoming common for programming languages to support 16-bit Unicode characters, e.g. Java, Python. Note: the first 127 characters of Unicode correspond to ASCII characters. You can find definitions of the Unicode characters at http://www.unicode.org/charts/
Examples:

Uppercase A in Basic Latin (i.e. ASCII) is 0041 Hex.

See page 2 of http://www.unicode.org/charts/PDF/U0000.pdf
3/4 in Latin1 is 00BE Hex

See page 2 of http://www.unicode.org/charts/PDF/U0080.pdf

Pi in Greek and Coptic is 03A0 Hex.

See page 2 of http://www.unicode.org/charts/PDF/U0370.pdf
The double concentric circle character in Thai is 0E4F Hex.

See page 2 of http://www.unicode.org/charts/PDF/U0E00.pdf
Triple right arrows in Arrows is 21F6 Hex.

See page 2 of http://www.unicode.org/charts/PDF/U2190.pdf

-8

-7

-6

-5

-4

-2

-3

-1

+7

+6

+5

+4

+3

+2

+1

0

1111

1110

1101

1100

1011

1010

1001

1000

0111

0110

0101

0100

0011

0010

0001

0000

�	We’ll also look at how computer programs are represented later in the course.

�	We’ll also look at the approximation of real numbers using floating-point numbers later in the course.

� 	Spaces or underscores in binary numbers are added for readability. Spaces/underscores between groups of 4 bits (grouping right-to-left) is common.

� 	Although octal is less used these days, you should be familiar with the term.

�	We shall see later in the course that there is a strong relationship between word size, the width of memory locations and the size of CPU registers.

�	Nibble = Half-a-byte obviously :-)

�	Any of the representations for signed integers can also be used although the range will be smaller. We will see later in the course that unsigned integers are used to address main memory locations.

� is the ceiling operator.

�	Hardware implementation -> minimal number of transistors AND fast arithmetic if possible.

�	Sign & Magnitude and One’s Complement are symmetric

�	How might we deal with integer overflow?

�	American Standard Code for Information Interchange

N. Dulay
Integers and Characters (
)

_876561741

_876561742

_1096305616

_876561738

_876561739

_876561737

