
KLEE: Effective Testing of Systems Programs

Cristian Cadar

Joint work with Daniel Dunbar and Dawson Engler

April 16th, 2009

• Code complexity

– Tricky control flow

– Complex dependencies

Writing Systems Code Is Hard

2

– Complex dependencies

– Abusive use of pointer operations

• Environmental dependencies

– Code has to anticipate all possible interactions

– Including malicious ones

• Automatically generates high coverage test suites

KLEE

• Based on symbolic execution and constraint

solving techniques

[OSDI 2008, Best Paper Award]

• Automatically generates high coverage test suites

– Over 90% on average on ~160 user-level apps

• Finds deep bugs in complex systems programs

– Including higher-level correctness ones

int bad_abs(int x)
{

if (x < 0)
return –x;

x < 0

x < 0 x ≥≥≥≥ 0

x = ∗

Toy Example

TRUE FALSE

return –x;
if (x == 1234)

return –x;
return x;

}

x = 1234

return x

x ≠≠≠≠ 1234

return -x

return -x

x = 1234

x = -2

x = 3x = 1234

test1.out

test2.out test3.out

TRUE FALSE

KLEE Architecture

LLVM
bytecode

x = -2

C code
L
L
V
M

K L E ESYMBOLIC
ENVIRONMENT

Constraint Solver (STP)

x = 3

x = -2

x = 1234

x = 3

x ≥ 0
x ≠≠≠≠ 1234

Outline

• Motivation

• Example and Basic Architecture• Example and Basic Architecture

• Scalability Challenges

• Experimental Evaluation

Three Big Challenges

• Motivation

• Example and Basic Architecture

• Scalability Challenges• Scalability Challenges

– Exponential number of paths

– Expensive constraint solving

– Interaction with environment

• Experimental Evaluation

Exponential Search Space

Naïve exploration can easily get “stuck”

Use search heuristics:

• Coverage-optimized search• Coverage-optimized search

– Select path closest to an uncovered instruction

– Favor paths that recently hit new code

• Random path search

– See [KLEE – OSDI’08]

Three Big Challenges

• Motivation

• Example and Basic Architecture

• Scalability Challenges• Scalability Challenges

– Exponential number of paths

– Expensive constraint solving

– Interaction with environment

• Experimental Evaluation

Constraint Solving

• Dominates runtime

– Inherently expensive (NP-complete)

– Invoked at every branch– Invoked at every branch

• Two simple and effective optimizations

– Eliminating irrelevant constraints

– Caching solutions

• Dramatic speedup on our benchmarks

Eliminating Irrelevant Constraints

• In practice, each branch usually depends on a small number
of variables

x + y > 10

z & -z = z

x < 10 ?

�

�

if (x < 10) {

�

}

Caching Solutions

2 ∗ y < 100

x > 3

x + y > 10

x = 5

y = 15

• Static set of branches: lots of similar constraint sets

x + y > 10
y = 15

2 ∗ y < 100

x + y > 10

2 ∗ y < 100

x > 3

x + y > 10

x < 10

Eliminating constraints
cannot invalidate solution

Adding constraints often
does not invalidate solution

x = 5

y = 15

x = 5

y = 15

200

250

300
 Base

 Irrelevant Constraint Elimination

 Caching

 Irrelevant Constraint Elimination + Caching

Dramatic Speedup

Aggregated data over 73 applications

0

50

100

150

200

0 0.2 0.4 0.6 0.8 1

T
im

e
 (
s)

Executed instructions (normalized)

Three Big Challenges

• Motivation

• Example and Basic Architecture

• Scalability Challenges• Scalability Challenges

– Exponential number of paths

– Expensive constraint solving

– Interaction with environment

• Experimental Evaluation

Environment: Calling Out Into OS

int fd = open(“t.txt”, O_RDONLY);

• If all arguments are concrete, forward to OS

int fd = open(sym_str, O_RDONLY);

• Otherwise, provide models that can handle

symbolic files

– Goal is to explore all possible legal interactions with

the environment

int fd = open(sym_str, O_RDONLY);

Environmental Modeling

// actual implementation: ~50 LOC

ssize_t read(int fd, void *buf, size_t count) {

exe_file_t *f = get_file(fd);

�

memcpy(buf, f->contents + f->off, count)

f->off += count;

�

}

• Plain C code run by KLEE

– Users can extend/replace environment w/o any knowledge of

KLEE internals

• Currently: effective support for symbolic command line

arguments, files, links, pipes, ttys, environment vars

Does KLEE work?

• Motivation

• Example and Basic Architecture

• Scalability Challenges• Scalability Challenges

• Evaluation

– Coverage results

– Bug finding

– Crosschecking

GNU Coreutils Suite

• Core user-level apps installed on many UNIX systems

• 89 stand-alone (i.e. excluding wrappers) apps (v6.10)

– File system management: ls, mkdir, chmod, etc.

– Management of system properties: hostname, printenv, etc.– Management of system properties: hostname, printenv, etc.

– Text file processing : sort, wc, od, etc.

– …

Variety of functions, different authors,

intensive interaction with environment

Heavily tested, mature code

Coreutils ELOC (incl. called lib)

53

30

40

50

60

N
um

b
e
r

of
 a

pp
li
ca

ti
on

s

5

16

6
4

1
3 2

0

10

20

30

200
0-3

000

30
00-4

00
0

4000
-5

000

500
0-6

000

60
00-7

00
0

7000
-8

000

800
0-9

000
90

00-1
00

00

Executable Lines of Code (ELOC)

N
um

b
e
r

of
 a

pp
li
ca

ti
on

s

Methodology

• Fully automatic runs

• Run KLEE one hour per utility, generate test cases

• Run test cases on uninstrumented version of utility• Run test cases on uninstrumented version of utility

• Measure line coverage using gcov
– Coverage measurements not inflated by potential bugs

in our tool

80%

100%

High Line Coverage
(Coreutils, non-lib, 1h/utility = 89 h)

Overall: 84%, Average 91%, Median 95%
16 at 100%

C
ov

e
ra

ge
 (
E
L
O

C
 %

)

0%

20%

40%

60%

1 12 23 34 45 56 67 78 89

Apps sorted by KLEE coverage

C
ov

e
ra

ge
 (
E
L
O

C
 %

60%

80%

100%

Beats 15 Years of Manual Testing
M

an
ua

l
co

ve
ra

ge

Avg/utility
KLEE 91%

Manual 68%

9

-20%

0%

20%

40%

60%

K
L
E
E
 c

ov
e
ra

ge
 –

M
an

ua
l
co

ve
ra

ge

Apps sorted by KLEE coverage – Manual coverage

Manual tests also check correctness

80%

100%

Busybox Suite for Embedded Devices

Overall: 91%, Average 94%, Median 98%
31 at 100%

C
ov

e
ra

ge
 (
E
L
O

C
 %

)

72

0%

20%

40%

60%

1 13 25 37 49 61

Apps sorted by KLEE coverage

C
ov

e
ra

ge
 (
E
L
O

C
 %

60%

80%

100%

Busybox – KLEE vs. Manual

Avg/utility

M
an

ua
l
co

ve
ra

ge KLEE 94%

Manual 44%

72

-20%

0%

20%

40%

60%

1 13 25 37 49 61

Apps sorted by KLEE coverage – Manual coverage

K
L
E
E
 c

ov
e
ra

ge
 –

M
an

ua
l
co

ve
ra

ge

Does KLEE work?

• Motivation

• Example and Basic Architecture

• Scalability Challenges• Scalability Challenges

• Evaluation

– Coverage results

– Bug finding

– Crosschecking

GNU Coreutils Bugs

• Ten crash bugs
– More crash bugs than approx last three years combined

– KLEE generates actual command lines exposing crashes

md5sum -c t1.txt

mkdir -Z a b

mkfifo -Z a b

pr -e t2.txt

tac -r t3.txt t3.txt

paste -d\\ abcdefghijklmnopqrstuvwxyz

Ten command lines of death

mknod -Z a b p

seq -f %0 1

ptx -F\\ abcdefghijklmnopqrstuvwxyz

ptx x t4.txt

t1.txt: \t \tMD5(

t2.txt: \b\b\b\b\b\b\b\t

t3.txt: \n

t4.txt: A

Does KLEE work?

• Motivation

• Example and Basic Architecture

• Scalability Challenges• Scalability Challenges

• Evaluation

– Coverage results

– Bug finding

– Crosschecking

Finding Correctness Bugs

• KLEE can prove asserts on a per path basis

– Constraints have no approximations

– An assert is just a branch, and KLEE proves – An assert is just a branch, and KLEE proves

feasibility/infeasibility of each branch it reaches

– If KLEE determines infeasibility of false side of

assert, the assert was proven on the current path

Crosschecking

Assume f(x) and f’(x) implement the same interface

1. Make input x symbolic

2. Run KLEE on assert(f(x) == f’(x))

3. For each explored path:3. For each explored path:

a) KLEE terminates w/o error: paths are equivalent

b) KLEE terminates w/ error: mismatch found

Coreutils vs. Busybox:

1. UNIX utilities should conform to IEEE Std.1003.1

2. Crosschecked pairs of Coreutils and Busybox apps

3. Verified paths, found mismatches

Mismatches Found

Input Busybox Coreutils

tee "" <t1.txt [infinite loop] [terminates]

tee - [copies once to stdout] [copies twice]

comm t1.txt t2.txt [doesn’t show diff] [shows diff]

cksum / "4294967295 0 /" "/: Is a directory"cksum / "4294967295 0 /" "/: Is a directory"

split / "/: Is a directory"

tr [duplicates input] "missing operand"

[0 ‘‘<’’ 1] "binary op. expected"

tail –2l [rejects] [accepts]

unexpand –f [accepts] [rejects]

split – [rejects] [accepts]

t1.txt: a t2.txt: b (no newlines!)

Related Work

Very active area of research. E.g.:

• EGT / EXE / KLEE [Stanford]

• DART [Bell Labs]

• CUTE [UIUC]

KLEE

– Hundred distinct benchmarks• CUTE [UIUC]

• SAGE, Pex [MSR Redmond]

• Vigilante [MSR Cambridge]

• BitScope [Berkeley/CMU]

• CatchConv [Berkeley]

• JPF [NASA Ames]

– Hundred distinct benchmarks

– Extensive coverage numbers

– Symbolic crosschecking

– Environment support

• KLEE can effectively:

– Generate high coverage test suites

• Over 90% on average on ~160 user-level applications

KLEE

Effective Testing of Systems Programs

• Over 90% on average on ~160 user-level applications

– Find deep bugs in complex software

• Including higher-level correctness bugs, via

crosschecking

