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Abstract

Motivated by an assignment problem arising in MapReduce computations, we study a gener-
alization of the Bin Packing problem which we call Bin Packing with Colocations Problem. We
are given a weighted graph G = (V,E), where V represents a set of items with positive integer
weights and E the set of related (to be colocated) items, and an integer bin capacity q. The
goal is to pack the items (with repetitions) into a minimum number of bins so that (i) the total
weight of the items packed in each bin is at most q, and (ii) for each edge (i, j) ∈ E there is at
least one bin containing both items i and j.

We first point out that, when the graph is unweighted (i.e., all the items have equal weights),
the problem is equivalent to the q-clique problem, and when furthermore the graph is complete,
optimal solutions, for specific values of n and q, are obtained from Covering Designs. We
prove that the problem is strongly NP-hard even for paths and unweighted trees. Then, we
propose approximation algorithms for particular families of graphs, including: a 5-approximation
algorithm for complete graphs (improving a previous ratio of 8), a 2-approximation algorithm
for paths, and an (1 + O(log q/q))-approximation algorithm for unweighted trees. For general
graphs, we propose a 3+2 dmad(G)/2e-approximation algorithm, wheremad(G) is the maximum
average degree of G. Finally, we show how to convert any approximation algorithm for Bin
Packing (resp. Densest q-Subgraph) problem into an approximation algorithm for the problem
on weighted (resp. unweighted) general graphs.

1 Introduction

In this paper, we study the following generalization of the classical Bin Packing problem, which we
call Bin Packing with Colocations Problem (BPCP). We are given a weighted graph G = (V,E),
where V = {1, 2, . . . , n} represents the set of items with positive integer weights w1, w2, . . . , wn and
E the set of related (to be colocated) items, and an integer capacity q for bins. The goal is to pack
the items into a minimum number of bins so that (i) the total weight of the items packed in each
bin is at most q, and (ii) for each edge (i, j) ∈ E there is at least one bin containing both items

∗This work is partially supported by ANR project Stint under reference ANR-13-BS02-0007, ANR program “In-
vestments for the Future” under reference ANR-11-LABX-0031-01, the Research Center of Athens University of
Economics and Business (RC-AUEB), and the Special Account for Research Grants of National and Kapodistrian
University of Athens.
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i and j. Due to the last constraint of colocating pairwise related items, we assume that, for each
edge (i, j) ∈ E, wi + wj ≤ q, for otherwise our problem has no feasible solution. Note also that in
a feasible solution (copies of) a vertex (item) might be packed into more than one bin.

Our initial motivation for studying BPCP was the work of [2, 1] on an assignment problem
in MapReduce computations. In such computations, the outputs of the mappers, of the form
〈key − value〉, are assigned to the reducers and each reducer applies a reduce function to a single
key and its associated list of value’s to produce its output. However, a reducer (in fact, the machine
executing it) is subject to capacity constraints (e.g. memory size), which limits the total size of
data assigned to it. Moreover, for each required output, there must be a reducer receiving all
inputs necessary to compute its output. For a family of problems arising in this context, an output
depends on pairwise related inputs, i.e., a situation captured by the colocation constraint in BPCP.

More generally, the BPCP models any practical situation where context-related entities of given
sizes must be assigned to physical resources of limited capacity while fulfilling pairwise colocation
constraints. For instance, when computer files are placed into memory blocks of fixed size, it is
natural to ask for the colocation of pairwise related files (for example, sharing a common attribute)
in the same memory block. Moreover, in large data centers, file colocation is essential for data
chunks which are highly likely to be accessed together.

BPCP is clearly a generalization of the Bin Packing problem, which is a particular case when
E = ∅. As an example of this relation, consider BPCP on a star graph with n+1 vertices, where the
central vertex has weight w0 and the bin capacity is q +w0. Obviously, BPCP is equivalent to the
Bin Packing problem with input the n leaves (with their weights) and bin capacity q. In contrast to
the Bin Packing problem, BPCP remains interesting even when all the items have the same weight
and we refer to this case as Unweighted BPCP (U-BPCP). It is easy to see that U-BPCP is trivial
on a star graph or on a path, but we will prove that it becomes NP-hard even for trees.

Interestingly, U-BPCP for complete graphs falls in the well known area of Combinatorial Design
theory (the interested reader is referred to [6] for a survey of this area). In this context, given a set
V of n elements, a 2-(n, q, 1)-covering design (see [10, 13]) abbreviated here as (n, q)-covering is a
collection of subsets, called blocks, such that each block has q elements and every pair of distinct
elements of V has to appear together in at least one block. An (n, q)-covering is nothing else than a
solution to U-BPCP for complete graphs. In the case of perfect coverings, where each pair appears
in exactly one block, the (n, q)-covering is called a BIBD(n, q, 1), i.e. a Balanced Incomplete Block
Design, or a 2-(n, q, 1)-design and a lot of work has been done on necessary and sufficient conditions
for the existence of such designs (see [6]). The main observation here is that, if a 2-(n, q, 1)-design
exists, then it is an optimal solution to U-BPCP for complete graphs.

Furthermore, BPCP generalizes the so called q-Clique Covering Problem studied in [7]. In their
context, a q-clique of a graph G is an induced subgraph with at most q vertices. The objective
is to find the minimum number of such q-cliques such that every edge and every vertex of G is
included in at least one q-clique. This corresponds exactly to U-BPCP. Our results generalize the
well-known results on q-Clique covering.

Related Work. In [2, 1] the authors studied BPCP for complete and complete bipartite graphs.
For both cases, they proved that BPCP is NP-hard, via a reduction from the Partition problem,
and they proposed greedy approximation algorithms with ratio 8. For the U-BPCP, they also
proposed a (2 + ε)-approximation algorithm in the case of complete graphs.

In [7] the authors have proposed approximation algorithms for the q-Clique Covering Problem
which corresponds to U-BPCP on general graphs. In fact, for the special cases where q = 3
and q = 4 (q is the bin capacity), they obtained approximation ratios 7/5 and 7/3, respectively.
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When the bin capacity is arbitrary, they showed that the problem admits an O(q)-approximation
algorithm.

As described above, U-BPCP on complete graphs is equivalent to finding an (n, q)-covering
with the minimum number of blocks (bins). Therefore, the results obtained in combinatorial design
theory apply to U-BPCP on complete graphs too and we elaborate on them in Section 2.

Contributions. Following the work of [2, 1], we begin with the study of U-BPCP and BPCP
on complete graphs. Table 1 lists the approximation ratios for BPCP and U-BPCP obtained in
the current paper. In Section 2 we study U-BPCP where we exploit existing results on covering
designs. We first present an algorithm similar to the one presented in [2, 1], but our analysis is
tighter. Our algorithm achieves an approximation ratio less than 2 when q is even and n ≥ q2/2.
This algorithm can be generalized and, by using (n, 3)-coverings (resp. (n, 4)-coverings) we get
an approximation ratio less than 3/2 (resp. 5/4) when q is multiple of 3 (resp. multiple of 4)
and n ≥ q2. In Section 3, we deal with BPCP on complete graphs for which an 8-approximation
algorithm was given in [2, 1]; we propose a new approximation algorithm of ratio 6 and a refined
one of ratio 5.

Thereafter, we move our attention to other interesting types of graphs. In Section 4, we show
that BPCP is strongly NP-hard even on paths and we propose a 2-approximation algorithm for this
case. In Section 5, we show that U-BPCP is NP-hard on trees and we propose an algorithm which
asymptotically achieves an approximation ratio of (1 + ε), where ε = O(log q/q). In Section 6, we
study U-BPCP and BPCP on general graphs, and present an algorithm achieving an approximation
ratio of 5 for trees and 9 for planar graphs. This algorithm actually applies to most sparse graphs,
as it yields a constant approximation ratio for any graph with bounded Maximum Average Degree.
Then, based on a simple greedy approach, and given any ρ-approximation algorithm for the Bin
Packing problem, we obtain a ρ · (∆ + 1)-approximation algorithm for BPCP on general graphs,
where ∆ is the maximum degree of the graph. Finally, we show that any ρ-approximation for the
Densest q-Subgraph problem can be converted to a ρ · O(log n)-approximation algorithm for the
U-BPCP on general graphs.

Graph Type Approximation Ratio Theorem Section

Unweighted Complete 3/2 +O(1/q) +O(q/n) 5 2.2

Complete 5 7 3.2

Paths 2 9 4

Unweighted Trees 1 +O(log q/q) 11 5

Trees 5 12 6.1

Planar 9 12 6.1

Unweighted General n1/4 log n 14 6.2

General 3 + 2 dmad(G)/2e, (1 + ε)(∆ + 1) 12, 13 6.1

Table 1: Approximation ratios for BPCP and U-BPCP obtained in this paper

Notation and Preliminaries. In what follows we denote by W =
∑n

i=1wi the total sum of the
weights of all the items. We suppose that W > q, for otherwise the solution consists of a single
bin. By b∗ we denote the number of bins of an optimal solution to BPCP or U-BPCP problems.
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In the next theorem we summarize some of the known results for the classical Bin Packing
problem which we use in the rest of the paper. For an overview of these results we refer the reader
to [5] and the references there in.

Theorem 1 Concerning the Bin Packing problem, with n items of integer weights w1, . . . , wn and
an integer bin capacity q:

(i) The Next Fit (NF), First Fit (FF) and First Fit Decreasing (FFD) algorithms:

(a) Achieve approximation ratios of 2, 1.7 and 1.5 respectively.

(b) Return a solution of at most 2
⌈
W
q

⌉
bins.

(ii) The problem is APX-hard and it admits an Asymptotic Polynomial Time Approximation
Scheme.

2 Complete Graphs: Unweighted case

In this section we deal with U-BPCP on complete graphs. Due to its close relation with the theory
of combinatorial designs (see [6]), we first briefly survey some fundamental results known in this
area. Then, we present approximation algorithms for the problem.

2.1 Combinatorial Designs

Given a set V of n elements, a 2-(n, q, 1)-design is a collection of subsets of V of size q, called
blocks, such that every pair of distinct elements appears together in exactly one block. In other
words it corresponds to a partition of the edges of the complete graph Kn into Kq. In such a
design, every element appears in (n− 1)/(q− 1) blocks and the number of blocks must be equal to
n(n−1)/q(q−1). Since these numbers must be integers, two necessary conditions for the existence
of a 2-(n, q, 1)-design are (n−1) ≡ 0 (mod q−1) and n(n−1) ≡ 0 (mod q(q−1)). These necessary
conditions have been proved to be sufficient for certain values of n and q (see [6]), for instance
when q = 3 (known as Steiner triple systems) and q = 4, 5 or when q is a power of a prime and
n = q2 (affine planes) or n = q2 + q + 1 (projective planes). Furthermore, Wilson [15] has proved
that these necessary conditions are also sufficient when k is fixed and n is large enough. Still, in
many cases these conditions do not guarantee the existence of a 2-(n, q, 1)-design; for example, as
guessed by Euler both a 2-(36, 6, 1)-design or a 2-(43, 7, 1)-design do not exist [6].

Clearly, a 2-(n, q, 1)-design is an optimal solution for U-BPCP on a complete graph with n
vertices and bin capacity q. Note that this relation was not observed by Afrati et al. [2, 1] who
rediscovered basic results of design theory such as the existence of an (n, 3, 1)-design and the
existence of projective planes.

The notion of a 2-(n, q, 1)-design has been also extended to covering designs (see the survey [10]
or chapter IV.8 in Handbook of Designs [13]). Given a set V of n elements, a 2-(n, q, 1)-covering
design abbreviated here as (n, q)-covering is a collection of subsets, which are called blocks, such
that each block has q elements and every pair of distinct elements of V appears together in at least
one block. A (n, q)-covering is nothing else than a solution to U-BPCP for complete graphs.

In the literature, there exists a significant amount of work on computing the minimum number
of blocks in a (n, q)-covering, called the covering number and denoted C(n, q). Therefore, for
U-BPCP on complete graphs, the number of bins of an optimal solution is equal to C(n, q).

In what follows, let L(n, q) =
⌈
n
q

⌈
n−1
q−1

⌉⌉
; this quantity will serve for lower bounding the number

of used bins in an optimal solution.
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Lemma 1 (See [10], [13]) It holds that C(n, q) ≥ L(n, q). Furthermore, if (n−1) ≡ 0 (mod q−1)
and n(n− 1) ≡ 1 (mod q), then C(n, q) ≥ L(n, q) + 1.

The exact values of C(n, q) have been determined only in some cases (see [10, 13]). For example,
the exact value of C(n, q) is known for n ≤ 3q and for q = 2, 3, 4 where we have:

• C(n, 2) = L(n, 2) = n(n−1)
2 (trivial as a block contains one pair),

• C(n, 3) = L(n, 3) =
⌈
n
3

⌈
n−1

2

⌉⌉
, and

• C(n, 4) = L(n, 4) + ε, where ε = 1 when n = 7, 9, 10, ε = 2 when n = 19, and ε = 0 otherwise.

Finally, the following theorem, proved by Rödl [11] via probabilistic methods, bounds C(n, q)
asymptotically. Interestingly, it answered a conjecture of Erdős and Hanani (see [3, Chapter 4] for
a proof).

Theorem 2 (Rödl [11]) For any fixed q, it holds that C(n, q) ≤ (1 + o(1))L(n, q), where the term
o(1) approaches zero as n tends to infinity.

Unfortunately, this theoretical result does not give answers for practical values of n and q and,
for such cases, we propose some simple greedy algorithms.

2.2 Approximation algorithms

The main idea for designing an approximation algorithm consists in partitioning the items into
g = dn/ bq/kce groups of equal size bq/kc (except possibly one), where k is a chosen positive
integer for which a minimum (g, k, 1)-covering is provided. All the items of such a group are then
considered as one element and we cover the pairs of groups with blocks of size k. For each block,
we associate a bin containing all items of the groups in the block. As a block contains k groups, a
bin will contain at most k bq/kc ≤ q items. Furthermore, each pair of items belongs to some bin.
Indeed, consider a pair {i, j}; i belongs to some group A and j to some group B. Then the pair
{i, j} belongs to the bin associated to the block containing the pair of groups A and B if A and B
are distinct, or to every bin containing A if A = B.

The analysis of this general algorithm might be difficult as we have various floors and ceils; to get
rid of them we will use intensively the bounds ba/bc ≥ a/b−(b−1)/b and da/be ≤ a/b+(b−1)/b. We
have also to use existing minimum (g, k, 1)-covering. Moreover, the approximation ratio obtained
will depend of the size of the groups; indeed the pairs of items belonging to the same group will
be repeated many times. So we have interest to choose a large k, but very few minimum (g, k, 1)-
coverings are known for large k.

For k = 2, a case for which a trivial (g, 2, 1)-covering exists, we get Algorithm 1. It is similar
with the one of [2, 1] for even values of q and simpler than their algorithm for odd values of q.
However, here we present a tighter analysis resulting in slightly better approximation ratios.

Algorithm 1 (U-BPCP, complete graphs)

1: Partition the items into g groups each of size bq/2c, except possibly one group of smaller size.
2: Pack every pair of groups into a bin.

Theorem 3 Algorithm 1 achieves approximation ratios of 2(q−1)
q + (q−1)(q−2)

qn , if q is even, and
2q
q−1 + q(q−3)

(q−1)n , if q is odd, for U-BPCP on complete graphs.
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Proof. First, as explained in the general construction the algorithm gives a valid placement. The

number of groups is g =
⌈

n
bq/2c

⌉
and the number of bins is b = g(g−1)

2 . We split the analysis in two

cases depending on whether q is even or odd.

If q is even, then g =
⌈
n
q/2

⌉
≤ n+q/2−1

q/2 = 2n+q−2
q . Hence, the number of used bins is

b =
g(g − 1)

2
≤ (2n+ q − 2)(2n− 2)

2q2

=
2n(n− 1) + (q − 2)(n− 1)

q2

=

(
2
q − 1

q
+

(q − 1)(q − 2)

qn

)
· n(n− 1)

q(q − 1)

≤
(

2
q − 1

q
+

(q − 1)(q − 2)

qn

)
· L(n, q)

If q is odd, then g =
⌈

n
(q−1)/2

⌉
≤ 2n+q−3

q−1 , and the number of used bins is

b =
g(g − 1)

2
≤ (2n+ q − 3)(2n− 2)

2(q − 1)2

=
2n(n− 1) + (q − 3)(n− 1)

(q − 1)2

≤
(

2
q

q − 1
+
q(q − 3)

(q − 1)n

)
· L(n, q)

Note that, by Theorem 3, we have an approximation ratio less than 2, when q is even and
n ≥ q2/2. When q = 3 or q is odd and n ≤ 3q, we know the exact value of C(n, q). So, we will use
the algorithm only for q ≥ 5 and n > 3q, in which case the approximation ratio is less than 17/6.
For any case, when q is large and n tends to infinity the ratio is close to 2. In all cases, we have a
ratio of 2 + 1/q + q/n.

For general k we can extend the algorithm in the following way:

Algorithm 2 (U-BPCP, complete graphs)

1: Choose an integer k ≥ 2.

2: Divide the items into g =
⌈

n
bq/kc

⌉
groups each of size bq/kc, except perhaps one group.

3: Use a (g, k, 1)-covering to cover the pairs of groups with blocks of size k.
4: For each block, associate a bin containing all items of the groups included in the block.

The bins obtained by Algorithm 2 form a valid placement as each bin has size at most q and
each pair of items appears in at least one group or pair of groups and so in at least one bin. We
can still do a complete analysis of the construction for k = 3 as a (g, 3, 1)-covering exists with

L(g, 3) =
⌈
g
3

⌈
g−1

2

⌉⌉
. In our analysis we use the following inequality:

Fact 4 L(g, 3) =
⌈
g
3

⌈
g−1

2

⌉⌉
≤ g2+2

6
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Proof. It follows by a case analysis of all the 6 possible congruences. If g ≡ 1, 3 (mod 6) , then⌈
g
3

⌈
g−1

2

⌉⌉
= g(g−1)

6 < g2+2
6 . If g ≡ 5 (mod 6), then

⌈
g
3

⌈
g−1

2

⌉⌉
=
⌈
g(g−1)

6

⌉
= g2−g+4

6 < g2+2
6 . If

g is even,
⌈
g
3

⌈
g−1

2

⌉⌉
=
⌈
g2

6

⌉
. If g ≡ 0 (mod 6), then

⌈
g2

6

⌉
= g2

6 < g2+2
6 and if g ≡ 2, 4 (mod 6),⌈

g2

6

⌉
= g2+2

6 and in all cases the inequality is true with equality only in the cases g ≡ 2, 4 (mod 6).

Theorem 5 For k=3, Algorithm 2 achieves approximation ratios of 3
2
q−1
q + q−1

n + q(q−1)
2n(n−1) when q

is a multiple of 3, and 3
2
q(q−1)
(q−2)2

+ q
n−1 + q(q−1)

2n(n−1) otherwise, for U-BPCP on complete graphs.

Proof. If q is a multiple of 3, then g =
⌈
n
q/3

⌉
≤ n+q/3−1

q/3 ≤ 3n+q−3
q . The number b of bins (blocks)

obtained by the algorithm admits using Fact 4 the following upper bound:

b = L(g, 3) ≤ g2 + 2

6
≤ 9n2 + 6n(q − 3) + (q − 3)2 + 2q2

6q2

≤ 9n(n− 1) + 3n(2q − 3) + 3q2

6q2

≤
(

3

2

q − 1

q
+

(2q − 3)(q − 1)

2q(n− 1)
+

q(q − 1)

2n(n− 1)

)
· n(n− 1)

q(q − 1)

≤
(

3

2

q − 1

q
+

(2q − 3)(q − 1)

2q(n− 1)
+

q(q − 1)

2n(n− 1)

)
· L(n, q)

If q is not a multiple of 3, the worst case appears when q is congruent to 2 (mod 3) and we have

g =
⌈

n
bq/3c

⌉
≤
⌈

n
(q−2)/3

⌉
≤ 3n+q−5

(q−2) . The number b of bins obtained by the algorithm is using Fact 4

at most

b ≤ g2 + 2

6
≤ 9n2 + 6n(q − 5) + 3q2 − 18q + 33

6(q − 2)2

≤
(

3

2

q(q − 1)

(q − 2)2
+

q

n− 1

(6q − 21)(q − 1)

6(q − 2)2
+

q(q − 1)

2n(n− 1)

)
· n(n− 1)

q(q − 1)

≤
(

3

2

q(q − 1)

(q − 2)2
+

q

n− 1
+

q(q − 1)

2n(n− 1)

)
· L(n, q)

The general algorithm described above, for k = 3 (resp. k = 4 ) and q is a multiple of 3 (resp.
4), achieves an approximation ratio of at most 3/2 (resp. 4/3). More generally, for any k, if q

is a multiple of k and there exists a (g, k, 1)-covering with L(g, k) blocks, for g =
⌈
kn
q

⌉
, we get a

k
k−1 -approximation ratio.

3 Complete graphs: Weighted case

The general idea of partitioning the items into appropriate groups can be also extended to BPCP
on complete graphs. Note that in [2, 1], it is shown that a variant of Algorithm 1 achieves an
approximation ratio of 8 for BPCP problem on complete graphs (instead of partitioning the items
we greedily pack them into groups of size at most q/2). Here, we initially present a 6-approximation
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algorithm via a better, but still simple, grouping. Then, we improve it via a more enhanced grouping
to a 5-approximation one.

Our analysis uses the lower bound on the optimal number of bins b∗ provided by the next
lemma. Although this lemma is also implicitly shown in [2, 1], we restate and prove it here for the
sake of completeness.

Lemma 2 For BPCP on complete graphs it holds that b∗ ≥ 1
q

∑n
i=1wi

⌈
W−wi
q−wi

⌉
> W 2

q2
.

Proof. When item i belongs to some bin, the other items in the same bin have a sum of weights

at most q − wi. So, item i should appear in at least
⌈
W−wi
q−wi

⌉
bins in order to be colocated with

all other items. Altogether, the total capacity required by item i is at least wi

⌈
W−wi
q−wi

⌉
. Thus, for

the optimal number of bins we have b∗q ≥
∑n

i=1wi

⌈
W−wi
q−wi

⌉
and the first bound follows. Moreover,

W−wi
q−wi

≥ W
q , since wi < q < W , for each item i. Therefore, b∗q ≥ W

q

∑n
i=1wi and b∗ ≥ W 2

q2
.

Consider now the relation between the weights, wi, of the items and the capacity q of the bins.
Indeed, in the BPCP on complete graphs, there can be at most one item of weight greater than
q/2, for otherwise there is no feasible solution. We denote by BPCPq/2 the special case of BPCP
on complete graphs where all the items have weights at most q/2. The next lemma relates this
special case with BPCP on complete graphs in terms of approximation algorithms and allows us to
work in the sequel on BPCPq/2.

Lemma 3 If there is a ρ-approximation algorithm for BPCPq/2 on complete graphs, which returns

a solution of b ≤ ρW 2

q2
< ρb∗ bins, then there is a max{ρ, 4}-approximation algorithm for BPCP on

complete graphs.

Proof. Let w1 be the single weight of BPCP greater than q/2. By Lemma 2 the optimal number
of bins of BPCP satisfies

b∗ ≥ 1

q

(
w1

⌈
W − w1

q − w1

⌉
+

n∑
i=2

wi

⌈
W − wi
q − wi

⌉)
≥ 1

q
w1

⌈
W − w1

q − w1

⌉
+
W

q2
(W − w1), (1)

since we have that wi < q < W , it implies W−wi
q−wi

≥ W
q , and

∑n
i=2wi = W − w1.

Now we consider the following algorithm for BPCP. First, we use a Bin Packing algorithm (NF,
FF or FFD) to pack all the items, but item 1 into bins of capacity q − w1. Then, we add item 1
in all the bins and so it is colocated in at least one bin with each other item. By Theorem 1(i)(b),
the number of the bins used by such a standard Bin Packing algorithm satisfies

b1 ≤ 2

⌈
W − w1

q − w1

⌉
<

4

q
w1

⌈
W − w1

q − w1

⌉
,

since w1 > q/2, that is 2 < 4w1/q.
Next, we pack the items different from 1 into bins of capacity q to guarantee that each one of

then will be colocated with each other in at least one bin. All of these items have weights at most
q/2 and we use for their packing the existing, by the hypothesis of the lemma, ρ-approximation
algorithm for the corresponding BPCPq/2 with n − 1 items of total weight W − w1. Thus, the
number of bins used by this algorithm satisfies

b2 ≤ ρ
(W − w1)2

q2
≤ ρW

q2
(W − w1).
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Therefore the total number of bins used by both steps above is

b = b1 + b2 ≤
4

q
w1

⌈
W − w1

q − w1

⌉
+ ρ

W

q2
(W − w1). (2)

Combining the lower bound on an optimal solution to BPCP (1) and the upper bound on the
solution of the algorithm above (2) the lemma follows.

3.1 A 6-approximation algorithm

We present now a 6-approximation algorithm for BPCPq/2 and, hence, by Lemma 3, for BPCP on
complete graphs.

The main idea of the algorithm is to a) partition the items into groups of 3 different types
and; b) pack these groups into bins. For each pair of items, their corresponding groups will appear
together in a bin, ans thus their respective colocation constraint is satisfied.

For each group we define its density d, as the sum of the weights of the items in this group
divided by q. So, if a group has density d, it contains items of total weight dq. Note that in order
to pack groups together they should have a density of at most 1/2. We construct three types of
groups, denoted by A,B and C, according to their densities, as follows:

• Groups of type A with density 1/3 < d ≤ 1/2

• Groups of type B with density 1/4 < d ≤ 1/3

• Groups of type C with density d ≤ 1/4.

We denote the number of groups of each type A,B and C, by nA, nB and nC , respectively. The
groups are constructed by packing the items greedily in an arbitrary order. The next item of the
order is packed to an existing group if possible, or to a new group, otherwise. By the construction
of the groups we ensure that there is at most one group of type C. Indeed, two groups of type
C could be merged into a single group of type A,B or C, as the density of a group of type C is
dC ≤ 1/4. That is, nC ∈ {0, 1}. Furthermore, if nC = 1 and nB ≥ 1, then dC ≥ 1/6; otherwise, the
group of type C can be merged with a group of type B to obtain a new group of density at most
1/6 + 1/3 = 1/2.

Then, our algorithm returns the following bins:

•
(
nA
2

)
bins for each pair of groups of type A.

• nAnB bins for each pair of groups made of one group of type A and one group of type B.

•
⌈
nB
3

⌈
nB−1

2

⌉⌉
bins for each triplet of groups of type B in a (nB, 3, 1)-covering design. This is

possible as the sum of their densities is at most 3 · 1/3 = 1.

• nAnC bins for each group of type A and the group of type C, if it exists (recall that nC ∈
{0, 1}).

•
⌈
nB
2

⌉
nC bins : we cover the groups of type B with

⌈
nB
2

⌉
pairs in such a way that each group

of type B appears in at least one pair and put each such pair with the group of type C, if it
exists. This is possible as the sum of their densities is at most 2 · 1/3 + 1/4 ≤ 1.

9



Theorem 6 There is a 6-approximation algorithm for BPCP on complete graphs.

Proof. For the sum W of the weights of all items it holds by definition of the densities that

W

q
≥ nA

3
+
nB
4

+ nC · dC

So we get the following inequality for W 2

q2
which is by Lemma 2, a lower bound on the number

of bins b∗ in an optimal solution

W 2

q2
≥ 1

144

(
16n2

A + 9n2
B + 24nAnB + 96nAnCdC + 72nBnCdC + 144n2

Cd
2
C

)
(3)

On the other hand, the number b of bins used by the algorithm is:

b ≤
(
nA
2

)
+ nAnB +

⌈
nB
3

⌈
nB − 1

2

⌉⌉
+ nAnC +

⌈nB
2

⌉
nC (4)

We will show that b ≤ 6W 2/q2. First we note that if nA + nB ≤ 2, as nC ≤ 1, our algorithm
returns at most three bins and the theorem is true as W/q > 1. So we suppose in what follows that
nA + nB ≥ 3 . In that case we will show that F = 144W 2/q2 − 24b ≥ 0 where, by neglecting the
coefficient 144n2

Cd
2
C in inequality (3),

F = 4n2
A + 12nA + 24nAnC(4dC − 1) + 9n2

B − 24

⌈
nB
3

⌈
nB − 1

2

⌉⌉
+ 12nC

(
6dCnB − 2

⌈nB
2

⌉)
(5)

Note the important fact (due to the choices of the densities) that the coefficient of nAnB is 0. We
did not write the factor with d2

C which is at most 4. To conclude we distinguish 2 cases:

• nB = 0; then F ≥ 4n2
A − 12nA ≥ 0 as nA = nA + nB ≥ 3.

• nB > 0. Recall that in that case, if nC = 1, then dC ≥ 1/6 (otherwise, the group of type

C can be merged with a group of type B). Then using by Fact 4
⌈
nB
3

⌈
nB−1

2

⌉⌉
≤ nB

2+2
6

we proceed as follows. If nC = 0, then F ≥ 4n2
A + 12nA + 5n2

B − 8. If nC = 1, then
F ≥ 4n2

A + 5n2
B + 4nA − 20. In both cases, F ≥ 0 as nA + nB ≥ 3.

Summarizing, we have shown that b ≤ 6W
2

q2
, that is a 6-approximation ratio for BPCPq/2 and,

by Lemma 3, also for BPCP on complete graphs.

3.2 A 5-approximation algorithm

In this section we use a more enhanced grouping to improve the approximation ratio of our previous
algorithm from 6 to 5. We again present our algorithm for BPCPq/2 and use Lemma 3 for BPCP
on complete graphs.

The reason for which the algorithm in the previous subsection achieves a better approximation
ratio compared to the algorithm by Afrati et al. [2, 1] is that a triplet of groups of type B can be
packed in a bin. We refine this idea by also packing one group of type A with 2 groups of type B in
a bin if it is possible, i.e., if the sum of their densities is at most 1. So, we partition the groups of
type A (resp. B) into 2 types A1 and A2 (resp. B1 and B2). The new types of groups are denoted
by A1, A2, B1, B2, C, and the number of groups of each type by nA1 , nA2 , nB1 , nB2 , nC , respectively.
Let A = A1 ∪ A2, B = B1 ∪ B2, nA = nA1 + nA2 and nB = nB1 + nB2 . We define the following
types of groups:

10



• Groups of type A1 with density 4/10 < d ≤ 1/2

• Groups of type A2 with density 1/3 < d ≤ 4/10

• Groups of type B1 with density 3/10 < d ≤ 1/3

• Groups of type B2 with density 1/4 < d ≤ 3/10

• Groups of type C with density d ≤ 1/4

The groups are constructed by packing the items greedily in an arbitrary order similarly to the
algorithm of Section 3.1. Consequently, we know that there is at most one group of type C, i.e.
nC ∈ {0, 1}, and if there is also a group of type B, i.e. nB > 0, then dC ≥ 1/6. Additionally, we
ensure that, if nA2 > 0, then dC ≥ 1/10; otherwise, the group of type C can be merged with a
group of type A2, as 4/10 + 1/10 ≤ 1/2. The algorithm produces the following bins:

•
(
nA
2

)
bins for each pair of groups of type A.

• nA1nB bins for each group of type A1 and each group of type B.

• nA2nB1 bins for each group of type A2 and each group of type B1.

• nA2

⌈nB2
2

⌉
bins for each group of type A2 and

⌈nB2
2

⌉
pairs of groups of type B2 in such a way

each group of type B2 appears in at least one such pair. This is possible as the sum of their
densities is at most 4/10 + 2 · 3/10 = 1.

•
⌈
nB
3

⌈
nB−1

2

⌉⌉
bins for each triplet of groups of type B in a (nB, 3, 1)-covering design. This is

possible as the sum of their densities is at most 3 · 1/3 = 1.

• nAnC bins for each a group of type A and group of type C

•
⌈
nB
2

⌉
nC bins : we cover the groups of type B with

⌈
nB
2

⌉
pairs in such a way each group of

type B appears in at least one pair and put each such pair with the group of type C, if it
exists. This is possible as the sum of their densities is at most 2 · 1/3 + 1/4 ≤ 1.

Theorem 7 There is a 5-approximation algorithm for BPCP on complete graphs.

Proof. The proof is similar to the proof of Theorem 6. We will show that b ≤ 5W 2/q2. Again if
nA + nB ≤ 2, as nC ≤ 1, 3 bins are sufficient and so the result is true as W > q. So we suppose in
what follows that nA + nB ≥ 3 .

For the sum W of the weights of all items it holds that

W

q
≥ 4

10
· nA1 +

1

3
· nA2 +

3

10
· nB1 +

1

4
· nB2 + nC · dC

We obtain the following lower bound where we do not distinguish between A1 and A2 (resp. B1

and B2) in the expression of the squares n2
A (resp n2

B) and of the product nAnC (resp. nBnC) and
we use only the fact that dA ≥ 1/3 (resp. dB ≥ 1/4).

5
W 2

q2
≥ (5/9)n2

A + (12/10)nA1nB1 + nA1nB2 + nA2nB1 + (10/12)nA2nB2

+ (5/16)n2
B + (10/3)dCnAnC + (10/4)dCnBnC + 5d2

Cn
2
C (6)

11



On the other hand, the number b of bins used by the algorithm is

b ≤
(
nA
2

)
+ nA1nB + nA2nB1 + nA2

⌈nB2

2

⌉
+

⌈
nB
3

⌈
nB − 1

2

⌉⌉
+ nAnC +

⌈nB
2

⌉
nC (7)

We use inequalities (6) and (7) to compute 5W 2/q2− b = F = FA+FB. In the expression of F ,
we observe that the coefficients of nA1nB2 and nA2nB1 are 0. We do not write the positive terms
(2/10)nA1nB1 and 5d2

Cn
2
C . Additionally, we define the term εB (resp. εB2) equal to 1 if nB is odd

(resp. nB2 is odd) and zero, otherwise; that is:
⌈
nB
2

⌉
= nB+εB

2 (resp.
⌈nB2

2

⌉
=

nB2
+εB2
2 ).

FA ≥ (1/18)n2
A + (1/2)nA + (10/3 · dC − 1)nAnC + nA2 · (nB2/3− εB2/2)

FB ≥ (5/16)n2
B −

⌈
nB
3

⌈
nB − 1

2

⌉⌉
+ (10/4 · dC − 1/2)nBnC − (1/2)εBnC (8)

In what follows, we distinguish three cases:

• nB = 0; then, FB = 0 and, FA ≥ (1/18)n2
A + (1/2)nA + (10/3 · dC − 1)nAnC .

If nA2 > 0, recall that dC ≥ 1/10, and so FA ≥ (1/18)n2
A + (1/2)nA − (2/3)nA and so, as

nA + nB = nA ≥ 3, FA ≥ 0.

If nA2 = 0, then the groups of type A are all of type A1 and so W/q ≥ (4/10)nA; on the other
side b ≤

(
nA
2

)
+ nAnC and 5W 2/q2 − b ≥ (3/10)n2

A − nA/2 > 0 as nA ≥ 3.

• nB ≥ 2. To lower bound FB, we use Fact 4:
⌈
nB
3

⌈
nB−1

2

⌉⌉
≤ nB

2+2
6 . We also note that either

nC = 0 or nC = 1, but in that case as nB > 0, dC ≥ 1/6 and so we get:

FB ≥ (5/16− 1/6)n2
B − 2/6 + (5/12− 1/2)nB − εB/2.

If nB ≥ 3, FB ≥ 63/48−2/6−3/12−1/2 ≥ 11/48. If nB = 2, FB ≥ 28/48−2/6−2/12 = 1/12.
So in all the cases FB ≥ 1/12

For FA using dC ≥ 1/6 when nC = 1, we get: FA ≥ (1/18)n2
A+(1/18)nA+nA2 ·(nB2/3−εB2/2).

Note that, if nB2 6= 1, then nB2/3− εB2/2 ≥ 0. Therefore when nB2 6= 1 or nA2 = 0 we have
FA ≥ (1/18)n2

A + (1/18)nA ≥ 0.

If nB2 = 1 and nA2 > 0, we have FA ≥ (1/18)n2
A+(1/18)nA− (1/6)nA2 . So FA ≥ 0 if nA ≥ 2.

If nA = nA2 = 1, FA ≥ −(1/18). In all the cases F = FA + FB ≥ 1/12− 1/18 ≥ 0

• nB = 1. Then, FB ≥ 5/16− 1/12− εB/2 = −13/48.

Like in the preceeding case, if nB2 6= 1 or nA2 = 0 we have FA ≥ (1/18)n2
A + (1/18)nA.

Therefore, as nA + nB = nA + 1 ≥ 3, FA ≥ 1/3 and so F = FA + FB ≥ 1/3− 13/48 ≥ 0.

If nB2 = 1 and nA2 > 0, we have FA ≥ (1/18)n2
A + (1/18)nA − (1/6)nA2 . So, if nA ≥ 4,

FA ≥ 4/9 and F = FA + FB ≥ 4/9− 17/48 ≥ 0.

To conclude it remains to deal with the very particular small cases nC = 1, nB = nB2 = 1;
nA2 ≥ 1 and 2 ≤ nA ≤ 3 (in the case nA = 1, nA + nB ≤ 3). If nA = 2, our algorithm
uses at most 4 bins: let the groups of type A (resp. B,C) be A1, A2 with A1 of type A2

(resp B1, C1). We use the bins (A1, A2), (A2, B1), (A2, C1) and (A1, B1, C1). Note that the
last bin content has weight at most 4/10 + 3/10 + 1/4 < 1. On the other hand, the optimal
solution uses at least one bin. Finally, if nA = 3, we have W/q ≥ 1/6 + 1/4 + 3 · 1/3 ≥ 17/12
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and so W 2/q2 ≥ 2. But we can pack our groups in 8 bins; namely let the groups of type A
(resp. B,C) be A1, A2, A3 with A1 of type A2 (resp B1, C1). We use three bins for the pairs
of groups of type A, one for (A1, B1, C1); and four for (A2, B1), (A3, B1), (A2, C1), (A3, C1).
Therefore b = 8 ≤ 10 ≤ 5W 2/q2.

In summary, we have shown that b ≤ 5W
2

q2
, that is a 5-approximation ratio for BPCPq/2 and, by

Lemma 3, also for BPCP on complete graphs.

Remark: An interesting question is whether the groups of type A and B can be partitioned
in a different way in order to achieve a better approximation ratio. Let dA (resp. dB) be new
density values that replaces 4/10 (resp. 3/10) for partitioning the groups of type A (resp. B).
Our algorithm requires that a group of type A2 can be packed with a pair of groups of type B2

in a bin, i.e. dA + 2dB ≤ 1. In the expression ρW 2/q2 − b, the coefficients of terms nA1nB2 and
nA2nB1 are 2ρ ·dA/4− 1 and 2ρ ·dB/3− 1, respectively. In order to end up having ρW 2/q2− b ≥ 0,
we must choose non-negative such coefficients. That is, 2ρ · dA/4 ≥ 1 and 2ρ · dB/3 ≥ 1. So,
ρ(dA + 2dB) ≥ 5; but dA + 2dB ≤ 1. The best achievable ratio in this way is ρ = 5, by picking
dA = 4/10 and dB = 3/10.

4 Paths

In this section we consider BPCP on paths; recall that U-BPCP is trivial on paths. We first show
that BPCP on paths is strongly NP-hard via a reduction from the Bin Packing problem.

Theorem 8 BPCP on paths is strongly NP-hard.

Proof. Let I = {1, 2, · · · , n} be a set of items. Starting from an instance of the classical Bin
Packing problem with n items i ∈ I of integer weights wi and integer bin capacity q, we construct
an instance of BPCP as follows. The graph G is a path with 2n − 1 vertices; vertices 2i − 1,
1 ≤ i ≤ n, (each one corresponding to the original item i ∈ I) have weight nwi and vertices 2i,
1 ≤ i ≤ n − 1, (called dummy vertices) have unit weights. Each dummy vertex is connected with
two original item vertices. The bin capacity of BPCP problem is nq+ (n− 1). We claim that there
is a feasible solution for Bin Packing using b bins if and only if there is a feasible solution for BPCP
using also b bins.

Consider, first, a feasible solution S of Bin Packing using b bins. Let Bk be the set of items
packed in the k-th bin of S, 1 ≤ k ≤ b. Each item i ∈ I is packed in at least one bin and∑

i∈Bk
wi ≤ q. We construct a feasible solution S′ for BPCP using also b bins as follows. For each

bin Bk of the solution S, with 1 ≤ k ≤ b, we create a bin B′k of the solution S′ by packing into
B′k, for each item i ∈ Bk, the vertex 2i − 1 and its dummy neighbors in the path, if they are not
already packed. Thus, as each item i ∈ I is packed in at least one bin Bk, every edge of the path
appears in at least one bin B′k. Moreover, as we have at most n − 1 dummy vertices in a bin B′k,
the total weight packed in a bin B′k is at most

∑
i∈Bk

nwi + (n− 1) ≤ nq + (n− 1). Therefore, S′

is a feasible solution of BPCP using b bins.
Consider, next, a feasible solution S′ to BPCP using b bins. Let B′k be the set of vertices

packed in the k-th bin of S′, with 1 ≤ k ≤ b, and let Bk = {i ∈ I | (2i− 1) ∈ B′k} be the subset of
non-dummy vertices packed in this bin. Since S′ is feasible,∑

i∈I|(2i−1)∈B′k

nwi ≤ nq + (n− 1)⇒
∑
i∈Bk

wi ≤ q +
n− 1

n
⇒
∑
i∈Bk

wi ≤ q,
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where the last inequality holds since the wi’s and q are integers. Therefore, there exists a feasible
solution for Bin Packing problem using b bins.

We now present a 2-approximation algorithm by a reduction to the shortest path problem on
an appropriate directed graph and the use of Theorem 1(i)(b). Consider an instance of BPCP on
a path G = (V,E), with V = {1, 2, . . . , n} and E = {(i, i + 1)|1 ≤ i ≤ n − 1}, and bin capacity q.
Let W (i, j) =

∑j
k=iwk denote weight of the subpath between vertices i and j of G, with i < j. We

construct a weighted directed graph
−→
G, with the same vertex set V as G and where there exists an

arc from i to j with weight W (i, j) if and only if W (i, j) ≤ q.
Let
−→
P be a directed path from vertex 1 to vertex n in

−→
G and W (

−→
P ) =

∑
(i,j)∈

−→
P
W (i, j) be its

total weight. Each arc (i, j) ∈
−→
P corresponds to the subpath i, i+ 1, . . . , j of G which has a total

weight W (i, j) ≤ q. We call such an arc of
−→
G or subpath of G, a group (of vertices). Clearly, for

any path
−→
P in

−→
G there is a trivial solution to BPCP on G, packing each group of

−→
P into a different

bin. Note that each edge of G appears in one of the groups and so in one bin. However, we can

do better using Algorithm 3, where we consider the groups of path
−→
P as input to a classical Bin

Packing problem.

Algorithm 3 (BPCP, paths)

1: Construct the directed graph
−→
G .

2: Find a minimum weight path
−→
P in

−→
G from 1 to n.

3: For each arc (i, j) ∈
−→
P , create a group of weight W (i, j).

4: Pack the groups by a Bin Packing algorithm (NF, FF or FFD).

The next lemma gives a lower and an upper bound on the number of bins used by Algorithm 3

via the relation between a path
−→
P in

−→
G and a solution to the BPCP on G.

Lemma 4

(i) For any path
−→
P in

−→
G from 1 to n, there is a feasible solution to the BPCP on G using

b ≤ 2
⌈
W (
−→
P )/q

⌉
bins.

(ii) For any feasible solution to BPCP on G with b bins, there is a path
−→
P such that W (

−→
P ) ≤ bq.

Proof.
(i) The bound follows by Theorem 1(i)(b). Note that each edge of G appears in one of the groups
and so in one bin.
(ii) Consider a feasible solution to BPCP on G with b bins. By deleting occurrences of vertices in
some bins we can build a solution with the same number b of bins as the original one but satisfying
the two properties:

Property 1: Each vertex appears at most once in a bin; otherwise it suffices to delete the useless
other occurrences of the vertex.

Property 2: Each edge (i, i + 1) of G appears in at most one bin. Recall that by definition of a
feasible solution each edge (i, i + 1) appears in at least one bin. Then, consider the vertices
from 1 to n. For vertex 1 consider one of the bins, where it appears with vertex 2, keep it
in this bin and delete its occurrences in all other bins where it appears with vertex 2. Then,

14



suppose that the property is satisfied for vertex i − 1. Consider now vertex i. By induction
it appears in exactly one bin with i − 1. Now, if i + 1 is also in this bin keep i in this bin
and delete the occurrences of i in all other bins. Otherwise, if i appears with i + 1 in some
bins different from the one containing i − 1, then keep i in one of these bins and delete the
occurrences of i in the other bins.

Consider now a solution satisfying these two properties. By Property 1, each bin contains a

set of vertices which form vertex disjoint subpaths in G and so correspond to different arcs in
−→
G ;

recall that the weight of any subpath is at most the capacity q of the bin. By Property 2, each
edge (i, i+ 1) of G appears exactly in one bin and so the union of the of arcs appearing in all the

bins form a path
−→
P . Hence, the total weight

−→
P is at most bq.

Theorem 9 There is a 2-approximation algorithm for BPCP on paths.

Proof. Consider, first, Algorithm 3 finding a minimum weight path
−→
P ∗ in

−→
G . By Lemma 4(i)

the number of bins obtained by the algorithm is b ≤ 2
⌈
W (
−→
P ∗)/q

⌉
. Consider, next, an optimal

solution to BPCP on a path G with b∗ bins. By Lemma 4(ii) there is a path
−→
P in

−→
G such that

W (
−→
P ) ≤ b∗q. Therefore,

b ≤ 2

⌈
W (
−→
P ∗)

q

⌉
≤ 2

⌈
W (
−→
P )

q

⌉
≤ 2

⌈
b∗q

q

⌉
= 2b∗,

since
−→
P ∗ is a minimum weight path.

5 Trees

In this section we deal with U-BPCP on trees. We show that U-BPCP is NP-hard and we also
present an approximation algorithm which achieves asymptotically a ratio of (1 + ε), where ε =
O(log q/q). For BPCP on trees, a 5-approximation algorithm is obtained as a corollary of an
approximation result for BPCP on general graphs which we present in the next section.

We show first that U-BPCP on trees is strongly NP-hard via a reduction from the 3-Partition
problem which is known to be NP-hard even for polynomially bounded parameters.

Theorem 10 U-BPCP on trees is strongly NP-hard.

Proof. The 3-Partition problem is defined as follows. We are given a set A = {a1, a2, . . . , a3m}
of positive integers such that

∑3m
i=1 ai = mB and B

4 < ai <
B
2 , for 1 ≤ i ≤ 3m. The objective is

to partition A into m pairwise disjoint subsets Sj , 1 ≤ j ≤ m, where each subset Sj has exactly 3
elements {aj1 , aj2 , aj3} and aj1 + aj2 + aj3 = B. Note that 3-Partition is NP-hard even in the
case where each ai ∈ A is polynomially bounded by the size of the instance.

From an instance of 3-Partition, we construct an unweighted tree G by adding a root vertex
and 3m pairwise disjoint paths Pi, 1 ≤ i ≤ 3m, all having the root vertex as a common endpoint.
Each path Pi contains the root vertex and ai other vertices when 1 ≤ i ≤ 3m. All vertices have
unit weight and the bin capacity is B + 1. Then, we claim that there exists a feasible solution to
U-BPCP on the tree G using m bins if and only if A admits a 3-partition.
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Assume, first, that there exists a 3-partition of A with m triples Sj = {aj1 , aj2 , aj3}, 1 ≤ j ≤ m.
Then, we obtain a feasible solution to U-BPCP on the tree G using m bins, by packing the root
vertex and the vertices of the three paths Pj1 , Pj2 , Pj3 in the j-th bin. Thus, a bin contains
1 + aj1 + aj2 + aj3 = B + 1 vertices and every edge of these three paths appears in this bin.

Assume, next, that there exists a feasible solution of U-BPCP on the tree G using m bins. In
such a solution, each bin contains at most B + 1 vertices and at most B edges, as the subgraph
induced by these vertices is a subgraph of a tree. Furthermore, a bin contains exactly B edges if
and only if the subgraph induced by these B + 1 vertices is a connected subtree. We call such a
bin containing B + 1 vertices and B edges perfect. The tree G has mB edges and, therefore, in a
solution with m bins, each bin should contain exactly B edges and so all the bins are perfect. Now,
we claim that all the edges of a path appear in a unique bin. Indeed, if the edges of a path appear
in at least two bins, then consider the bin not containing the edge between the root and the next
vertex of the path. Then, the vertices in this bin induce a disconnected subtree with a number of
edges < ai < B and so this bin is not perfect, a contradiction. So, a perfect bin Bj contains the
vertices of k paths Pj1 , Pj2 , . . . , Pjk such that 1 + aj1 + aj2 + . . .+ ajk = B + 1. If k ≤ 2, we get a
contradiction as ai < B/2 implies 1 + aj1 + aj2 < 1 + B/2 + B/2 = B + 1. If k ≥ 4 we also get a
contradiction as ai > B/4 implies 1+aj1 +aj2 +aj3 +aj4 > 1+4 ·B/4 = B+1. Therefore, a perfect
bin Bj contains exactly the vertices of three paths Pj1 , Pj2 , Pj3 such that 1+aj1 +aj2 +aj3 = B+1.
It suffices now to associate to the three paths packed in a bin Bj the triple Sj = {aj1 , aj2 , aj3} to
obtain a 3-partition of A with m triples.

For our approximation algorithm for U-BPCP on an input tree G, we first obtain a directed
tree by orienting the edges of G away from some arbitrary node which is picked as the root. A key
ingredient for the description of our algorithm is the notion of an eligible subtree. Given a directed
tree T = (VT , ET ), an eligible subtree T ′ is a subtree of T rooted at some vertex i ∈ VT such that,
the forest obtained by deleting the edges with both endpoints in T ′ and then all the remaining
vertices of degree 0 consists of a single tree. The following decomposition lemma is critical for
designing our algorithm.

Lemma 5 For each directed tree T , and for each p ∈ [1, |VT |], there exists an eligible subtree T ′ of
T such that p/2 ≤ |VT ′ | ≤ p.

Proof. To each vertex i ∈ VT we associate the value pi which is the number of nodes reachable
from i (including i itself) in the (directed) tree T (in other words the number of vertices of the
directed subtree rooted at i). Observe that, for the root r, pr = |VT | ≥ p and that, for any leaf u,
pu = 1. Therefore, there exists a vertex i, whose children are the vertices i1, i2, . . . , i`, such that
pi ≥ p and pij < p, for 1 ≤ j ≤ `. We order the children of i so that pi1 ≥ pi2 ≥ . . . ≥ pi` . If
pi1 ≥ (p − 2)/2, we take as eligible subtree the subtree containing i and the subtree rooted at i1.
Otherwise i has at least two children and for each child ij , pij < (p − 2)/2. For each 1 ≤ m ≤ `,
we consider the subtree T ′m = (V ′m, E

′
m) rooted at i and containing all the children i1, . . . , im and

their subtrees rooted at them. Then, it holds that |V ′m| = 1 +
∑m

j=1 pij . We have |V ′1 | < p/2 and
|V ′` | = pi ≥ p. Therefore, there exists some m such that |V ′m| < p/2 and |V ′m+1| ≥ p/2; furthermore
|V ′m+1| = |V ′m| + pim+1 ≤ p/2 + p/2 = p, as pij < p/2 for each ij . So, T ′m+1 is an eligible tree
satisfying the requirements.

We are, now, ready to present our approximation algorithm. Algorithm 4 starts with the
directed tree T and, gradually, packs vertices of eligible subtrees into bins and removes vertices
whose incident edges have been covered until a feasible solution is produced. More specifically,
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Algorithm 4 (U-BPCP, trees)

1: Obtain a directed tree T by orienting the edges of G
2: k = 1, fk = q
3: while ET 6= ∅ do
4: if |VT | ≤ q then
5: Pack VT in Bk and set T = ∅
6: if |VT | > q then
7: while fk > 1 do
8: Compute an eligible subtree T ′ such that fk/2 ≤ |VT ′ | ≤ fk
9: Pack VT ′ in bin Bk, remove T ′ from T and let fk = fk − |VT ′ |

10: k = k + 1, fk = q
11: return the solution found.

it consists of phases, the bin Bk being filled up during the k-th phase. We will denote by T the
current remaining tree (whose edges are not already packed) and by fk the remaining available
space of bin Bk during the execution of the k-th phase. At the beginning of phase k we consider
the remaining tree T . If |VT | ≤ q, then we pack it entirely in the bin Bk and we get a feasible
solution (lines 4-5). If |VT | > q then, thanks to Lemma 5, we can pack in Bk an eligible subtree T ′

such that q/2 ≤ |VT ′ | ≤ q; while the available space is fk > 1 we continue packing eligible subtrees
T ′ such that fk/2 ≤ |VT ′ | ≤ fk (lines 6-8). At the end of each step we remove the subtree T ′ from
T and update the available space to fk − |VT ′ | (line 9). Then we start a new phase k + 1 with an
available space q (line 10).

The number of steps of a phase is at most blog(q)c because the algorithm fills at least half of
the empty bin capacity in each step. At the end of a phase (except perhaps the last phase) a bin
contains at least q − 1 vertices. Therefore, the number of edges in a bin (except perhaps the last
one) is at least q − 1 − blog qc. This result enables us to get the approximation ratio of the next
theorem.

Theorem 11 Algorithm 4 achieves asymptotically an approximation ratio of (1 + ε), where ε =
log q

q−1−log q , for U-BPCP on trees.

Proof. Since the input graph G = (V,E) is a tree, there are |E| = n − 1 edges to be covered in
total. Moreover, in any feasible solution, each bin contains at most q vertices and so at most q− 1
edges. Therefore, a lower bound on the number of bins used by the optimal solution is b∗ ≥ n−1

q−1 .
On the other hand, in the solution found by Algorithm 4, each binBk contains at least q−1−log q

edges, except perhaps the last one which contains all the edges of the remaining tree. Therefore,
the number of bins used by the algorithm is

b ≤
⌈

n− 1

q − 1− log q

⌉
≤ n− 1

q − 1− log q
+ 1 =

q − 1

q − 1− log q
· n− 1

q − 1
+ 1 ≤

(
1 +

log q

q − 1− log q

)
b∗ + 1

6 General Graphs

In this section we deal with BPCP and U-BPCP on a general graph G = (V,E). We first deal
with BPCP and we present two approximation algorithms. The first one achieves a ratio of 3 +
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2 dmad(G)/2e, where mad(G) = maxH⊆G {2|E(H)|/|V (H)|} is the maximum average degree of G,
while the second one achieves a ratio of ρ(∆ + 1), where ∆ is the maximum degree of G, given
a ρ-approximation algorithm for the Bin Packing problem. Then, we move to U-BPCP and we
present an approximation algorithm of ratio ρ · O(log n), given a ρ-approximation algorithm for
Densest q-Subgraph problem.

6.1 Weighted case

For the first of our approximation algorithms we consider an arbitrary orientation D = (V,
−→
E )

of the input graph G = (V,E). For each vertex i ∈ V we consider the vertices in its in- and
out-neighborhoods in D, Γ−(i) and Γ+(i), respectively. We denote by d−(i) = |Γ−(i)| and d+(i) =
|Γ+(i)| the in- and out-degrees, respectively, of vertex i in D. Let also ∆−(D) = maxi∈V {d−(i)}
be the maximum indegree of D.

The first step of the algorithm consists in packing independently every node i ∈ V together
with all the vertices in its out-neighborhood Γ+(i). That is, for each i ∈ V , all the vertices in Γ+(i)
are packed into bins of capacity q − wi according to the First Fit Decreasing (FFD) Bin Packing
algorithm and the content of every such bin together with vertex i is considered as one group.
Then, we consider these groups as an instance of the Bin Packing problem and we pack them using
a standard Bin Packing algorithm (NF, FF, FFD) into bins of capacity q.

Algorithm 5 (BPCP, General graph G = (V,E))

1: Construct an orientation D of the input graph G.
2: for each i ∈ V with d+(i) > 0 do
3: Pack the vertices in Γ+(i) into bi bins of capacity q − wi using the FFD algorithm.
4: for each bin Bk, 1 ≤ k ≤ bi, used by FFD algorithm in Step 3 do
5: Create a group of the vertices Vk ⊆ V packed in Bk and vertex i, of weight wi +

∑
j∈Vk wj .

6: Pack all created groups into bins of capacity q by a Bin Packing algorithm (NF, FF or FFD).

Lemma 6 Algorithm 5 achieves a 3 + 2∆−(D) approximation ratio for BPCP on general graphs,
where ∆−(D) is the maximum in-degree of an orientation D of the input graph G.

Proof. Initially, we observe that Algorithm 5 produces a feasible solution. Indeed, every group
created has a total weight at most q, and for every edge (i, j) ∈ E its endpoints appear together in
one of the groups. In order to analyze the algorithm, we need to define a parameter that will serve
for lower bounding the optimal solution. For each vertex i ∈ V with |Γ+(i)| > 0, we define

n∗i =

 1

q − wi

∑
j∈Γ+(i)

wj


Note that n∗i is the minimum number of bins required for packing vertex i together with each one
of its outneighbours while ignoring the remaining vertices. Clearly, n∗i is a lower bound on the
number of occurrences of vertex i in an optimal solution S∗. That is, the total packed weight in
S∗ is at least

∑
i∈V n

∗
iwi which implies that

b∗ ≥ 1

q

∑
i∈V

n∗iwi
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Now, let S be the algorithm’s solution using b bins, and consider the occurrences of a vertex
i ∈ V . Due to its packing with all of its out-neighbours it will appear in each of the bi bins used
by the FFD algorithm in Step 2 of the algorithm. By Theorem 1(i)(a) it follows that bi ≤ 3

2n
∗
i .

Moreover, a vertex i ∈ V appears in d−(i) ≤ ∆−(D) bins due to its packing with all of its in-
neighbours. Therefore, a vertex i ∈ V appears in at most ni ≤ 3

2n
∗
i + ∆−(D) bins and a total

weight of
∑

i∈V (3
2n
∗
i + ∆−(D))wi is packed into b bins by the algorithm.

Hence, by Theorem 1(i)(b) we conclude that

b ≤ 2

⌈
1

q

∑
i∈V

(
3

2
n∗i + ∆−(D)

)
wi

⌉
≤
(

3 + 2∆−(D)
)⌈1

q

∑
i∈V

n∗iwi

⌉
≤
(
3 + 2∆−(D)

)
· b∗

By Lemma 6, the approximation ratio of BPCP on general graphs depends on the orientation
D of the input graph G. Fortunately, it is known that the orientations of a graph G are tightly
related to its density as it is captured by the measure of maximum average degree of G which is
denoted by mad(G). The relation between orientations of a graph G and mad(G) is best illustrated
by the following result of Hakimi [8] or [12, Corollary 61.1b].

Lemma 7 Any graph G has an orientation D with maximum outdegree ∆−(D) ≤ dmad(G)/2e
(which can be computed in polynomial time).

As a consequence of this result and Lemma 6 we get the next theorem.

Theorem 12 Algorithm 5 achieves a 3 + 2 dmad(G)/2e approximation ratio for BPCP on general
graphs, where mad(G) is the maximum average degree of the input graph G.

One is easily convinced that mad(G) < 2 whenever G is a tree (or forest). It follows also from
Euler’s formula that mad(G) < 6 whenever G is a planar graph and, hence the following corollary
of Theorem 12 follows. This corollary actually applies to graphs that can be embedded on the
torus, or more generally to any class of H-minor-free graphs or minor-closed graphs as they also
have a bounded maximum average degree (see [14, 9]).

Corollary 1 Algorithm 5 achieves a 5-approximation ratio for BPCP on trees, and a 9-approximation
ratio for BPCP on planar graphs.

Next, we present an approximation algorithm for BPCP on a general graph G = (V,E), which
uses a ρ-approximation algorithm A for the Bin Packing problem. Specifically, for each edge
(i, j) ∈ E, we create an item ei,j of weight wi + wj and we run the algorithm A on the instance
(E, q) of the Bin Packing problem.

Algorithm 6 (BPCP, general graph G = (V,E))

1: For each edge (i, j) ∈ E, create an item ei,j of weight wi + wj .
2: Pack the set E of items into bins of capacity q using a ρ-approximation algorithm A for the

Bin Packing problem.

Initially, we obtain a lower bound by packing the edges of the input graph G, instead of its
vertices, into bins of capacity q.
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Lemma 8 Let b∗ and b∗e be the optimal numbers of bins for BPCP on a general graph G and the
Bin Packing problem (E, q), respectively. Then, it holds that b∗e ≤ (∆ + 1) · b∗, where ∆ is the
maximum degree of the input graph G.

Proof. Consider an optimal solution S∗ of BPCP on G using b∗ bins. Starting from S∗, we
construct a feasible solution S′, for the Bin Packing problem (E, q), as follows. We use a ∆ + 1
edge coloring that we know always exists (see any text book in graph theory). This coloring is
used only for the sake of the analysis and not by Algorithm 6. For each bin Bk of S∗, 1 ≤ k ≤ b∗,
we create ∆ + 1 new bins B1

k, . . . , B
∆+1
k in S′. Bin Bc

k contains all edges with color c whose end
vertices are both included in Bk. Each pair of colocated vertices appears in at least one bin Bk
and so each edge appears in bin Bc

k if it is of color c. Because all edges of the same color form a
matching (i.e they consist of disjoint vertices), the weight of the edges in Bc

k is at most the sum
of the vertex weights in Bk and, thus, not greater than q. Therefore, we have constructed a feasi-
ble solution of the Bin Packing problem (E, q), with at most (∆+1)·b∗ bins and the lemma follows.

Then, Lemma 8 implies the next theorem.

Theorem 13 Algorithm 6 achieves an approximation ratio of ρ · (∆ + 1) for BPCP on general
graphs, given a ρ-approximation algorithm for the Bin Packing problem.

Proof. Clearly, any feasible packing for the instance (E, q) of the Bin Packing problem is a feasible
solution for BPCP on the input graph G. So, Algorithm 6 returns a feasible packing for the instance
(E, q) using be ≤ ρ · b∗e bins. By Lemma 8 it holds that b∗e ≤ (∆ + 1) · b∗ and the theorem follows.

6.2 Unweighted case

In what follows, we present an approximation algorithm for U-BPCP on general graphs by using a
ρ-approximation algorithm A for the Densest q-Subgraph (DqS) problem. In the DqS problem, we
are given a graph G = (V,E) and we ask for a subset V ′ ⊆ V of at most q vertices, i.e., |V ′| ≤ q,
such that the number of edges in the subgraph D = (V ′, E′) induced by V ′ is maximized.

The idea is to use repeatedly the algorithm A and pack at each step the vertices of a DqS in the
remainder graph (obtained by removing the already covered edges). The procedure goes on until
all the edges of the input graph are covered, as in Algorithm 7 below.

Algorithm 7 (U-BPCP, general graph G = (V,E))

1: k = 1; G1 = G
2: while E 6= ∅ do
3: Run a ρ-approximation algorithm A for the DqS problem on the graph Gk and let Dk =

(Vk, Ek), |Vk| ≤ q, be the subgraph returned by A.
4: Pack the vertices of Vk into bin Bk.
5: Gk+1 = (V,E \ Ek). // Vertices of degree 0 are removed
6: k = k + 1
7: Return b = k − 1

Theorem 14 Algorithm 7 achieves an approximation ratio of ρ ·O(log n) for U-BPCP on general
graphs, given a ρ-approximation algorithm for Densest q-Subgraph problem.

20



Proof. The algorithm packs the vertices of the input graph G into b bins, numbered B1, B2, . . . , Bb,
according to the order that they are used. In fact, in each bin Bk, 1 ≤ k ≤ b, are packed the vertices
Vk of the DqS of the graph Gk, i.e., the remainder of G just before using bin Bk. Moreover, the
edges of the subgraph Dk = (Vk, Ek), induced by Vk, have their both endpoints in bin Bk, and,
therefore, the algorithm produces a feasible solution. By convention, for each edge e = (i, j) ∈ Ek,
which has its both endpoints in bin Bk, we write e ∈ Bk.

We denote by mk = |Ek| the number of edges of the subgraph Dk derived by the Algorithm A
and by m∗k be the number of edges in the DqS of Gk. As A is a ρ-approximation algorithm for DqS
problem it follows that mk ≥ m∗k/ρ (where ρ > 1).

We associate to every edge e ∈ Bk, 1 ≤ k ≤ b, the value ve = 1
mk

. Note that
∑

e∈Bk
ve = 1

and
∑

e∈E ve = b, where b the number of bins used by the algorithm. We also number the edges
as e1, e2, . . . , em, where m = |E|, according to the order they are covered, breaking ties arbitrarily.
That is, for every pair of edges such that ei ∈ Bk, ej ∈ Bk′ and 1 ≤ k < k′ ≤ b, it holds that i < j.

Consider now an edge e` ∈ Bk, 1 ≤ ` ≤ m, 1 ≤ k ≤ b, and observe that, just before e` is
covered, at least m− `+ 1 edges remain in Gk. In an optimal solution of BPCP on the input graph
G, all the edges of G are covered by b∗ bins. Obviously, all the edges of Gk can be also covered
by b∗ bins. Hence, among these b∗ bins covering the edges of Gk there must be some bin covering
at least (m − ` + 1)/b∗ of them. In this bin are packed at most q vertices of Gk, which induce
a subgraph of Gk. On the other hand, the DqS of Gk contains the maximum possible number of
edges of any subgraph of Gk of at most q vertices and, therefore, m∗k ≥ (m− `+ 1)/b∗.

Thus we have ve` =
1

mk
≤ ρ

m∗k
≤ ρ · b∗

(m− `+ 1)
, and

b =
m∑
`=1

ve` ≤ ρ · b
∗ ·

m∑
`=1

1

m− `+ 1
≤ ρ · b∗ ·

m∑
`=1

1

`
≤ ρ ·O(log n) · b∗

The best known approximation algorithm for the DqS problem is proposed in [4] and its ratio
is O(n1/4). Therefore, Theorem 14 implies the next corollary.

Corollary 2 There exists a O(n1/4 · log n)-approximation algorithm for U-BPCP on general un-
weighted graphs.

7 Conclusions

In this paper we initiate the study of the complexity and approximability of BPCP with respect
to the class of the input graph. Our findings indicate that BPCP admits efficient constant factor
approximation algorithms when the input graph is sparse, i.e., it has low maximum average degree
or low maximum degree, like paths, trees or planar graphs. We also propose improved constant
factor approximation algorithms for BPCP and U-BPCP on complete graphs, by exploring the
relation of the problem with the theory of combinatorial designs.

The major open question is the approximability of the problem on dense and general graphs.
A potential direction towards answering this question is the intuitive relation of U-BPCP with
the Densest q-Subgraph problem. It is known that the latter problem admits a PTAS for dense
graphs and it is interesting to study if this is also the case for U-BPCP on dense graphs. It is also
conjectured that the Densest q-Subgraph problem does not admit a constant factor approximation
algorithm for general graphs. As a first step, we show that a ρ-appoximation algorithm for the
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Densest q-Subgraph problem can be converted into a ρ · O(log n)-approximation algorithm for U-
BPCP. It remains to verify whether one can accomplish the opposite direction as well.
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