KLEE: Effective Testing of Systems Programs
Cristian Cadar

Joint work with Daniel Dunbar and Dawson Engler

STANFORD

UNIVERSITY

(STANEORD April 161h, 2009



Writing Systems Code Is Hard

* Code complexity
— Tricky control flow
— Complex dependencies
— Abusive use of pointer operations

* Environmental dependencies
— Code has to anticipate all possible interactions
— Including malicious ones



KLEE

[OSDI 2008, Best Paper Award]

* Based on symbolic execution and constraint
solving techniques

* Automatically generates high coverage test suites

— Over 90% on average on ~160 user-level apps

* Finds deep bugs in complex systems programs
— Including higher-level correctness ones



int bad_abs(int x)
{
if (x<Q0)
return -x;
if (x == 1234)
return -x;
return x;

Toy Example

x(<0

return -x

‘ X:"—Z \

testl.out

x =|1234

return -x

x=1234 |

test2.out

x #1234

return X

‘X;3\

test3.out




KLEE Architecture

X=-2
X = 1234
X:3/

L
LLVM
D < COdeT => \|7 Ezﬂ byTecodJ
M J
s
SYMBOLIC
ENVIRONMENT 4 KLEE |
[ ] PN
v _—
x>0
x #1234

Constraint Solver (STP)




Outline

=) « Scalability Challenges

* Experimental Evaluation



Three Big Challenges

m) . Scalability Challenges

— Exponential number of paths
— Expensive constraint solving
— Interaction with environment

* Experimental Evaluation



Exponential Search Space

Naive exploration can easily get “stuck”
Use search heuristics:

* Coverage-optimized search
— Select path closest to an uncovered instruction
— Favor paths that recently hit new code
 Random path search
— See [KLEE — OSDI’08]



Three Big Challenges

* Scalability Challenges

m) — Expensive constraint solving
— Interaction with environment

* Experimental Evaluation



Constraint Solving

 Dominates runtime

— Inherently expensive (NP-complete)

— Invoked at every branch

* Two simple and effective optimizations
— Eliminating irrelevant constraints

— Caching solutions

» Dramatic speedup on our benchmarks



Eliminating Irrelevant Constraints

e In practice, each branch usually depends on a small number
of variables

x+y>10
7 & -72=7%
if (x <10){ > x<107?

h



Caching Solutions

e Static set of branches: lots of similar constraint sets

2*y <100
X >3
x+y>10

2*y <100 Eliminating constraints
X +y>10 cannot invalidate solution

2 %y <100

X >3 Adding constraints often
x+y>10 does not invalidate solution

x <10

2




Dramatic Speedup

200 . Aggregated data over 73 applications

— Base

- = - Irrelevant Constraint Elimination

250 © - - Caching

— lIrrelevant Constraint Elimination + Caching

0 0.2 0.4 0.6 0.8 1
Executed instructions (normalized)



Three Big Challenges

* Scalability Challenges

m) — [nteraction with environment
* Experimental Evaluation



Environment: Calling Out Into OS

intfd = open(“t.txt’, O_RDONLY);

 [f all arguments are concrete, forward to OS

int fd = open(sym_str, O RDONLY);

* Otherwise, provide models that can handle
symbolic files

— Goal 1s to explore all possible legal interactions with
the environment



Environmental Modeling

/[ actual implementation: ~50 LOC
ssize tread(int fd, void *buf, size t count) {
exe_file t *f = get_file(fd);

» memcpy(buf, f->contents + f->off, count)
f->off += count;

* Plain C code run by KLEE

— Users can extend/replace environment w/o any knowledge of
KLEE internals

e Currently: effective support for symbolic command line
arguments, files, links, pipes, ttys, environment vars



Does KLEE work?

=) . FEvaluation
— Coverage results
— Bug finding
— Crosschecking



GNU Coreutils Suite

* Core user-level apps installed on many UNIX systems

» 89 stand-alone (1.e. excluding wrappers) apps (v6.10)
— File system management: Is, mkdir, chmod, etc.
— Management of system properties: hostname, printenv, etc.

— Text file processing : sort, wc, od, etc.

Variety of functions, different authors,
intensive interaction with environment

Heavily tested, mature code




Coreutils ELOC (incl. called lib)

Number of applications

Executable Lines of Code (ELOC)



Methodology

Fully automatic runs

Run KLEE one hour per utility, generate test cases
Run test cases on uninstrumented version of utility
Measure line coverage using gcov

— Coverage measurements not inflated by potential bugs
in our tool



High Line Coverage

(Coreutils, non-lib, 1h/utility = 89 h)

Overall: 84%, Average 91%, Median 95%

100% -

16 at 100%

80% -

40%

Coverage (ELOC %)
(@)
o
2

20%

0%
1 12 23 34 45 56 67 78 89
Apps sorted by KLEE coverage



KLEE coverage - Manual coverage

Beats 15 Years of Manual Testing

100% -

Avg/utility
KLEE 91%
Manual | 68%

80% -

60% -

—> Manual tests also check correctness

40% -

20% -

0%
Apps sorted by KLEE coverage - Manual coverage
-20% -



Busybox Suite for Embedded Devices

Overall: 91%, Average 947%, Median 98% ,; . 1002

100% -

80% -

o
2
o~

40%

Coverage (ELOC %)

20%

0%

1 13 25 37 49 61 72
Apps sorted by KLEE coverage



Busybox — KLEE vs. Manual

100% -

Avg/utility
80% - KLEE 94%
Manual | 44%

60% -

40% -

20% -

KLEE coverage - Manual coverage

0%
1 13 25 37 49 61 72
20% - Apps sorted by KLEE coverage - Manual coverage



Does KLEE work?

 Evaluation

m) - Bug finding
— Crosschecking



GNU Coreutils Bugs

» Ten crash bugs
— More crash bugs than approx last three years combined
— KLEE generates actual command lines exposing crashes



Ten command lines of death

mdS5sum -c tl.txt
mkdir -Z a b
mkfifo -Z a b
mknod -Z a b p

seq -f %0 1

pr -e t2.txt

tac -r t3.txt t3.txt

paste -d\\ abcdefghijklmnopgrstuvwxyz
ptx -F\\ abcdefghijklmnopgrstuvwxyz
ptx x t4.txt

tl.txt: \t \tMD5 (
2.txt: \b\b\b\b\b\b\b\t
13.txt: \n

td.ext: A




Does KLEE work?

 Evaluation

m) — Crosschecking



Finding Correctness Bugs

 KLEE can prove asserts on a per path basis
— Constraints have no approximations

— An assert 1s just a branch, and KLEE proves
feasibility/infeasibility of each branch it reaches

— If KLEE determines infeasibility of false side of
assert, the assert was proven on the current path




Crosschecking

Assume {(x) and ’(x) implement the same interface
1. Make mput x symbolic
2. Run KLEE on assert(f(x) == f'(x))
3. For each explored path:
a) KLEE terminates w/o error: paths are equivalent
b) KLEE terminates w/ error: mismatch found

Coreutils vs. Busybox:
1. UNIX utilities should conform to /EEE Std. 1003.1
2. Crosschecked pairs of Coreutils and Busybox apps

3. Verified paths, found mismatches



Mismatches Found

Input Busybox Coreutils
tee "" <t1.txt [infinite loop] [terminates]
tee - [copies once to stdout] | [copies twice]

comm t1.txt t2.txt | [doesn't show diff] [shows diff]

cksum / "4294967295 0 /" "/. Is a directory"
split / "/. Is a directory"

tr [duplicates input] "missing operand"
[0""1] "binary op. expected"
tail -2| [rejects] [accepts]

unexpand -f [accepts] [rejects]

split - [rejects] [accepts]

tl.txt:a t2.txt: b

(no newlines!)




Very active area of research. E.g.:

Related Work

EGT / EXE / KLEE [Stanford]
DART [Bell Labs]

CUTE [UIUC]

SAGE, Pex [MSR Redmond]
Vigilante [MSR Cambridge]
BitScope [Berkeley/CMU]
CatchConv [Berkeley]

JPF [NASA Ames]|

KLEE

— Hundred distinct benchmarks
— Extensive coverage numbers
— Symbolic crosschecking

— Environment support




KLEE
Effective Testing of Systems Programs

 KLEE can effectively:

— Generate high coverage test suites

* Over 90% on average on ~160 user-level applications

— Find deep bugs in complex software

* Including higher-level correctness bugs, via
crosschecking



