
The Unreasonable Effectiveness of (Basic High
School) Mathematics

Dominic Orchard
dominic.orchard@cl.cam.ac.uk

It may have been Einstein, it may have been Feynman, but whoever said
“if you can’t explain it simply you don’t understand it well enough” really laid
down the gauntlet for us theoreticians. Whilst sometimes excruciating, I
have found that this process of simplifying and explaining greatly benefits
my understanding of my own work and its place within the wider research-
context. This April I had the fantastic opportunity to once again put myself
through this process at the 5th annual Jesus College Graduate Conference.

Primarily, my research concerns the design of programming languages for
creating reliable and efficient software. In contrast with natural languages,
such as English, Latin, etc., programming languages are highly constrained
and contain much less ambiguity. They allow programmers to define com-
plex calculations and manipulations of data which are then translated into
more simple, prosaic instructions understood by computer hardware. A sig-
nificant aspect of my research consists of defining the semantics of program-
ming languages using abstract mathematics. A formal and precise seman-
tics allows programmers to more accurately reason about the correctness of
their programs, which is especially important in safety-critical systems, such
as medical devices and transport systems.

Faced with just fifteen minutes of air-time I wondered how I could ex-
plain any part of my fairly theoretical research in programming languages.
How could I provide any intuition about what any of it means, particularly
the mathematics? Fortuitously, many concepts in mathematics have the re-
markable habit of appearing frequently in a variety of different contexts.
Even more fortuitously for me, the underlying mathematical concepts of my
research appear in a dizzyingly large number of areas, not least of which is in
basic mathematics. The concept is remarkably simple and unknowingly em-
bedded in the minds of most people with even basic arithmetic knowledge,
yet it underpins a vast number of topics in mathematics, logic, philosophy,
physics, and computer science.

Consider the following simple sums:

2 + 2 = 4 3 + 0 = 3 0 + 7 = 7 0 + 0 = 0

0Appeared in the Jesus College Annual Report 2012, Cambridge, UK

1



The last three have a common form: x+ 0 = x or 0 + x = x. These are two
simple axioms of integer arithmetic, where a variable x acts as a place-holder
meaning “any number”.

Consider now the following sum of three numbers:

3 + 4 + 2 = 9

The result can be calculated by adding together one pair of numbers at a
time, in two different ways:

1) (3 + 4) + 2 = 7 + 2 = 9

2) 3 + (4 + 2) = 3 + 6 = 9

where parentheses delimit addition of two numbers. Clearly it is irrelevant
which pair of integers is added first; the final result is the same. This be-
haviour can be generalised as the axiom: (x+ y) + z = x+ (y + z).

In a large variety of contexts there exist operations similar to addition
which have axioms of the same form as the three axioms for integer addi-
tion shown here. These axioms are generalised to arbitrary operations and
domains by the concept of a monoid.

A monoid comprises a collection of items, an operation ⊕ that from any
two such items calculates another item, and a special item n, called the null
item, along with the following three axioms:

x⊕ n = x {right-null}
n⊕ x = x {left-null}
(x⊕ y)⊕ z = x⊕ (y ⊕ z) {associativity}

(1)

The intuition for the null item is that it contributes nothing to the result of
⊕. For integer addition the collection of items are integers, the operation
is + and the null item is 0. Another monoid you will be familiar with is
integer multiplication with operation × and null item 1 where, for example,
the right-null property is thus x× 1 = x. You might like to convince yourself
of the truth of the remaining axioms.

There are many operations in mathematics that satisfy these axioms but
there are some which do not; monoids are not trivially applicable. For exam-
ple, integer subtraction has no null item that satisfies the left-null property
and subtraction violates associativity e.g. (2− 3)− 4 6= 2− (3− 4).

While monoids are relatively basic they are important in many systems,
forming the basis for simplification, usually in conjunction with additional
axioms or properties. For example, consider the property of addition that x+
(−x) = 0, describing simplification of addition of a number to its negation.
Given a longer sum, e.g. x + y + (−y) + z, this property can be applied to
simplify the sum to x+0+ z. Because + on integers with 0 is a monoid, the
sum can be further simplified to x+ z.

2



Monoids appear in many contexts other than arithmetic. A fun example
I demonstrated live at the Jesus Graduate Conference is the monoid of paint
mixing. Consider a collection of acrylic paints. There is an operation that
takes two colours and calculates a new colour: mixing them! Mixing is
associative: given three paints they can be mixed to the same colour by first
mixing an arbitrary pair of paints and then mixing the remaining unmixed
paint. But what is the null item? White acrylic paint is not null, it only
lightens the hue of the paint. Instead a substance called base extender is the
null item. Base extender adjusts the drying time and consistency of acrylic
paint whilst preserving its colour. Thus in terms of the colour, base extender
is the null item of the mixing operation, satisfying the left-null and right-null
properties; it is a monoid! Do try this at home.

In my work with semantics, programs written in some programming
language are described as abstract mathematical objects, representing pro-
grams or fragments of programs. These objects have a monoid structure
whose operation combines two programs to form another program, similar
to constructing a sentence from sub-sentences and clauses in natural lan-
guages. The null item for this monoid represents a program that does noth-
ing. The monoid axioms form the basis for reasoning about the correctness
of the programs and correctness of the translation between the language
and the underlying instructions of some computer hardware. Thus, when
developing a new semantics a key question is: what is the monoid for this
semantics? This monoidal requirement often helps determine the mathe-
matical components needed for a semantics of the particular language.

The properties of a monoid are certainly not the only interesting proper-
ties that arise in many different contexts, but for a wide variety of contexts
they appear as basic properties – and they really are very simple! After all,
you already learnt them when you were at high-school.

3


