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Motivation 

  Buffer overflows – the most common 
cause of security vulnerabilities 
• Majority of CERT reports are related to buffer 

overflows 
• Costs estimated in the billions of dollars 



Memory Errors 

  Buffer overflow attacks due to memory 
errors: 
• Usually on the call stack 
• But also on the heap 



Safe C compilers 

  Instrument the program with dynamic 
checks to detect illegal memory accesses 

  When a buffer overflow is detected, 
program terminates with an error 
message 



Continued Execution 

  Detection critical, sometimes not the 
whole story 
• Terminating the program can be disruptive 
• Doesn’t address denial of service attacks 

  Focus on continued execution 
  Through memory errors 



Our Technique 

  Detect out of bounds writes 
  Store values in a hash table 
  Return values for corresponding reads 
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BMB Compiler 
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Net Effect of Our Technique 
Block1 Block2 Block3 Block4 

Block1 … … 
Block2 … … 
Block3 … … 
. . . 

dense sparse sparse 



Possible Problems 

 New DOS attack 
• Craft an input which will cause a large 

number of writes 
• Solution: treat the hash table as a fixed-

size cache using the LRU replacement 
policy 



Possible Problems (cont.) 

  Cache Misses 
• Bounded number of OOB writes? 
• Haven’t triggered cache misses in our 

benchmarks 
• But may be a serious problem 

  Uninitialized reads 
• Found in Midnight Commander 
• Automatic zero-initialization 



Evaluation 

  Tested several open source programs 
• Servers: Apache, Sendmail 
• Mailers: Pine, Mutt 
• Utilities: Midnight Commander 

  On publicized buffer overflow security 
vulnerabilities  
• SecuriTeam, Security Focus 



Vulnerabilities – Pine 4.44 



Vulnerabilities – Apache 2.0.47 

  Apache can redirect some URLs, which are 
specified by regular expressions 

  Example: redirect URLs of the form http://
myhost.mydomain/D_(a*)_(b*)_(c*)_(d*)                  to 
URLs of the form http://myhost.mydomain/
documents?input=$1_$2_$3_$4




Vulnerabilities – Apache 2.0.47 

D_(a*)_(b*)_(c*)_(d*)  
documents?input=$1_$2_$3_$4 

Static buffer contains space for only 10 parenthesized captures! 



Evaluation (cont.) 

  Three versions per benchmark 
• GCC (Standard Compilation) 
• CRED (Bounds Check Compilation) 
• BMB (Boundless Memory Blocks Compilation) 

  Tested each versions on the acquired 
vulnerabilities  
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Decoupled Errors 

  Developers may incorrectly calculate the 
size of a buffer 
• Hard to reason about the worst case, which is 

usually exploited by security attacks 
  But the rest of code is correct 

•  Although the programmer failed to allocate 
enough space, the program usually correct when 
provided with (conceptually) unbounded memory 
blocks. 



Performance 

Pine Mutt Apache Sendmail MC 



Related Work – Continued 
Execution 

  Failure Oblivious Computing [Rinard et al, 
OSDI 2004] 

  Execution Transactions [Sidiroglou et al, 
Columbia Univ. TR 2004] 

  BMB compiler generates anticipated and 
correct executions, but is less general 



Related Work – Safe C Compilers 

  Jones and Kelly [AADEBUG 1997], 
enhanced by Ruwase and Lam [NDSS 2004] 

  Austin et. al [PLDI 1994] 
  Yong and Horwitz [FSE 2003] 
  Necula et al [POPL 2002] 
  Jim, Morrisett et al [USENIX 2002] 



Buffer Overflow Detection Tools 

  StackGuard [Cowan et al, USENIX 1998] 
  StackShield [http://www.angelfire.com/sk/stackshield/] 

  Purify [Hastings and Joyce, USENIX 1992] 
  Program shepherding [Kiriansky, Bruening, 

Amarasinghe, USENIX 2002] 
  Rebooting, checkpointing, manual error 

detection and repair etc. 



Extensible Arrays 

  Many languages provide some form of 
extensible arrays – e.g. Java 

  BMB 
• Preservation of the address space from the 

original implementation 
• Efficiency – allocates only elements which are 

actually accessed 
• Avoids denial of service attacks 



Conclusion 

  Boundless Memory Blocks 
•  Eliminates security vulnerabilities and data 

structure corruption 
•  Enhances availability 

  Implementation 
•  Store out of bounds writes in a hash table 
•  Retrieve value from the hash table for out of 

bounds reads 
  Net Effect 

•  Give each data block its own address space 
•  Address spaces dense in the middle, sparse 

everywhere else 



Questions 


