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Abstract
Effect and session type systems are two expressive behavioural type
systems. The former is usually developed in the context of the λ-
calculus and its variants, the latter for the π-calculus. In this paper
we explore their relative expressive power. Firstly, we give an em-
bedding from PCF, augmented with a parameterised effect system,
into a session-typed π-calculus (session calculus), showing that
session types are powerful enough to express effects. Secondly, we
give a reverse embedding, from the session calculus back into PCF,
by instantiating PCF with concurrency primitives and its effect sys-
tem with a session-like effect algebra; effect systems are powerful
enough to express sessions. The embedding of session types into an
effect system is leveraged to give a new implementation of session
types in Haskell, via an effect system encoding. The correctness of
this implementation follows from the second embedding result. We
also discuss various extensions to our embeddings.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs—Type structure

Keywords session types, π-calculus, effect systems, PCF, encod-
ing, type systems, Concurrent Haskell

1. Introduction
The simple type theory for the λ-calculus classifies the range of in-
put and output values required by, and provided by, a computation.
Various other kinds of type system specify further, describing not
just what is computed, but how values are computed. These might
be informally described as behavioural type systems, i.e. the in-
tensional behaviour of computation is described. In this paper we
study the relative expressive power of two such behavioural type
systems for two fundamental calculi: effect types in the λ-calculus
and session types in the π-calculus.

Effect types augment standard value-typing to describe side-
effect behaviour. They are the type system representation of effect
systems, a general class of static program analysis for collecting
information on effects such as state, exceptions, or resource use [12,
20, 50]. Classes of effect analyses are often defined abstractly via a
system parameterised by an algebra of effects such as semi-lattices
in early work [20] or semiring and Kleene algebra-like structures
later [36, 38]. On the other hand, session types describe and restrict
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concurrent interactions over channels in the π-calculus, with types
for sequencing (via prefixing), branching, and recursion.

The π-calculus and the λ-calculus are simple yet powerful pro-
totypes of computation. But they do not stand apart. The π-calculus
subsumes the power of the λ-calculus, and is universal with re-
spect to sequential computation. This result was first proved by Mil-
ner [33], opening up the use of λ-calculus encodability to show the
expressiveness of various type disciplines for the π-calculi. Such
embeddings are applied for type-based analyses of programming
languages for, e.g., concurrent abstract data types [45], a tail-call
optimisation of functions [31], secrecy [24] and termination [56].
Recently Toninho et al. [51] showed that simply typed λ-terms are
encodable more tightly into session-typed processes via a Curry-
Howard interpretation, providing a new logical explanation of shar-
ing and copying parallel λ-evaluation strategies.

This paper goes further: we show that the session-typed π-
calculus is expressive enough to systematically encode various
classes of effect system for the λ-calculus (PCF). This is notable
since, compared to effect systems, session types are more restric-
tive, in the sense that they rule out many computations, whereas
effect systems tend to be more descriptive.

But this correspondence is not just in one direction. We show
that a general effect system can be instantiated to capture session
types. Using this encoding, we implement session-typed communi-
cations in Concurrent Haskell via a type-level effect system.

Processes as effect handlers, session types as effects The core
idea behind the embedding of effects into sessions is the simula-
tion of effectful computations using processes as effect handlers
(inspired by work on effect semantics via handlers, e.g., [3, 46]).
Interactions with these processes, via session-typed channels, in-
duces a description of the effects of a process as a session type.

Consider the following simple recursive process, often called
the variable agent, used to simulate a single mutable memory cell:

def Var(c, x) = cB {get : c!〈x〉.Var〈c, x〉, put : c?(y).Var〈c, y〉}
A process generated by Var〈c, i〉 repeatedly offers on channel c a
choice (cB {...}) of two interaction modes: get and put. If the get
branch is chosen, x is sent on c (c!〈x〉) then the process recurses
with the same parameters. In the put branch, a value y is received
on c (c?(y)) which becomes the new stored value via the recursive
call. The initial stored value is i. Thus, Var〈c, i〉 handles get and
put operations performed by a client process.

For example, by interaction with the handler, the following
process increments the stored value:

cC get . c?(x).cC put . c!〈x+ 1〉 | Var〈c, i〉 (1)

On channel c the get branch is selected (via C), a value x is re-
ceived, the put branch is selected, then x + 1 is sent. The session-
typing discipline restricts channels to rule-out various unsafe con-
current behaviour. For the left-hand process in (1), a standard ses-
sion typing system (e.g. [22, 57]) might assign to channel c the
session type c : ⊕[get :?[Z].⊕ [put :![Z]]]. This complements the
session type of the variable agent and together their interaction is



proven type and communication safe. Considering the intention be-
hind the variable agent (simulating state), session types here act as
an effect system. The above session type describes the process hav-
ing side-effects of reading and then writing an integer to memory.

Paper structure and contributions We conjecture that session
types and effect systems are equally expressive. We make the fol-
lowing contributions to elucidate their relationship:

• We embed a variant of PCF with a general effect system into
a session-typed variant of the π-calculus (session calculus for
short) (Section 3). We prove this embedding is type-preserving
and sound (both operationally and axiomatically) (Section 4).
• The embedding is parametric in various effect-dependent struc-

ture. These are instantiated for effects with linear control-flow,
including variations on state (list or set-based) and resource us-
age effects in (Section 3.5 and Section 9.1).
• We extend the encoding to a parallel variant of PCF where effects

may interfere (Section 5). This requires only a small extension to
the duality predicate of session typing.
• We instantiate PCF with concurrency primitives and an effect

system for sessions. We reverse the embedding of Section 3,
giving an embedding of the session calculus into this instanti-
ation of PCF (Section 7), showing that effect systems are pow-
erful enough to encode session types. This is leveraged to give a
new implementation of session types in Haskell (Section 8), en-
larging the typability from previous implementations. This is our
Artifact, available at http://dorchard.co.uk/popl16.

Section 2 introduces the two calculi. Section 9 discusses extensions
to our encodings and related work. A companion technical report
contains proofs and additional definitions [41].

2. Background: two typed calculi
2.1 PCF with effects
Our source language is an effectful, call-by-value variant of PCF
(simply-typed λ-calculus with natural numbers, conditionals, and
recursion) which we call FPCF (effectful PCF) with syntax:

M,N ::=V |M N | caseMof 0 7→ N, (sucx) 7→ N ′ | C
V ::= x | λx.M | rec (λf.λx.M) | CV

V denotes values, M,N computations, and x ranges over vari-
ables. C ranges over constants which can be instantiated to give
application-specific (possibly effectful) operations. CV is the sub-
set of C for value constants, which includes the pure zero, suc-
cessor, and unit constructors 0, suc, unit ∈ CV . The case syntax
pattern matches on natural number constructors.

We define a type-and-effect system for FPCF similar in style
to the rich effect systems of Nielson and Nielson [38], which
differ from traditional effect systems (e.g., [20]) by distinguishing
sequential control flow from branching control flow (alternation).

Definition 1 (Effect algebra). Let F be a set, where F,G,H
range over its elements, with partial order v and with structure:

• Monoid (F , •, I) where • corresponds to sequential composi-
tion and I is the trivial effect for pure computation.
• Commutative semigroup (F ,⊕) where⊕ corresponds to branch-

ing, with distributivity (F ⊕G) •H = (F •H)⊕ (G •H).
• Closure operation (F ,−∗) for effect fixed-points with axioms
F ∗ = 1⊕ (F ∗ • F ) = 1⊕ (F • F ∗).

For some systems, ⊕ is the least-upper bound with respect to v.

Definition 2 (Types and effects). The type-and-effect system
for FPCF has judgements of the form Γ ` M : τ, F meaning

var
Γ ` x : τ, I

abs
Γ, x : σ `M : τ, F

Γ ` λx.M : σ
F−→ τ, I

app
Γ `M : σ

H−→ τ, F Γ ` N : σ,G

Γ `M N : τ, F •G •H const ∅ ` C : Cτ , CF

case
Γ `M : nat, F Γ ` N1 : τ,G Γ, x : nat ` N2 : τ,H

Γ ` caseM of 0 7→ N1, (sucx) 7→ N2 : τ, F • (G⊕H)

sub
Γ `M : τ, F F v G

Γ `M : τ,G
rec

Γ, f : τ
F−→ τ, x : τ `M : τ, F

Γ ` rec (λf.λx.M) : τ
F−→ τ, I

Figure 1. Type-and-effect system for FPCF

that term M has type τ in the context Γ of free-variable typing
assumptions and performs effect F . The syntax of types is defined:

σ, τ ::= σ
F−→ τ | nat | unit

where F is an effect annotation for the latent effect of a function.
Figure 1 gives the type-and-effect rules. The (var) and (abs)

rules describe variable use and abstraction as pure (with I). For
(abs), the effect of the function body F becomes a latent effect.
The (sub) rule allows effects to be overapproximated (with respect
to the partial order v). The (app) rule exposes the left-to-right
evaluation order of (call-by-value) application by the composition
order of the effect F of the function term M followed by effect
G of the argument term and then H of the function body. The
(const) rule introduces a constant of type Cτ with effects CF . The
effect of (case) sequentially composes the effect F of the matched
expressionM with the branching compositionG⊕H . The effect of
a recursive binding (rec) is the same as that of its body and recursive
call. The closure operator (−)∗ is often required to provide a valid
typing for a recursive definition.

We include let-binding as syntactic sugar (letx = M inN) :=
(λx.N)M , with the (let) rule typing.

let
Γ `M : σ, F Γ, x : σ ` N : τ,G

Γ ` letx = M inN : τ, F •G
Example 1 (Simple causal state). Let E = {rd τ,wr τ | ∀τ} be
a set of symbols tagged by types and [E] lists of E (with [ ] nil and
:: cons operators). LetF be the set generated byF := [E] | F+F
with an effect algebra where ⊕ = +, I = [ ], and • as list
concatenation which distributes with +, defined:

[ ]•f=f (e ::f)•g = e :: (f •g) (f+g)•h = (f •h)+(g•h)

We ignore fixed-points for now and assume the effect algebra
axioms up to isomorphism (e.g. F + (G+H) ∼= (F +G) +H).
Constants C are extended with get and put , typed:

∅ ` get : τ, [rd τ ] ∅ ` put : τ
[wr τ ]−−−→ unit, [ ] (2)

For example, ∅ ` (λx.put (sucx)) get : nat, [rd nat,wr nat] is a
valid judgement. Type safety of the store requires that read effects
must have the same type as their nearest preceding write effect.

Definition 3 (βη-equality). Let ≡ be an equivalence relation
over terms with (call-by-value) β-equations:

(β) (λx.M)V ≡M [V/x]
(recβ) rec (λf.λx.M) ≡ λx.M [rec (λf.λx.M)/f ]

(caseβ1) (case 0of 0 7→M, (sucx) 7→ N) ≡M
(caseβ2) (case (sucV )of 0 7→M, (sucx) 7→ N) ≡ N [V/x]

We add two further equations on let:

(let-id) (letx = M inx) ≡M
(let-assoc) let y = (letx = M inN) inN ′

≡ letx = M in (let y=N inN ′) (if x 6∈ fv(N ′))



Note, (β) above is equivalent to (letx = V inM) ≡ M [V/x].
Equality extends to type-and-effect judgements Γ ` M ≡ N :
τ, F where Γ ` M : τ, F and Γ ` N : τ, F . In the usual way,
η-equality is type-dependent: M ≡ λx.M x holds only when M
is a function type. Further, in FPCF η-equality holds only whenM
is also pure. That is, Γ `M ≡ (λx.M x) : σ

F−→ τ, I .

Definition 4 (Operational semantics). A parameterised opera-
tional semantics is defined by a relation→ of reductions between
effect-specific configurations C. Maps from terms to configurations
are written C,D : M → C.

The four β-equality laws above are oriented left-to-right into
pure reductions where a configuration is unchanged, e.g. ∀C
C[(λx.M)V ] → C[M [V/x]]. The usual inductive rules provide
the rest of the CBV operational semantics.

Proposition 1 (Subject reduction on FPCF).

∅ `M : τ, F ∧ C[M ]→ D[N ]⇒ ∅ ` N : τ,G ∧ G v F

2.2 Session calculus
We consider the π-calculus with session primitives, which we call
the session calculus. Figure 2 shows the syntax, where l ranges over
labels, l̃ : P̃ over sequences of label-process pairs. The calculus is
based on the second system in [57] using the dual channels from
[35] instead of polarity. We define the dual operation over channels
c as c with c = c. Intuitively, names c and c are two dual endpoints.
Throughout we elide trailing occurrences of 0 and end, e.g., writing
r!〈x〉 instead of r!〈x〉.0.

Definition 5 (Operational semantics). The reduction relation
→ contains β-laws for send/receive, branch/select, and if :

(β) c?(x).P | c̄!〈V 〉.Q→ P [V/x] | Q
(β-chan) c?(d).P | c̄!〈c0〉.Q→ P [c0/d] | Q

(β-∗) ∗c?(d).P | c̄!〈c0〉.Q→ ∗c?(d).P |P [c0/d] | Q
(β-CB) cB li.P | cC {l̃ : Q̃}→ P | Qi (li ∈ l̃)

(res) P → P ′ ⇒ νc.P → νc.P ′

(par) P → P ′ ⇒ P | Q→ P ′ | Q
(str) Q ≡ P → P ′ ≡ Q′ ⇒ Q→ Q′

(if1) if [0 = 0]thenP elseQ→ P
(if2) if [sucV = 0]thenP elseQ→ Q

Equation (β) reduces complementary send/receive actions of a
value V over a linear channel c; similarly equation (β-chan) gives
the interaction of sending/receiving a linear channel d over a linear
channel c. Equation (β-∗) resembles equation (β-chan) but involves
replicated input over channel c, that is, c is not linear in the usual
sense, but can repeatedly receive values via the persistence of
∗c?(d).P . Equation (β-CB) gives the reduction of complementary
branching/selection. Reduction is congruent with respect to parallel
composition (par) and restriction (res). Furthermore, (str) extends
→ along the structural congruence relation≡ [57], which provides
that | is a commutative monoid with 0 unit, amongst other things.

Definition 6 (Session types [4, 57]). Session types record se-
quences of typed send (![τ ]) and receive (?[τ ]) interactions, termi-
nated by end, branched by select (⊕) and choice (&) interactions,
output (∗![τ ]), and with recursive types µα.S:

S ::= ![τ ].S | ?[τ ].S |∗![τ ].S |end |⊕[l̃ : S̃] |&[l̃ : S̃] | µα.S |α
where τ ranges over value types, including session types (Figure 2),
l ranges over labels, l̃ : S̃ is a sequence of label-session type pairs,
and recursive types obey the fixed-point law µα.S = S[µα.S/α].
We assume recursive types are guarded and carried types (e.g.,
τ in ![τ ].S) are closed; end is often omitted. We define the alias
∗?[τ ] := µα.?[τ ].α for replicated input.

(channels) c, c, d, d, p, p, q, q, r, r (variables) v ::= x, y, z
(values) V ::= 0 | sucV | predV | unit | v constants / variables
(processes) P,Q ::= c?(x).P | c!〈V 〉.P receive / send

| c?(d).P | c!〈d〉.P channel receive / send
| cB {l̃ : P̃} | cC l.P branch / select
| ∗c?(d).P | 0 replicated input / nil
| if [V = 0] then P else Q conditionals
| νc.P | (P |Q) restrict / parallel

(value types) τ ::= unit | nat | S (contexts) Γ ::= ∅ | Γ, x : τ

Figure 2. Syntax of the session calculus

The output type ∗![τ ] differs from the send type ![τ ] since the
former interacts only with replicated input: messages on a channel
typed ∗![τ ] may occur in multiple processes. On the other hand, ![τ ]
is a linear send (appears exactly once) [4, 15]. This distinction is
essential to encode FPCF as well as its parallel extension.

For a session S, its dual S is defined:

![τ ].S =?[τ ].S ?[τ ].S =![τ ].S ∗![τ ] = ∗?[τ ] ∗?[τ ] = ∗![τ ]

⊕[l1 : S1, ..., ln : Sn] = &[l1 : S1, ..., ln : Sn] µα.S = µα.S

&[l1 : S1, ..., ln : Sn] = ⊕[l1 : S1, ..., ln : Sn] end = end

The predicate ∗able(∆) classifies session types in the environment
which comprise only replicated outputs or end.

∗able(∆)⇔ ∀(c : S) ∈ ∆.∗able(S)

∗able(S)⇔ (∃T. S = ∗![τ ].T ∧ ∗able(T )) ∨ (S = end)

Figure 3 gives the full session typing system used in this work
which is a combination of [4, 57]. Judgements are of the form
Γ; ∆ ` P where Γ is a mapping from variables to base types and
∆ is a mapping from channels to session types. In (par), we check
two processes are composable or not by� (see below); (chan-send)
follows the same condition where composability of d is checked.
Since ∗c?(d).P replicates P , it cannot contain free linear session
names, guaranteed by ∗able(∆) in (∗recv). Note that replicated
outputs can be weakened (weak∗). The rest is standard from [57]
with subtyping as in [10, 11, 19].

The (select) rule introduces a selection type with only one label
and branch. Duality, which must have corresponding labels for
branches and selection, is thus achieved by using subtyping (sub)
to extend select types with extra labels.

Definition 7 (Balanced). Two processes must have balanced
session environments to be composed in parallel, defined by the
following symmetric ./ relation:

(c :S) ./ (c :S) (c :∗![τ ].S) ./ (c :∗![τ ].S) (c :S) ./ (d :T )

where c 6= d. Thus, dual names must have dual types and channels
may only appear in two different processes if they are both outputs
(∗!). A partial commutative function� takes the union of two envi-
ronments if they are balanced, i.e. ∆1 �∆2 = ∆1 ∪∆2 if ∆1 ./
∆2 (with ./ lifted to all pairs of named session types ∆1 × ∆2)
otherwise it is undefined. Note, µα.?[τ ].α is dual to both µα.![τ ].α
and ∗![τ ], but (c : µα.![τ ].α)� (c : ∗![τ ]) is undefined.

Since a session environment represents forthcoming communica-
tions, during process interactions, the session environment will
change. We define the relation ∆ −→ ∆′ [25] as follows:

∆, c : &[l̃ : S̃], c : ⊕[l̃ : S̃] −→ ∆, c : Si, c : Si

∆, c :![τ ].S, c :?[τ ].T −→ ∆, c : S, c : T

∆, c : ∗![τ ].S, c : ∗?[τ ] −→ ∆, c : S, c : ∗?[τ ]

Proposition 2 (Subject reduction, [4, 57]). Suppose Γ; ∆ `
P and P →∗ Q. Then Γ; ∆′ ` Q with ∆ →∗ ∆′. In addition, if
∆ is (self-)balanced, then ∆′ is balanced.



Γ ` V : τ (values) var
v : τ ∈ Γ

Γ ` v : τ
unit

Γ ` unit : unit
zero

Γ ` 0 : nat
suc

Γ ` V : nat
Γ ` sucV : nat

pred
Γ ` V : nat

Γ ` predV : nat

Γ; ∆ ` P (processes) weak∗
Γ; ∆ ` P

Γ; ∆, c : ∗![S] ` P end Γ; c̃ : end ` 0 par
Γ; ∆i ` Pi

Γ; ∆1 �∆2 ` P1 |P2
restr

Γ; ∆, c : S, c : S ` P
Γ; ∆ ` νc.P

recv
Γ, x : τ ; ∆, c : S ` P

Γ; ∆, c :?[τ ].S ` c?(x).P
chan-recv

Γ; ∆, c : T, d : S ` P
Γ; ∆, c :?[S].T ` c?(d).P

∗recv
Γ; ∆, d : S ` P ∗able(∆)

Γ; ∆, c : ∗?[S] ` ∗c?(d).P

send
Γ ` V : τ Γ; ∆, c : S ` P
Γ; ∆, c : ![τ ].S ` c!〈V 〉.P chan-send

Γ; ∆, c : T ` P
Γ; (∆, c : ![S].T )� d : S ` c!〈d〉.P ∗send

Γ; ∆, c : T ` P
Γ; (∆, c : ∗![S].T )� d : S ` P ` c!〈d〉.P

if
Γ; ∆ ` Pi Γ ` V : nat

Γ; ∆ ` if [V = 0] thenP1 else P2
branch

Γ; ∆, c : Si ` Pi
Γ; ∆, c : &[l̃ : S̃] ` cB {l̃ : P̃}

select
Γ; ∆, c : S ` P

Γ; ∆, c : ⊕[l : S] ` cC l.P
sub

Γ; ∆ ` P ∆ <: ∆′

Γ; ∆′ ` P

Figure 3. Session typing relation over the π-calculus with session primitives.

3. Effects as sessions: FPCF into session calculus
Our encoding is based on the encoding of the pure call-by-value
λ-calculus into the π-calculus [33, 49] and is type directed, map-
ping FPCF derivations to session-type derivations. We define an
overloaded embedding function J−K mapping terms, types, effects,
contexts, and judgements of FPCF to session calculus constructs.

Key idea: effect channel carriers Side effects are modelled by
interactions with an effect handler process (e.g., the variable agent
of the introduction) over a channel which we call the effect channel.
Encoded FPCF terms have two free channels which we call effect
channel carriers, one which receives the effect channel (incoming)
and one that sends the effect channel after it has been used (out-
going). To see why this is needed, rather than just using the effect
channel directly, consider a standard encoding for pure let-binding

Jletx = M inNKr = νq.(JMKq | q?(x).JNKr)

The subscript on encodings J−Kr specifies the channel r over
which a result is sent. Subterms are inductively encoded, with a
fresh channel q passing the result from JMK to be bound in the
scope of JNK. If each encoded subterm were to simulate side effects
by interacting with a handler via a channel c, then the encoding
would not be well-typed; encodings of JMK and JNK would have
c : S and c : T respectively which may be different. The balanced
predicate in the (par) typing rule prevents this composition. Instead,
our encoding has an intermediate form parameterised by effect
carriers, written L− Mei,eor for an incoming effect channel carrier ei
and outgoing carrier eo. The let-binding encoding is then:

L letx = M inN Mei,eor = νq, ea.(LM Mei,eaq | q?(x).LN Mea,eor )

where ea is an intermediate carrier between M and N . This
approach resembles a continuation-passing style semantics or
“threading” a store in an operational semantics, 〈e, s〉 → 〈e′, s′〉.
We previously gave a similar encoding for a first-order imperative
language into session types [42] (see Section 9.3 on related work).

Key steps for encoding FPCF The design of FPCF is general,
but parametric in its effect algebra and constants. Our encoding
is therefore similarly generic but parameterised, so that it can be
systematically instantiated to embed different notions of effect.

Definition 8. Effect-encoding parameters comprise:

1. an effect handler process H(eff ) parameterised by eff , typed:

for some S ∅; eff : µα.S ` H(eff )

2. a terminator process T (eff ) such that T (eff ) | H(eff )→∗ 0
3. an interpretation functor J−K : F → S from effect algebra ele-

ments to session types, satisfying the following homomorphism
property (discussed more in Section 3.4) where � is a (partial)

sequential composition for session types:

JIK = end JF •GK = JF K� JGK

4. an encoding L− Mei,eor for all constants C satisfying that, ∃P :

∀g. L ∅ ` C : Cτ , CF Mei,eor = r :!JCτ K, ei :?JCF • gK, eo :!JgK `P
5. an encoding for case/⊕ and (relatedly) for the (sub) rule since

the semantics of conditionals and subeffecting is effect depen-
dent (we however defined a general encoding for a restricted
form of case in Section 3.2 and a general construction for free
upper bounds in Section 3.3).

In session-type prefixes, we omit the brackets when an interpreta-
tion is inside, e.g. !JτK instead of ![JτK].
The top-level embedding is defined in terms of an intermediate
(equation (4) below) and the above parameters:

JΓ `M : τ, F Kr = JΓK◦; JΓK, r :!JτK ` νeff , ei, eo.

(L Γ `M : τ, F Mei,eor | ei!〈eff 〉.eo?(eff ).T (eff ) | H(eff ))

where JΓK◦ and JΓK map environments to values and session envi-
ronments respectively, and JτK maps FPCF types τ to session types
(defined below). The intermediate encoding is composed in parallel
with a process which sends effect channel eff on ei and receives a
channel on eo (which is similarly named eff as this ends up being
the same channel) before completing with T (eff ).

Encoding types Ground types of FPCF are mapped to corre-
sponding values types of the session calculus JnatK = nat and
JunitK = unit. Function types are interpreted as session types,
where ∀g at the meta level:

Jσ F−→ τK = ∗![?JσK, ?JF • gK, !JgK, !JτK]
using a polyadic variant of sending (the extension is straightfor-
ward). Function types are interpreted as session types for channels
sending: (1) a channel to receive a JσK value for the argument, (2)
an effect carrier to receive an effect channel capable of simulating
effects F •g (3) a carrier to send an effect channel capable of effects
g, and (4) a channel to send a JτK value for the result.

Free-variable contexts of FPCF are interpreted into a value-
variable context (for ground types), written J−K◦, and a session-
variable context for functions, written J−K:

J∅K◦ = ∅ JΓ, x : T K◦ = JΓK◦, x : JT K
J∅K = ∅ JΓ, x : σ

F−→ τK = JΓK, x : Jσ F−→ τK
(3)

Terms/derivations The core embedding is the intermediate L− Mei,eor

from FPCF derivations to session-calculus derivations, of the form:

L Γ `M : τ, F Mei,eor

= ∀g. JΓK◦; JΓK, r :!JτK, ei :?JF • gK, eo :!JgK ` P (4)



where P is the encoded term. The incoming carrier ei receives
an effect channel of type JF • gK (capable of carrying out effect
interactions F • g) and eo sends an effect channel of type JgK (can
simulate effect interactions g) where g is universally quantified at
the meta level (similarly in function types). The following partial
type derivation shows, for the above encoding of let, how the
universally quantified meta variables (in red) are instantiated to
support sequential composition:

ei :?JF • gK, ea :!JgK ` LM Mei,eaq

ea :?JG • hK, eo :!JhK ` q?(x).LN Mea,eor

ei :?JF • gK, ea :!JgK,
ea :?JG • hK, eo :!JhK ` LM Mei,eaq | q?(x).LN Mea,eor

g 7→ JG • hK
ei :?JF •G • hK, eo :!JhK ` νq, ea. (LM Mei,eaq | q?(x).LN Mea,eor )

We show first the encoding of the λ-calculus subset of FPCF. We
elide types where possible for brevity.

3.1 λ-calculus and natural numbers
Variables are pure and therefore receive and send the effect channel
c without use, and simply send the variable over r. That is,

Lx Mei,eor = ei?(c).r!〈x〉.eo!〈c〉
The typing of the effect carrier channels is ∀g.ei :?JgK, eo :!JgK
revealing the pure nature of variables.

As our encoding is type directed, π-calculus terms can be over-
loaded on whether the encoding is on ground or function types. If
the variable’s type τ is a function type then x is a channel variable
and r!〈x〉 is typed by (chan-send) (Figure 3). If τ is a ground type
then x is a value variable and r!〈x〉 is typed by (send). The rest of
the encoding has similar overloading for either channels or values.

Abstraction is similarly pure, hence an effect channel is received
and sent without any use. The encoding is defined:

Lλx.M Mei,eor =
νd. (ei?(c).r!〈d〉.eo!〈c〉.∗d?(p, ea, eb, q).p?(x).LM Mea,ebq )

The new channel endpoint d is sent on the result channel r, then
the opposite endpoint d receives four channels needed for M , the
function body: p receives the argument x, ea receives the incoming
effect channel, eb sends the outgoing effect channel, and q sends
the result. Replicated input is used as a (bound) function value may
be called multiple times.

Application encoding comprises a function and argument: the left-
hand side (function) encoding uses fresh channels q and ea to send
the resulting session simulating functions and the outgoing effect
channel respectively. The right-hand side (argument) receives the
effect channel from the left-hand side on ea and uses fresh channels
s and eb to send the result and outgoing effect channel respectively.

LMN Mei,eor = νq, s, ea, eb, p.
(LM Mei,eaq | LN Mea,ebs | q?(y).s?(x).y!〈p, eb, eo, r〉.p!〈x〉)

The result of the function part M is a channel y over which is
sent the channel p for receiving the argument, the channel eb for
receiving the incoming effect channel, channel eo for sending the
outgoing effect channel, and r to send the result of the function.

Natural number constructors are encoded as follows, where 0
resembles the variable encoding (since it is a pure constant) and
suc resembles the λ-abstraction encoding, since suc is a function:

L 0 Mei,eor = ei?(c).r!〈0〉.eo〈c〉 (5)

L suc Mei,eor = νd.(ei?(c).r!〈d〉.eo!〈c〉.∗d?(p, ea, eb, q).
p?(x).ea?(c).q!〈sucx〉.eb!〈c〉) (6)

The encoding of unit is similar to 0, modulo the value constructor.

3.2 Control flow: conditionals and fixed-points
The above encodes the λ-calculus subset of FPCF, giving the
sequential composition of effects. We now encode the control-flow
operators which PCF adds to the λ-calculus: case and recursion.

Conditionals Our type-and-effect system for FPCF defines the
effects of case as F • (G ⊕H) for effects F of the guard and G
and H of the zero and successor branches. This provides a general
characterisation of the control-flow, allowing various kinds of data
flow analysis including may and must analyses. The encoding of ⊕
is thus dependent on the notion of effect and so we cannot give a
general encoding (work on effect control-flow algebras elucidates
this [36]). We can however encode a restricted version of case.

Traditional set-based effect systems often provide rules for
case which either have the same effect in each branch or take
the union (least-upper bound) of the branches (i.e., ⊕ = ∪ in our
calculus). These two approaches are equivalent since subeffecting
can be used to get the same (upper bound) effect for each branch of
a case. Consider the following alternate type-and-effect rule:

Γ `M : nat, F Γ ` N1 : τ,G Γ, x : nat ` N2 : τ,G

Γ ` caseM of 0 7→ N1, (sucx) 7→ N2 : τ,G
(7)

Given Γ ` N1 : τ : G1 and Γ ` N2 : τ : G2 then the above rule
is equivalent to the previous with ⊕ = t (least-upper bound, if it
exists) such that G1 v G and G2 v G with G = G1 t G2. Then
subeffecting can be used to match the premises of the above rule.
This provides a may-style analysis. We embed the above restricted
case as it provides a general encoding (when ⊕ is idempotent):

Definition 9 (Restricted case). The case rule (7) is encoded:

L caseM of 0 7→N1,(sucx) 7→N2 Mei,eor =νea, q.(LM Mei,eaq |
q?(x).if [x = 0] then LN1 Mea,eor else pred〈x〉(x).LN2 Mea,eor )

where pred〈V 〉(x).P = νc.(c!〈predV 〉 | c?(x).P ) is syntactic
sugar for performing the predecessor operation on a natural number
and binding it. Thus, we receive the result of the guard M and
bind it to x, which parameterises a conditional process which either
continues with the N1 encoding or the N2 encoding. By the typing
of if , each branch must have the same session types, thus the effect
of N1 must equal that of N2.

A more fine-grained encoding provides an encoding for a free
representation of ⊕ via subeffecting, which places additional re-
quirements on the handler. This is shown in Section 3.3.

Recursion The embedding of recursion is very similar to the
embedding for abstraction, where the replication inherent in the
encoding is utilised for the recursive behaviour:

L rec (λf.λx.M) Mei,eor =
νd.(ei?(c).r!〈d〉.eo!〈c〉.∗d?(p, ea, eb, q).p?(x).LM Mea,ebq [d/f ])

The key difference between this and the abstraction encoding is
the syntactic substitution [d/f ] of f with the channel d. Thus, if
f is free in M then an intermediate encoding L f Mec,eds [d/f ] =
ec?(c).s!〈d〉.ed!〈c〉. Thus any applications of f recursively use the
encoding of the function body (over the dual d). Recursion is then
terminated when f is not called within a program trace of M .

3.3 Subeffecting
Subeffecting allows the effects of an expression to be overapprox-
imated. In a related way, (traditional) subtyping in session types
allows an approximation on branch and select [10, 11, 19]. How-
ever, encoding subeffecting is highly dependent on the rest of the
effect encoding, and so parameterises the encoding (Definition 8).

As one universal possibility (for all notions of effect) we define
here a free upper bound construction written +:



Definition 10 (Free upper bound). For an effect system over
F , extend the carrier set toF+ = F∪{F+G | F,G ∈ F+}where
+ is a term constructor with no equations; it is a free constructor.
Extend subeffecting such that F v F + G and G v F + G for
all F,G ∈ F+ and extend • (sequential composition) to include a
right-distributivity: (F +G) •H = (F •H) + (G •H). Note, this
is not a least upper-bound, for one + is not idempotent.

Effects F+G can be encoded as two alternate effect behaviours
simulated over one effect channel with branching/selection:

JF +GK = ⊕[alt : ⊕[L : JF K,R : JGK]] (8)

The interpretation of a typing derivation ending in an instance of
the subeffecting rule (sub) is then, for F v F +G:

L Γ `M : τ, F +G Mei,eor

= νea.(ei?(c).cC alt.cC L.ea!〈c〉 | L Γ `M : τ, F Mea,eor )

On the effect channel c, received on ei, the alt label is selected
followed by the L label before passing on the channel to the inter-
pretation of M . Subtyping on the selection of L introduces the R
branch giving the following typing for ei when eo : JgK:

ei : ⊕[alt : ⊕[L : JF • gK,R : JG • gK]]
Note, this makes use of the right-distributivity rule in order that the
embedding is well-typed (see typability, Proposition 3, p. 7).

For the subtyping G v F + G the interpretation above differs
by selecting R and introducing the L branch via subtyping.

The above definitions imply requirements on the handler H
such that it has dual behaviour to match the encoding of +:

∅; eff : µα.S ` H(eff ) ⇒ S <: &[alt : &[L : α,R : α]]

(subtypes of a branching offer more choices than the supertype).

Remark 1. Setting ⊕ = + gives a free representation of alter-
nation in effects (computation trees). For the general encoding, re-
stricted case (Def. 9) can be composed with subeffecting in the
premises to introduce + effects.

Commutativity and associativity of + is up to isomorphism,
though the interpretation of + (eq. 8) is commutative due to com-
mutativity of labelled types in a selection type.

3.4 Homomorphic embedding of effect annotations
In the parameters to our embedding (Definition 8), the effect anno-
tation interpretation J−K : F → S is required to satisfy the fol-
lowing homomorphism property, which ensures the continuation-
passing style approach is well typed:

JIK = end JF •GK = JF K� JGK

where � is sequential session-type composition, defined:

T � end = T end �T = T

![τ ].S �T = ![τ ].(S �T ) ?[τ ].S �T = ?[τ ].(S �T )

⊕[l̃ : S̃] �T = ⊕[l̃ : (S̃ �T )] &[l̃ : S̃] �T = &[l̃ : (S̃ �T )]

∗![τ ].S �T = ∗![τ ].(S �T )

(µα.S) � (µβ.T ) = µγ.(S[γ/α] t T [γ/β]) (γ fresh)

where S̃ �T is the vector-scalar lifting of � . All other cases are
undefined, e.g., ∗?[τ ] �T = ⊥. Arguments of the composition are
taken up-to equivalence of session types (which is decidable).

The case for µ is defined for a least upper bound of S and T (as
defined by session subtyping), introducing a fresh variable γ, e.g.:

(µα.⊕[l1 : α]) � (µβ.⊕[l2 :?[τ ].β]) = µγ.⊕[l1 : γ, l2 :?[τ ].γ]

3.5 Examples
In our examples, we define effect handlers as recursive processes
via replicated input, of the form νh.(∗?h(c, x̃).P | h!〈c, Ṽ 〉) for

some effect channel c and value arguments Ṽ . The process P tends
to contain an output on h to create the recurring handler behaviour.

Example 2 (Simple state). Example 1 instantiated PCF for sim-
ple state effects with get and put operations and a list-based effect
system. We restrict these to a single type τ (mono-typed stores)
for simplicity. We instantiate our encoding to embed this into the
session calculus. Effect annotations are interpreted as:

J(rd τ) :: F K= ⊕[rd :?[τ ].JF K] J[ ]K = end
J(wr τ) :: F K= ⊕[wr : ![τ ].JF K]

The interpretation of alternation effects⊕ here is the free encoding
+ via subeffecting (Section 3.3). The effect handler H is defined
similarly to the variable agent in the introduction, whereH(eff ) =

eff : µα.&[rd :![τ ].α, wr :?[τ ].α, alt : &[L : α,R : α], stop : 0]
` νh.(∗?h(c, x).cB {rd : c!〈x〉.h!〈c, x〉,wr : c?(y).h!〈c, y〉,

alt : cB {L : h!〈c, x〉,R : h!〈c, x〉}
stop : 0} | h〈eff , 0〉)

with terminator T (eff ) = eff Cstop. State operations are encoded:

L get Mei,eor = ei?(c).cC rd . c?(x).r!〈x〉.eo!〈c〉
L put Mei,eor = νd.(ei?(c).r!〈d〉.eo!〈c〉.∗d?(p, ea, eb, q).

p?(x).ea?(c).cC wr . c!〈x〉.q!〈unit〉.eb!〈c〉)
The encoding of get receives channel c over which it performs its
effect by selecting the get branch and receiving x which is sent as
the result on r before sending c on eo. The put encoding is similar
to get , but with function-like encoding.

Example 3 (Simple state, with sets). Classical effect systems
tend to record just sets of effects, hence the order is not captured.
That is, effect annotations are sets F = P({rd τ,wr τ | ∀τ}), with
(F ,∪, ∅) for sequencing and⊕ = ∪, F ∗ = F . This system can be
encoded in the session calculus. The effect embedding parameters
(Definition 8) are the same as for the causal state encoding (above),
apart from the effect interpretation J−K which is instead given in
terms of a recursive type over a selection:

JF K = µα.S where ∀(rd τ) ∈ F ⇒ ⊕[rd :?JτK.α] <: S (9)
∧ ∀(wr τ) ∈ F ⇒ ⊕[wr :!JτK.α] <: S

That is, a computation that may perform some effects F has some
number of effect interactions S with the handler, where S is a
selection type between all possible operations in F .

Thus, J{rd τ,wr τ}K = µα.⊕[rd :?JτK.α,wr :!JτK.α]. This in-
terpretation of effects into session types is well-typed with respect
to the encoding of get and put in Example 2 and its handler, and sat-
isfies the homomorphism property. Section 9.1 embeds a traditional
effect system for first-class references.

Remark 2 (Composition). Our encoding is inspired by the ap-
proach of algebraic effects handlers for giving effect semantics and
implementations [3, 29, 46]. In this approach, and in our encoding,
multiple effects can be easily composed with distinct, independent
handlers. Interactions between effects in our encoding can then be
described via communication between handlers.

Example 4 (Resource counting / complexity). A common ef-
fect system over natural numbers N is used to count resource use,
such as “steps” in a computation or number of times a (costly) re-
source is used (see, e.g., the work of Çiçek et al. [12] and Daniels-
son, via the Thunk annotated monad) [13]. The sequential part of
this effect system is given by the ordered monoid (N,+, 0,≤) with
⊕ = max. For recursion, the domain is extended to N ∪ {ω} such
that n∗ = ω which is greatest element w.r.t v and absorbing w.r.t
to +. Thus, FPCF can be instantiated for this effect system with
the additional constant ∅ ` tick : unit, 1.



Resource counting effects are embedded via the following han-
dler, terminator, and operation encoding:

H(c)=νh.(∗h?(c).c?(d).dB {tick :d?(x).h!〈c〉, stop :0}|h!〈c〉)
T (c) = νd.(c!〈d〉.dC stop)

JtickKei,eor = νd.(ei?(c).c!〈d〉.dC tick.d!〈unit〉.eo!〈c〉)
That is, a “tick” is encoded by sending a channel d over which is
selected the tick behaviour of the handler and a unit value is then
sent. The encoding of effect annotations J−K : N → S is then
essentially a base-1 encoding of naturals:

J0K = end Jn+ 1K = ∗![&[tick : ?[unit]]].JnK
JωK = µα.∗![&[tick : ?[unit]]].α

The handler has type c : ∗?[&[tick : ?[unit]]]. Type soundness of
this encoding requires a small extension to definition of session
type duality for repeated output.

Definition 11 (Repeated output). We write ∗![τ ]n for a finite
sequence of outputs: ∗![τ ]n = ∗![τ ].∗![τ ]n−1 with ∗![τ ]0 = end.
We extend the duality function to a symmetric relation dual with:

∀n. dual(∗![τ ]n, ∗?[τ ]) (10)

The limit of this is a fixed point, i.e. limn→∞ eq. (10) = µα.∗![τ ].α
giving dual(µα.∗![τ ].α, ∗?[τ ]) which provides the duality of JωK
effects with the handler. Subtyping is then extended with:

∗![τ ]m <: ∗![τ ]n (where m ≤ n) (11)

Subeffecting by ≤ follows from equation (11). That is, the number
of outputs (dual to replicated input) can be overapproximated.

4. Correctness: from effects to sessions
This section discusses the correctness of our encoding: the main
results are (1) the typability of encoding; (2) sound and complete
operational correspondence; and (3) soundness up to observational
equivalence. Full proofs are given in the technical report [41].

Proposition 3 (Typability). Given Γ `M : τ, F , then we have:

∀g.JΓK◦; JΓK, ei :?JF • gK, eo :!JgK, r :!JτK`L Γ `M : τ, F Mei,eor

for the intermediate encoding and for the top-level encoding:

JΓK◦; JΓK, r :!JτK ` JΓ `M : τ, F Kr

Observational equivalence for the session calculus uses a barbed
reduction-based congruence from [23, 49]. As an intermediate
step, we define barbs: predicates which classify processes P by
their observable reductions with respect to a channel c.

Definition 12 (Barbs). 1. (untyped barb) P ↓c if ∃V, P2, P3

s.t. P ≡ νm̃.(c!〈V 〉.P2 | P3) where c 6∈ m̃
2. (barb) Γ; ∆ ` P ↓c if P ↓c and c 6∈ dom(∆)
3. (weak barb) Γ; ∆ `P ⇓c if P→∗Q∧∆→∗∆′∧Γ; ∆′ `Q ↓c

A barb is an observable send prefix with subject c; a weak barb is
a barb after some reduction steps. Typed barbs of c occur on typed
processes where c is not free (else the send would be unobservable).

Definition 13 (Reduction-closed barbed congruence). A
relation R is a reduction-closed barbed congruence if given
processes P,Q such that Γ; ∆1 ` P and Γ; ∆2 ` Q then
(Γ,∆1, P,∆2, Q) ∈ R, written Γ,∆1 ` P R ∆2 ` Q, if:

• if Γ; ∆1 ` P ⇓c then Γ; ∆2 ` Q ⇓c
• ∀ P → P ′ then ∃Q′,∆′1,∆′2 such that Q→∗ Q′ and Γ; ∆′1 `
P ′ R ∆′2 ` Q′
• ∀C.∃∆′′1 ,∆′′2 such that Γ; ∆′′1 ` C[P ] R ∆′′2 ` C[Q]
• R is symmetric

The first condition ensures both processes preserve the barb; the
second means that a relation is a closure only based on reductions.

We write ∼= for the largest reduction-closed barbed congruence
over our session calculus.

The correctness of our general embedding in Section 3 relies
on the following intermediate lemmas. Lemma 1 is important for
deciding a shape of a value encoding. Lemma 2 states the encoding
mimics the substitution of values. Lemma 3 shows a forwarding
(link) agent corresponds to the identity process (cf. [7, 51]), which
is ensured by the linearity of session types.

Lemma 1 (Value-encoding lemma). For all values V , then

∃P, d, y . LV Mei,eor ≡ νd.(ei?(c).r!〈y〉.eo!〈c〉.P )

The purity of values is encoded by passing the effect channel c
unused, interleaved with sending some result y.

Lemma 2 (Substitution distributes with embedding).

νs, ea. (s?(x).LM Mea,eor | LV Mei,eas ) ∼= LM [V/x] Mei,eor

Lemma 3 (Forwarding). For process P and channel ea 6∈ fv(P )

νeb.(ea?(c).eb!〈c〉.P | LM Meb,eor ) ∼= P | LM Mea,eor

∧ νeb.(LM Mei,ear | ea?(c).eb!〈c〉.P ) ∼= P | LM Mei,ebr

The first theorem is sound and complete operational correspon-
dence. Soundness states the encoding mimics FPCF, while com-
pleteness ensures that if an encoding of an FPCF-term reduces one
step, there is a corresponding computation that happens in FPCF.

Theorem 1 (Operational correspondence). ∀M,F, τ,Γ.

• (sound) ∀N. Γ `M : τ, F ∧ (M → N) ∧ F v G
⇒ ∃P. (JΓ `M : τ, F Kr → P ) ∧ P ∼= JΓ ` N : τ,GKr

• (complete) ∀P. (Γ `M : τ, F ) ∧ (JΓ `M : τ, F Kr → P )
⇒ ∃N,G. (M →∗ N) ∧ P ∼= JΓ ` N : τ,GKr ∧ F v G

Lemma 4. Whilst let is syntactic sugar, it had its own encoding
(Section 3). This encoding is sound w.r.t. the definition of let:

JΓ ` letx = M inN : τ, F •GKr ∼= JΓ ` (λx.N)M : τ, F •GKr

The main theorem of this section is then equational soundness of
the encoding with respect to βη-equality of FPCF:

Theorem 2 (Soundness). (with respect to βη-equality)

Γ `M ≡ N : τ, F ⇒ JΓ `M : τ, F Kr ∼= JΓ ` N : τ, F Kr

Soundness is the standard statement to show the correctness of the
encoding, e.g.[44]. We have also proved completeness with respect
to contextual equivalence (not βη-equality) (cf. [56, cor. 5.2]):

JΓ `M : τ, F Kr∼=JΓ ` N : τ, F Kr ⇒ Γ `M ∼= N : τ, F (12)

Contextual completeness is a consequence of Theorem 1 together
with computational adequacy, cf. [56, Corollary 5.2]. Proving
soundness with respect to contextual equality ∼= for FPCF terms
would provide full abstraction. This is further work.

Note, these results are for the general encoding. Correctness of
any effect-specific embeddings of effect operations (e.g., get/put)
requires the above conditions to be checked on these encodings.

5. Concurrency and effects
In a concurrent setting, side effects are a common source of unin-
tended program behaviour, allowing implicit interactions between
threads. Consider an extension to FPCF for parallel composition,
written M||N . Unrestricted effects in parallel branches may cause
race conditions, e.g. put (get + 1)||put (get + 2) has three pos-
sible values due to non-deterministic interleaving of get and put .



We extend our encoding to possibly interfering concurrent effects
and show an example using state effects.

To add parallel composition into FPCF, the effect algebra is ex-
tended with a semigroup (F, �) representing parallel computation
where I (purity) is the unit of �. Typing and equality is extended:

Γ `M : unit, F Γ ` N : unit, G
Γ `M||N : unit, F �G (13)

M||unit ≡M M||N ≡ N||M M||(N||P ) ≡ (M||N)||P

The semantics for the parallel composition || is standard, allow-
ing non-deterministic reduction of the left or right process. A com-
pleted parallel composition reduces by unit||unit→ unit.

Concurrent state effects Recall the state effects of Example 2.
To incorporate concurrent interactions, we first redefine the state
handler (eliding alternation) with an extra layer of indirection:

νh.(∗h?(c, x).c?(d).dB {rd : d!〈x〉.h!〈c, x〉,wr : d?(y).h!〈c, y〉,
stop : 0} | h!〈eff , 0〉)

This handler has the following recursive session type for eff :

eff : µα.?[S].α where S = &[rd :![τ ],wr :?[τ ], stop : end]

i.e., eff repeatedly receives a channel over which the standard
variable agent behaviour S is offered. State operations are encoded
similarly to before but with the extra indirection, e.g., for get:

L get Mei,eor = ei?(c).νe.(c!〈e〉.eC rd . e?(x).r!〈x〉.eo!〈c〉)
The associated effect annotation interpretation is then as follows,
where c!〈e〉 in the above definition (sending a fresh channel to the
handler) is typed with a replication type:

J[ ]K = end J(rd τ) :: F K = ∗![&[rd :![τ ]]].JF K
J(wr τ) :: F K = ∗![&[wr :?[τ ]]].JF K (14)

The parallel composition operator is then defined:

LM||N Mei,eor = νq1, q2, eo1, eo2.(ei?(c).(
νea.(ea!〈c〉 | LM Mea,eo1q1 ) | νea.(ea!〈c〉 | LN Mea,eo2q2 ))
| q1?(x).q2?(y).r!〈unit〉
| νc.(eo1?(c1).eo2?(c2).(νcr.
(∗cr?(c).c?(d).c1!〈d〉.c?(d).c2!〈d〉.cr!〈c〉 | cr!〈c〉)) | eo!〈c〉))

That is, the effect channel c is received on ei, and sent concurrently
in two parallel branches to LM M and LN M (in the second line).
The third line receives the unit results from the parallel branches
and sends the final return unit. The fourth line plumbs together the
outgoing effect channels c1 and c2 from the intermediate encodings
into a single outgoing effect channel.

By interpreting effect annotations using output (14), parallel
use of the same channel in each branch is typeable by balanc-
ing (Def. 7): ∗![T ].S ./ ∗![T ].S. This requires a single, unify-
ing session type for c in each branch. Let M,N have for c the
session types JF • h1K and JG • h2K, of the form ∗![S1]...∗![Sn]
and ∗![T1]...∗![Tm] respectively. An upper-bound type can then be
given c : ∗![S](n max m) where S is the sequential state handler be-
haviour S = &[rd :![τ ],wr :?[τ ], stop : end] which is the common
supertype of each possible effect interaction S1...Sn and T1...Tm:

∗![&[rd :![τ ]]] <: ∗![S] ∗![&[wr :?[τ ]]] <: ∗![S]

Thus, the interpretation of parallel effect annotations is lossy, as:

JF �GK = ∗![S](n max m)

This can be understood as describing the possible arbitrary inter-
leaving, thus potential interference, provided by parallel effects.
The encoding is well-typed when the duality function is extended
to a relation as in Definition 11 (with ∀n.dual(∗![S]n, ∗?[S])).

Type-preservation, soundness, and the following operational
correspondence theorem hold for this extension.

Theorem 3 (Correspondence for parallel effects). ∀M,F, τ,Γ.

• (sound) ∀N. Γ `M : τ, F ∧ (M → N) ∧ F v G
⇒ ∃P. (JΓ `M : τ, F Kr → P ) ∧ P ∼= JΓ ` N : τ,GKr

• (complete) ∀P. (Γ `M : τ, F ) ∧ (JΓ `M : τ, F Kr → P )
⇒ ∃N,G. (M →∗ N) ∧ P ∼= JΓ ` N : τ,GKr ∧ F v G

Theorem 4 (Soundness w.r.t. extended βη-equality (13)).
Lemma 2 (substitution) extends to the parallel encoding. Then:
Γ ` M ≡ N : τ, F ⇒ JΓ `M : τ, F Kr ∼= JΓ ` N : τ, F Kr
For this extended encoding, equational completeness (w.r.t obser-
vational equivalence (12)) does not hold. This is because any pro-
cess P ∼= JΓ ` N : τ, F Keff

r could be placed under a context which
interacts non-deterministically with the handler.

6. Summarising the requirements
To conclude this part of the paper, we summarise the features of the
session calculus that were required to encode FPCF. We consider
increasing subsets of FPCF and the session calculus (πS here). The
core subset of πS (send, receive, delegation, branch, select, paral-
lelism, and restriction) is contained by the subset providing repli-
cated input and output, denoted ∗ below. We further split off if and
subtyping <:, as well as polymorphic sessions (not used so far, but
later in Section 9.1) and the condition that multiple sequentially-
composed outputs are dual to a replicated input (eq. 10 of Def. 11).

FPCF \ πS core ∗ if <: eq. 10 ∀
• X X
→ X X
−∗ X X

⊕ = (≡) X X X
⊕ = (+) X X X X

|| X X X X X
Fτ X X . . . X

The ⊕ = (≡) line represents the restricted version of case which
has F ⊕ F = F and F ⊕ G = ⊥ when F 6= G. The ⊕ =
(+) line represents ⊕ constructed via subeffecting with the free
alternation operator + (Section 3.3). The Fτ line represents effects
with varying types, such as effects for first-class references, which
are discussed in Section 9.1.

Note that the requirements here are only on the general encod-
ing. Specific instantiations may use all/any of these features, e.g.,
Example 4 used the duality relation extension of equation 10.

Linear control-flow effects The examples given in Section 3.5
can be characterised by linearity in their control flow (equivalent
to algebraic effect handlers [3, 46] that are linear in their continua-
tion). Effects such as exceptions (which interrupt control-flow) and
non-determinism (with branching control-flow effects) may plausi-
bly be captured via encodings that explicitly include their continu-
ation, e.g. Jletx =chooseV1 V2 inMK. This is further work.

7. Back again: sessions as effects
This section considers the reverse direction of encoding, showing
that FPCF with parallel composition (of Section 5) can be instanti-
ated with a notion of session effect, into which the session calculus
can be embedded. The key insight is that session types and causal
(non-commutative) effects have the same structure. Both give an or-
dered analysis of the operational behaviour of a program. The pre-
fixing style of session types is replaced with the monoidal style of
effect systems, akin to the difference lists (prefixing) versus normal
concatenation of lists. Furthermore, our rich effect system provides
a way to represent branching/selection session types via alterna-
tion ⊕, and replication via recursion and −∗. The effect system for



sessions is partial–some operations may not be defined for all ar-
guments, modelling the program-logic behaviour of session types.

Types We give an embedding of sessions types into an effect
algebra (Definition 1), making clear the homomorphic nature of
session types and effect systems. We first define a variant of session
types S called effect sessions where an alternation operator +
replaces select ⊕ and branch &, with τ ::= nat | unit | [S] and

S,T ::= ![τ ].S | ?[τ ].S | ∗![τ ].S | end | S + S | µα.S | α | �̂S
where �̂S is an intermediate representation for the session type
of channels being composed via � (balanced composition). We
assume equirecursive equations on S, e.g., µα.S = S[µα.S/α].

Definition 14 (Session effects). Let F = (C → S) ∪ {⊥} be
maps from channel names C to effect session types with algebra:

• (F , •, ∅) where I = ∅ is the empty mapping, • is pointwise
sequential composition of session types (via � , Section 3.4)
where ∀c : S ∈ F ∧c : T ∈ G then c : S�T ∈ (F •G) but with
additional equations for balancing composition triggered by �̂
types e.g. ∆ � (c : �̂S) = ⊥ if c : S 6∈ ∆ amongst other cases
(the technical report [41] gives the full definition).
• ⊕ is set union ∪ if ∆1 ⊕∆2 satisfies the following condition:

∀c : S ∈ ∆i ⇒ c : S ∈ ∆j ∨ c 6∈ dom(∆j)

i.e., a channel is either in ∆1 or ∆2, or in both but with the same
session type, otherwise ∆1 ⊕∆2 = ⊥.
• v is a preorder where ∀∆, c. where c 6∈ dom(∆):

∆ v (∆, c : end) (∆, c : S) v (∆, c : S + T)
∆ v (∆, c : ∗![S]) (∆, c : S) v (∆, c : T + S)

(15)

• � = �, for parallel effects, takes the union of two mappings if
they are balanced in their channels, otherwise ⊥;
• F ∗ is defined ∀c : S ∈ F then c : µα.(end + S�α) ∈ F ∗.

We extend FPCF values with channel values C ranged over by
c,d, e and their dual endpoints c,d, e. Channel values belong to
singleton types corresponding to the channel name: c : Ch c. This
provides (simple) value dependency in the types.

Remark 3. The ⊕ operation above is not the least-upper bound
with respect tov. Defining subeffecting as subset inclusion instead
of (15) above would give least-upper bounds with the union-like
behaviour of ⊕, however this is unsound: arbitrary session types
could be introduced without a corresponding implementation. This
shows the need for separate ⊕ and v.

Sending, receiving and restriction operations We add to the
constants C of FPCF operations that send and receive values, send
and receive channels, and restrict channels:

sendc,τ : Ch c→ τ
{c :![τ ]}
−−−−−→ unit

rsendc,d,s : Ch c→ Ch d
{c : ∗![s], d : �̂s}
−−−−−−−−−−−−→ unit

chSendc,d,s : Ch c→ Ch d
{c :![s], d : �̂s}
−−−−−−−−−−→ unit

recvc,τ : Ch c
{c :?[τ ]}
−−−−−−→ τ

chRecvc,d,s,F,τ : Ch c
{c :?[s]}
−−−−−−→ (Ch d

F • {d : s}
−−−−−−−→ τ)

F−→ τ

newc,s,F,τ : (Ch c→ Ch c
F • {c : s, c : s}
−−−−−−−−−−−→ τ)

F−→ τ

Each operation is a family of operations, indexed by the types
shown as subscripts. This allows our type-directed encoding to
choose the correctly typed operation. Each operation has latent ef-
fects which give the session environment induced by the operation.

The send and recv operations correspond to session send/receive
prefixes with effect types describing the single action on their

channel. For chSend, the second channel parameter d is sent over
c where d must be balanced with the rest of the environment when
composing due to the �̂ operator; rsend is identical to chSend, but
with the ∗! session type. The chRecv operation is higher-order,
taking a channel c and over which a channel of session type s
is received and passed to the parameter function which maps a
channel d to a value τ with the effect F • {d : s}. From this, a
computation is returned with F channels where d, c 6∈ F . This
typing is important for the typability of replicated input. The new
operation is similarly higher-order, where the resulting effect is
the effect of the parameter function, but with the session types
c : s, c : s deleted from the environment since they are in scope
only for the parameter function.

Operational semantics We instantiate the operational semantics
of FPCF for the session effect operations. Configurations are pairs
〈M, s〉 of a term M with store s mapping channel endpoint names
C to (unbounded) queues of values. We write enq s c V to update
store s with the value V added to end of the queue belonging
to c. The operation deq s c returns a pair of the first element in
the queue for c and an updated store if c is non-empty, otherwise
deq is undefined. Both enq s c V and deq s c require c ∈ dom(s)
otherwise they are undefined; ε denotes the empty queue. Sending
and receiving have the following reductions from their redex form
(with arguments reduced to values by the usual application rules):

〈send c V, s〉 → 〈unit, enq s c V 〉
〈rsend c V, s〉 → 〈unit, enq s c V 〉
〈chSend c d, s〉 → 〈unit, enq s c d〉

〈recv c, s〉 → 〈V, s′〉 where deq s c = (s′, V )
〈chRecv c, s〉→ 〈(λk.k e), s′〉 where deq s c = (s′, e)

For send, rsend, and chSend, the value or channel is added to the
end of the queue belonging to the opposite end-point c. For recv,
a value is dequeued from the endpoint c queue (if it exists in s);
chRecv is a little different, receiving first a channel e over c and
returning a function which takes a continuation k and applies it
to the received channel. Thus receiving the channel is separated
from substitution of that channel, which is reflected in the type
of chRecv. This semantics allows asynchronous communication.
Section 7.2 defines a stable reduction relation that characterises the
reductions of our encoding, which are only the synchronous subset.

The reduction of new exposes a key difference between the two
calculi. In processes, νc.P introduces channel names c and c in the
scope of P . In FPCF, new encodes restriction but new (λx.λy.M)
binds arbitrarily named variables x, y in the scope of M , which
are substituted for concrete channel names. The (new1) rule below
deals with this by first α-renaming the variables of a new redex to
fresh variable names corresponding to fresh channels:

(new1) where x, y, c, c 6∈ dom(s), c, c fresh in M
〈new(λxλy.M), s〉→〈new(λcλc.M [c/x, c/y]), s[c 7→ε, c 7→ε]〉

That is, if x, y are not in the store, then x, y areα-renamed to names
c, c which are fresh in M (not free or bound) and are not already in
the store. The store is then extended with empty channels for c and
c. The following two rules then reduce new further:

(new2)
〈M [c/c, c/c], s〉 → 〈N [c/c, c/c], s′〉 c, c ∈ dom(s)

〈new (λcλc.M), s〉 → 〈new (λcλc.N), s′〉
(new3) 〈new (λcλc.V ), s[c 7→ ε, c 7→ ε]〉→〈V, s[c 7→⊥, c 7→⊥]〉

In (new2), if M reduces with its variables c and c replaced by
the corresponding channel values, then the restricted term reduces.
Once a value is reached with empty restricted channels (new3), then
new is eliminated and its restricted channels are deleted.

From this semantics, ≡ can be extended with an η-expansion
for new over pure values: new(λxλy.V ) ≡ V and distributivity
P||new(λxλy.Q) ≡ new(λxλy.P||Q) if x, y 6∈ fv(P ).



7.1 Embedding the session calculus into FPCF

Encoding of types The encoding from the session calculus to
FPCF is type-directed, giving the following typability lemma on
the mapping from session type derivations to FPCF derivations:

Lemma 5 (Typability). Let Γ; ∆ ` P then

∃M. JΓ; ∆ ` P K = JΓK `M : unit, J∆K

Value contexts are encoded JΓK with nat and unit mapped to
their corresponding FPCF value types. Session environments are
mapped to effectsF from Def. 14 by J∆K = Jc1 : S1, ...cn : SnK =
c : JS1K, ..., cn : JSnK and the following interpretation:

Definition 15 (Session types to effect sessions annotations).

JendK = end J![τ ].SK =!JτK.JSK J?[τ ].SK =?JτK.JSK
J∗?[τ ]K = µα.?JτK.α J∗![τ ].SK = ∗!JτK.JSK

Jµα.SK = µα.JSK J⊕[l1 : S, l2 : T K =![nat].(JSK + JT K)
J&[l1 : S, l2 : T K =?[nat].(JSK + JT K)

Natural numbers are used in the encoding to administer control-
flow for branching and selection. A selection type ⊕ corresponds
to sending a nat to select a branch prior to alternation. For &, this
corresponds to receiving a nat then alternating.

Encoding of processes We define the encoding of typed pro-
cesses JΓ; ∆ ` P K by induction over type derivations.

In the majority of rules we elide the types (when the syntax has
a single corresponding typing rule). Types are included only when
the encoding has a (non-syntactically implied) type-dependence.
For brevity we write M ; N for letx = M inN when the bound
variable x is free in N (i.e., unused– a wildcard).

We first give the encoding of linear send and receive into FPCF:

Jc!〈V 〉.P K = send c JV K ; JP K
Jc?(x).P K = letx = recv c in JP K
Jc?(d).P K = let k = chRecv c in k (λd.JP K)

J∆ ` c!〈d〉.P K = chSend c d ; JP K (if c :![S].T ∈ ∆)

The encoding straightforwardly uses the send and recv operations
in FPCF. The let-binding encodes prefixing by sequential compo-
sition. In the case of sending a channel, chSend is used when c is
marked as a linear send in ∆, showing the type-directed nature. Al-
ternatively, the syntax c!〈d〉.P may be an output action, which is
handled below in the encoding of output and replicated input:

J∆ ` c!〈d〉.P K = rsend c d ; JP K (if c : ∗![S].T ∈ ∆)
J∗c?(d).P K = rec (λf.λx.let k = chRecv c

in (k (λd.JP K))||f unit) unit

For output, rsend sends d before continuing with JP K. Replicated
input is defined via a recursive function. It repeatedly receives a
channel on cwhich is bound as d in the scope of JP K in parallel (via
the continuation k) with the recursive call. Typability for replicated
input holds since the recursive call is balanced with respect to
(k (λd.JP K)) (which has no session effect involving c).

Restricted, parallel, and empty processes are encoded directly:

JP | QK=JP K||JQK Jνc.P K=new(λc.λc. JP K) J0K=unit

Parallel composition is encoded by the parallel extension of FPCF
(Section 5) and restriction by new, binding names c and c.

The encoding of branching, selection, and conditionals uses
case. We consider just two concrete labels l1, l2, though this can
be easily generalised to any finite set of labels (isomorphic to nat).
JcC l1.P K = send c 0 ; JP K JcC l2.P K = send c 1 ; JP K
JcB [l1 : P, l2 : Q]K = let x = recv c

in (casexof 0 7→ JP K, sucn 7→ JQK)
Jif [V =0] thenP elseQK = caseV of 0 7→ JP K, sucn 7→ JQK

To select label l1, the encoding sends 0 then continues as JP K with
1 sent instead for label l2. Subeffecting (Def. 14) provides the effect
c :![nat].(S + T) for the l1 select (where c : S in the effect of
JP K) and c :![nat].(T + S) in the l2 select. Since the encoding is
type-directed, subeffecting rules are generated to match the session
types. Branching has the dual behaviour of type c :?[nat].(S + T)
where a natural number is received and matched upon with JP K and
JQK for the branches of case. The encoding for if is similar, but
each branch must have matching effects (no subeffecting).

Weakening (introducing either c : end or c : ∗![S]) is encoded
via subeffecting: if JΓ; ∆ ` P K = JΓK ` M : unit, J∆K then
JΓK ` M : unit, (J∆K, c : end) via subeffecting (eq.15) with
J∆K v (J∆K, c : end) (and similarly for output).

Value encoding is fairly direct as PCF has the same constructors
as the session calculus (modulo pred): JunitK = unit, JsucV K =
suc JV K, J0K = 0, JpredV K = case JV Kof 0 7→ 0,(sucx) 7→ x,
and JvK = v by the context-preserving embedding of variables.

7.2 Correctness
We define stable reductions for our FPCF instance, which charac-
terise the equivalent of β-reductions (synchronisation) in the ses-
sion calculus. This requires the notion of top-level contexts, in
which the terms of a (session) β-redex from our encoding reside:

Definition 16 (Top-level contexts).

T ::= letx=T inM | new(λxλy.T) | T||T | T||M |M||T | [−]

where a hole is denoted [−]. Note that multiple holes can occur in
a top-level context due to the parallel composition T||T.

Definition 17. For the session instantiation of FPCF, the relation
=⇒ provides stable reductions between pairs of a term and store:

(β ⇒) 〈T[send cV ][recv c], s〉=⇒ 〈T[unit][V ], s〉
(chβ⇒) 〈T[chSend cd][chRecv c], s〉 =⇒ 〈T[unit][(λk.k d)], s〉

(new⇒)
〈M [c/c, c/c], s J [c 7→ ε, c′ 7→ ε]〉=⇒〈N [c/c, c/c], s′〉

〈new (λcλc′.M), s〉 =⇒ 〈new (λc, c′, N), s′〉

(≡⇒)
M ≡ N 〈N, s〉=⇒〈N ′, s′〉
〈T[M ], s〉 =⇒ 〈T[N ′], s′〉 (→)

M →∗ N
〈T[M ], s〉=⇒〈T[N ], s〉

where J is the union of two finite maps with a left-bias, [c 7→ t] J
[c 7→ s] = [c 7→ t] but ∅ J [c 7→ s] = [c 7→ s]. In the premise of
(→), only the pure β-reductions (from Section 2.1) are allowed. A
similar rule to (chβ⇒) is provided where rsend replaces chSend.

Let ∆ be closed if ∀c ∈ dom(∆) then c ∈ dom(∆). A store s
is well-formed with respect to ∆, wf(∆, s), if dom(∆) ⊆ dom(s).

Lemma 6. Let Γ; ∆ ` P where ∆ is closed and balanced, and
wf(∆, s), then 〈JP Kθ, s〉 =⇒ 〈N, s′〉 ⇒ 〈JP Kθ, s〉 →+ 〈N, s′〉
where θ is a substitution of free channel variables for channel
values of the corresponding name in the store s.

Further, 〈JP Kθ, s〉→〈N,s′〉⇒ (∃M, s′′.〈JP Kθ, s〉=⇒〈M,s′′〉
∧ 〈N, s′〉 →∗ 〈M, s′′〉). Thus, under the image of our encoding
and session typing, stable reductions (synchrony) and the opera-
tional semantics coincide.

Theorem 5 (Operational correspondence). Then ∀Γ,∆, P.
• (sound) ∀Q. Γ; ∆ ` P ∧ P → Q ∧ wf(∆, s)

⇒ ∃s′,M, θ.〈JP Kθ, s〉 =⇒ 〈Mθ, s′〉 ∧ M ≡ JQK
• (complete) ∀s′, θ. Γ; ∆ ` P ∧ 〈JP Kθ, s〉 =⇒ 〈Mθ, s′〉 ∧

∆ balanced & closed ⇒ ∃Q.P → Q ∧ M ≡ JQK
For soundness, session calculus β-reductions correspond to (β⇒)
and (chβ⇒), combined with (≡⇒) for replication, branching, and
selection. For if , (→) is used. Reduction under new corresponds to
(new). Reduction under parallel composition and extension of re-
duction along structural congruence corresponds to (≡⇒). Com-
pleteness similarly relates stable and session calculus reductions.



class Effect (m :: ef -> * -> *) where
type Unit m :: ef
type Plus m (f :: ef) (g :: ef) :: ef
return :: a -> m (Unit m) a
(>>=) :: m f a -> (a -> m g b) -> m (Plus m f g) b

instance Effect Process where
type Plus Process f g = SeqUnion f g
type Unit Process = ’[]

class Sub m f g where sub :: m f a -> m g a
instance Sub Process f g =>

Sub Process ((c :-> s) ’: f) ((c :-> s :+ t) ’: g)

Figure 4. Effect-graded monad and Process instances

Remark 4 (Termination and replicated input). Replicated in-
put is encoded as a recursive function which eventually becomes
blocked once there are no more outputs (rsend). The same occurs
in the π-calculus: any replicated inputs persist at the end of the
computation. The garbage collection property shows this is obser-
vationally equivalent to the empty process: νc.(∗c?(d).P ) ∼= 0.
This property holds for the encoding up to non-termination effects.

8. Implementation
We use the encoding of the session calculus into FPCF to derive
a new implementation of session types in Haskell. The gap be-
tween FPCF and Haskell is bridged using recent work to embed
effect systems into Haskell types [39]. The implementation pro-
vides a proof-of-concept use for the encoding (rather than a pol-
ished user-friendly library). A brief description is given here, but
more information (and the code) can be found on the artifact web-
page http://dorchard.co.uk/popl16. Section 9.3 compares
our implementation to existing work.

Effect systems in Haskell Haskell’s do-notation provides a spe-
cialised form of let-binding for sequentially composing effectful
computations represented via monads. Whilst Haskell does not
have a user-visible effect system, monads can be generalised to
graded monads to carry effect information as a type index [30, 39,
40]. Furthermore, Wadler and Thiemann showed [54] that an im-
pure λ-calculus with an effect system (similar to FPCF) can be en-
coded into a monadic metalanguage (à la Moggi [34])– essentially
Haskell’s do-notation. Thus, FPCF session terms can be translated
into Haskell programs where the graded monad embeds effects.

Figure 4 gives a Haskell definition for graded monads via the
Effect type class over binary type constructors m :: ef -> *
-> * (mapping from ef, the kind of effect annotations, to a unary
type constructor) where ef models a set of effect annotations F .
A value of type m f a thus denotes a computation with effects de-
scribed by the type index f . The domain ef is equipped with a type-
level binary function Plus m implementing • of the effect algebra
for F and a constant Unit m providing the unit element I . The
return operation of the graded monad lifts a value to a trivially
effectful computation, marked with I . The “bind” operation (>>=)
provides the sequential composition of effectful computations. This
is used by Haskell to desugar the do-notation, giving the typing:

bind
Γ ` e1 : m F σ Γ, x : σ ` e2 : m G τ

Γ ` (do x <- e1; e2) : m (Plus m F G) τ

The (bind) rule models the let-binding of FPCF, propagating effect
information in the same way. By Wadler and Thiemann’s transla-
tion, an FPCF judgment Γ ` M : τ, F maps to a monadic met-
alanguage judgment Γ ` [M ] : m [F ] τ , embedding effects into
types. We use this graded monadic embedding along with Haskell’s
advanced type system features (e.g., closed type families [17] and
data kinds [55]) to implement the encoding of Section 7 on top of
the core Concurrent Haskell library.

Session effects We provide a graded monad instance (shown par-
tially in Figure 4) for the Process data type which encapsulates
concurrent computations:

data Process (s :: [Map Name Session]) a = Proc (IO a)

The first parameter s is a type-level finite map modelling an envi-
ronment of session type information. This is of the form ’[c :->
s, d :-> t, ...] describing an environment where a channel
c has session type s, a channel d has session type t, and so on.
Session environments are composed sequentially via the SeqUnion
type-level function which models • from Section 7.

Session effects are modelled by the Session data type:

data Session = forall a . a :! Session -- send
| forall a . a :? Session -- receive
| forall a . a :*! Session -- output
| Session :+ Session -- alternation
| Bal Session | End -- ’balanced’ & end
| Fix Session Session -- -* prefix

Each concurrent FPCF operation from the previous section has a
Haskell counterpart, e.g., sending and receiving ground values:

send :: Chan c -> t -> Process ’[c :-> t :! End] ()
recv :: Chan c -> Process ’[c :-> t :? End] t

where Chan c is a channel named c (a type-level symbol). Chan-
nels are implemented via Concurrent Haskell channels. Though
Concurrent Haskell channels have a single (boxed) type, they are
used at any type with unchecked casts in the implementation of
send/receive operations. This is proven safe by session-type dual-
ity, which is encoded as a type predicate (type-class constraint). For
example, the new combinator enforces duality of sessions over the
restricted channel c via the Duality type class:

new :: (Duality env c)
=> ((Chan (Ch c), Chan (Op c)) -> Process env t)
-> Process ((env :\ (Op c)) :\ (Ch c)) t

where :\ deletes a channel from an environment. Some operations
have a slightly different (but isomorphic) form to their FPCF coun-
terparts, managing environments via type functions, e.g. chRecv:

chRecv :: Chan c ->
Process ’[c :-> (Delg (e :@ d)) :? End]

((Chan d -> Process e t) -> Process (e :\ d) t)

where :@ looks up a session type by the channel name.
Since Haskell does not have subtyping, subeffecting is explicit

using sub :: Sub f g => m f a -> m g a, with one instance
shown in Figure 4 (computing :+ as an upper bound). This models
the subeffecting relation in Definition 14 (p. 9). Relatedly, Haskell
does not have equirecursive types, so the implementation restricts
recursion to only definitions that induce an affine effect equation.
A specialised combinator affineFix is used, where the fixed-
point a∗b (represented by Fix a b) is computed via a type-level
function given an affine effect equation s 7→ a • s+ b.

Example 5. The following simple example corresponds to ses-
sion calculus term νc.(νd.(c!〈d〉.d?(Ping)) | c?(x).x!〈Ping〉):

client (c :: (Chan (Ch "c")))
= new (\(d :: (Chan (Ch "d")), d’) ->

do chSend c d
Ping <- recv d’
print "Client: got a ping")

server c = do { k <- chRecv c; k (\x -> send x Ping) }
process = new (\(c, c’) -> (client c) ‘par‘ (server c’))

where client models the left process and server the right. The
type of client is inferred as: client :: Chan (Ch "c") ->

Process ’[Ch "c" :-> (Delg (Msg :! End) :! End)] ()



9. Extensions and related works
9.1 Polymorphism for state with first-class references
Early effect systems targeted stateful computations with first-class
references, as in ML [20]. We can instantiate our encoding for
the more general setting of first-class references. This relies on
extending our session calculus with session polymorphism [5, 6].

Effects are F = P({rd ρ τ,wr ρ τ, alloc ρ τ | ∀ρ, τ}), where ρ
are regions, with (F ,∪, ∅),⊕ = ∪, and F ∗ = F . We add reference
types refρτ tagged with their region and type, and constants:

get : refρ τ
{rd ρ τ}−−−−−→ τ put : refρ τ → τ

{wr ρ τ}−−−−−→ unit
new : τ

{alloc ρ τ}−−−−−−→ refρ τ with fresh ρ

The idea behind the encoding is that each mutable store has its own
handler. Thus, when new creates a reference (pointing to a new
store), a new state handler is created. References are then encoded
as channels to interact with this handler. A central handler (the main
handler for the encoding) forwards requests to the state handlers by
means of the reference channels. The central handler is defined:

∗?h(c).c?(xρ).cB {alloc : h!〈c〉,
act : c?(r).cB {rd : r C rd.r?(x).c!〈x〉.h!〈c〉,

wr : r C wr.c?(y).r!〈y〉.h!〈c〉}}
A value is received (bound to xρ) which represents a region. There
are then two behaviours: the alloc behaviour records when a new
reference is created and act forwards effectful operations to other
state handlers. The act mode receives the reference channel r and
then forwards the get/put requests on c to r to interact with that
mutable cell. The encoding of the new operation is then:

L new M Mei,eor = νe, q, ea.(LM Mei,eaq | q?(x).Var〈e, x〉 | r!〈e〉
| ea?(c).c!〈ρ〉.cC alloc.eo!〈c〉)

where Var refers to a simple state handler (from Example 2). Thus,
the initial valueM is received as x and is used to start a new simple,
state handler with a new effect channel e. The opposite end-point
e is returned by sending on r. The effectful behaviour is to send
a value ρ of a fresh singleton type ρ̂ and then request the alloc
behaviour from the central handler (which does nothing). The get
operation is defined as follows (put is similar):

L get M Mei,eor = νq, ea.(LM Mei,eaq

| q?(rc).ea?(c).c!〈ρ〉.cC act.c!〈rc〉.cC rd.c?(x).r!〈x〉.eo!〈c〉)
The result of the encoded reference value M is an effect channel
received on q as rc. The central effect channel is received on ea
and the corresponding ρ value is sent to mark the type of the region
(since the rules are type directed, the value ρ comes from the type
ofM , elided here). The act behaviour is then chosen before c sends
the reference channel rc and the rest of the interaction is as before
for simple state.

This encoding requires session polymorphism so that differently
typed references can be handled by the central handler. The poly-
morphic session type for the effect channel c of H(c) is:

c : µα. ∀ρ. ?[ρ].&[alloc : α, act : ∀τ.
?[µα.⊕[rd :?[τ ].α,wr :![τ ].α]].&[rd :![τ ].α,wr :?[τ ].α]]

Note the polymorphic region type ρ and type τ for the reference
value. We show the interpretation of effect annotations for a causal
version of the above system for brevity, but this can easily be con-
verted to the set-based style following the approach of Example 3

J(rd ρ τ) :F K=!JρK.⊕[act :!Jrefρ τK.⊕[rd :?JτK.JF K]]
J(wr ρ τ) :F K=!JρK.⊕[act :!Jrefρ τK.⊕[wr :!JτK.JF K]]

J(alloc ρ τ) :F K=!JρK.⊕[alloc : JF K]

where Jrefρ τK = µα. ⊕ [rd :?JτK.α,wr :!JτK.α], i.e., the type of
an effect channel for interacting with a handler.

9.2 Monadic metalanguage for effects
We considered here an impure variant of FPCF where any term
may be effectful. Our effect systems therefore give effect anno-
tations to every term. An alternate presentation of effectful cal-
culi takes Moggi’s monadic metalanguage [34] and augments the
monadic type constructor T with an effect annotation [54] (dis-
cussed briefly in Section 8). In this approach, effects are lim-
ited to a subset of the syntax and hence their scope is more eas-
ily delimited. A monadic metalanguage variant of PCF (call it
metaFPCF)1 would extend the syntax and type system of pure PCF
with M,N ::= . . . | letx←M ; N | 〈M〉 and typing rules:

let
Γ `M : Tf σ Γ, x : σ ` N : Tgτ

Γ ` letx←M ; N : T(f•g)τ
unit

Γ `M : τ

Γ ` 〈M〉 : TIτ

for an effect monoid (F , •, I). The type constructor T takes two
arguments, the first an effect annotation, the second the type of
the value produced by the computation. The let construct provides
composition of effectful computations and 〈M〉 raises a pure term
to a trivially effectful term. This is essentially what we have in our
Haskell implementation (Section 8).

Our encoding from FPCF to the session calculus can be re-
worked for metaFPCF. Since the metalanguage style for effects
separates more clearly in the type system what is definitely pure
from what is potentially effectful, we could combine existing typed
encodings of the pure λ-calculus (such as that of [51]) with an en-
coding for the effectful parts (let and unit above). The encoding of
(let) above would be the same as the encoding for letx = M inN
shown at the start of Section 3. The encoding for (unit) is similar to
values in our calculus (variables and constants) with L 〈M〉 Mei,eor =
ei?(c).eo!〈c〉 | JMKr where JMKr is any other (sound) typed en-
coding of PCF, perhaps building on the many possible encodings in
the literature (e.g., [33, 49, 51], with various trade-offs).

However, we cannot take one of these existing pure typed-
encodings and use it unmodified in combination with the encoding
of (let) and (unit). Consider a pure encoding of the λ-calculus part
of metaFPCF via J−Kr defined for functions as:

Jλx.MKr = νd. (r!〈d〉. ∗d?(p, q).p?(x).JMKq)

This is the same as in Section 3, but with the effect channel car-
riers erased. The interpretation of the monadic fragment is written
L− Mei,eor . Consider then the following encoding of a term:

Jlet f ← 〈λx.put x〉; f 0Kei,eor = νea, q.(ei?(c).ea!〈c〉 |
νy.(q!〈y〉.∗y?(p, r′).p?(x).Jput xKr′) | q?(f).L f 0 Mea,eor )

Whilst the function body is effectful, the encoding here tries to
apply the pure embedding to put . However put requires access
to an effect channel, which is bound nowhere in the scope of
the encoded function. Instead, a type-directed encoding is needed
where pure constructors (such as abstraction and application) have
a different encoding if they apply or create functions with target
type Tf A for some f,A. Therefore, a pure encoding cannot be
used exactly “as is” with the rest of our encoding for effects.

Future work is to investigate further whether it is possible to
factor our encoding through a monadic structuring of effects. The
work of Toninho et al. provides a Curry-Howard correspondence
between session types and linear logic [51], which provides a
way to consider more traditional monadic encodings of effects. An
interesting avenue might be to unify our encoding with recent work
on a monadic integrations of session types and processes [52].

9.3 Related work
We previously showed an encoding of a simple first-order imper-
ative language with a simple effect system for state into a ver-

1 Filinski calls this Effect-PCF [18], but this is not be confused with FPCF.



sion of the session calculus (without ∗!/∗? types but only recursive
types) [42]. This paper greatly expanded [42], extending the encod-
ing to the higher-order setting of PCF with non-sequential control
flow, and considering the reverse encoding and implementation.

Communication effects Effect systems have previously been
used to describe communication effects for CML [28, 38]. These
effect systems were causal (similar to our earlier state example),
defined over lists of tokens E ::= ρ![τ ] | ρ?[τ ] | spawn [E] de-
noting sending on a channel ρ, receiving on a channel ρ of type τ
and spawning a new thread. Alternation and recursion where also
included, similar in structure to our effect algebra (Definition 1).

These communication effect systems resemble our instantiation
of FPCF to encode the session calculus, but restricted to just send-
ing and receiving of values. In this first-order setting, the above
system can be translated to our FPCF encoding by grouping all ac-
tions on a particular channel into a single session type per channel
e.g., a communication effect ρ1![τ1].ρ2?[τ2].ρ1![τ2] can be mapped
to a session effect environment ρ1 :![τ1].![τ2].end, ρ2 :?[τ2].end.

There is no reverse encoding from session types into communi-
cation effects though since session types do not describe the relative
causality between channels, which is recorded by communication
effects. Session types are however more expressive with respect to
the higher-order communication (delegation). Future work is to ex-
plore the relative expressive power further.

Encodings of functions into typed processes Types limit the
contexts in which processes can interact, therefore typed equiva-
lences usually offer a coarser semantics than untyped semantics,
where stronger properties can be proved. For example, Pierce and
Sangiorgi [44] demonstrate that the barbed congruence under IO-
subtyping can justify the correctness of the optimal encoding of the
λ-calculus by Milner [33]. This was not possible in the polyadic
π-calculus [33]. After [44], many works on typed π-calculi have
investigated correctness of encodings in order to examine semantic
consequences of proposed typing systems. Our work follows this
tradition, studying properties of typed calculi and their encodings.

Session types are closely related to linear typing disciplines.
In [4, 5, 56], typed equivalences of a family of linear and affine
calculi were used to encode PCF and System F fully abstractly [21].
A subsequent work [24] adapted these linear types in a practical
direction. It proposed new typing systems for secure higher-order
and multi-threaded programming languages. In these works, typed
properties and linearity play a fundamental role in the analysis.
In general, linear types or session types are suitable to encode
“sequentiality” in the sense of [1, 26], as shown in Section 3 and 4.

Wadler shows a tight correspondence between a linear func-
tional language with session types “GV” and a session-typed pro-
cess calculus “CP” (whose types correspond to classical linear logic
propositions), via an encoding of GV into CP [53]. Lindley and
Morris later provided the reverse encoding, from CP to GV, show-
ing operational correspondence [32]. Theses works are similar to
our own in that they give encodings between a functional language
and process calculi. Our functional language FPCF differs to GV
in that it is not fundamentally linear, though linearity for sessions
is implemented via the effect algebra and typing.

Encodings related to session-typed processes. The works [14,
15] study encodings of binary session calculi into a linearly typed
π-calculus. While [15] gives a full abstract encoding of a session
calculus into a linear calculus (an extension of [4]), the work [14]
gives the operational correspondence for the first- and higher-order
π-calculi into [31]. By [15], we can encode our session calculus
into an extension of [4]; however to encode effect systems, we
require a sequence of linear types (sessions) as well as recursive
types (for typing effect handlers). Note that [14, 15] investigates

embedability of two different type systems of the π-calculus, whose
main aims differ from ours.

Among works on the session types, the most related work is [51]
which elegantly proves the operational correspondence between a
simply typed λ-calculus and a session calculus via a Curry-Howard
interpretation. Another work [43] explores a typed behavioural
theory for their logically motivated binary session calculus. In [6],
they extend these works to polymorphism and parametricity. They
demonstrate the importance of encodings into session calculi for a
fine-grained analysis of higher-order functions.

Our work differs from the above; we extend the encoding from
simple types to effect systems, and we give a reverse encoding
(from the π-calculus back to PCF), giving also an implementation.

Sessions in Haskell There are four relevant works adding session
types to Haskell: by Neubauer and Thiemann [37], Sackman and
Eisenbach [48], Pucella and Tov [47], and Imai et al. [27].

Both [47, 48] use a parameterised monad [2] indexed by type-
level pre- and post-conditions on session environments, enforc-
ing linearity of channel usage. Our graded monadic effects instead
specify a change to the environment, rather than a pre-post condi-
tion. The approach in [37] instead threads a single channel implic-
itly through a computation to avoid aliasing, ensuring linearity.

In terms of features, both [37, 47] have first-order sessions with
branch/select and recursion, but without delegation which Imai et
al. [27] and we include; [48] allows more flexible primitives, but
session types must be manually constructed. In our work, these
are mostly inferred. In [47], session environments are stacks (built
with tuples) requiring manual manipulation to access sessions, es-
sentially indexing sessions by their position. This has the disad-
vantage that the programmer must perform context management
themselves. In contrast, our approach uses a finite map representa-
tion allowing indexing by name, rather than position. This however
requires the user to give fresh names via type signatures.

Imai et al. provide a more convenient system for manipulating
the multi-channel session environments of [47] using de-Bruijn in-
dexed heterogeneously-typed lists [27]. This does not require man-
ual manipulation of the stack nor normalising a type-level repre-
sentation of finite maps. Future work is to explore their approach
combined with our effect-based embedding.

9.4 Concluding remarks
Future work is to explore notions of effect which change the control
flow, such as exceptions. Previous work added exceptions to session
types via an escape or interrupt mechanism [8, 9, 16]. We plan
to investigate their relationship. Other further work is to explore
applications, e.g., using our encoding of FPCF as an optimisation
step for compilation, providing implicit parallelism optimisations
informed by the encoded effect information.

Our encodings have shown that the algebraic structure of rich
effect systems and session types is very similar, with analogous
components for sequentiality, choice, recursion, and subtyping in
each. Session types may seem more fine grained, but the same level
of information can be captured in an effect system (Section 7). This
raises the question: are effects and sessions in fact equivalent? (or at
least isomorphic)? To answer this question, we would need to show
that our encodings are mutually inverse. Exploring this is future
work. If this is the case, we may be moving towards a new unified,
typed calculus for general effectful and concurrent programming.
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