
Boundless Memory Blocks

Cristian Cadar
Massachusetts Institute of

Technology
(now Stanford University)

M. Rinard, D. Dumitran
D. Roy, T. Leu

Massachusetts Institute of
Technology

Annual Computer Security Applications Conference (ACSAC 2004)

Motivation

  Buffer overflows – the most common
cause of security vulnerabilities
• Majority of CERT reports are related to buffer

overflows
• Costs estimated in the billions of dollars

Memory Errors

  Buffer overflow attacks due to memory
errors:
• Usually on the call stack
• But also on the heap

Safe C compilers

  Instrument the program with dynamic
checks to detect illegal memory accesses

  When a buffer overflow is detected,
program terminates with an error
message

Continued Execution

  Detection critical, sometimes not the
whole story
• Terminating the program can be disruptive
• Doesn’t address denial of service attacks

  Focus on continued execution
  Through memory errors

Our Technique

  Detect out of bounds writes
  Store values in a hash table
  Return values for corresponding reads

CRED
Address
Space

p = malloc(10);

Base Extent

10

Object Table

Block1 Block2 Block3 Block4

CRED
Address
Space

p = malloc(10);
q = p+15; Base Extent

10

OOB object

Address Base

Object Table

Block1 Block2 Block3 Block4

CRED
Address
Space

p = malloc(10);
q = p+15;
r = q – 10; Base Extent

10

OOB object

Address Base

Object Table

Block1 Block2 Block3 Block4

CRED
Address
Space

p = malloc(10);
q = p+15;
r = q – 10;
*q = 100;

Base Extent

10

OOB object

Address Base

Object Table

Block1 Block2 Block3 Block4

BMB Compiler
Address
Space

p = malloc(10);
q = p+15;
r = q – 10;
*q = 100;

Base Extent

10

OOB object

Address Base

Object Table

Base Offset Value

15 100

Block1 Block2 Block3 Block4

BMB Compiler
Address
Space

p = malloc(10);
q = p+15;
r = q – 10;
*q = 100;
v += *q;

Base Extent

10

OOB object

Address Base

Object Table

Base Offset Value

15 100

Block1 Block2 Block3 Block4

Net Effect of Our Technique
Block1 Block2 Block3 Block4

Block1 … …
Block2 … …
Block3 … …
. . .

dense sparse sparse

Possible Problems

 New DOS attack
• Craft an input which will cause a large

number of writes
• Solution: treat the hash table as a fixed-

size cache using the LRU replacement
policy

Possible Problems (cont.)

  Cache Misses
• Bounded number of OOB writes?
• Haven’t triggered cache misses in our

benchmarks
• But may be a serious problem

  Uninitialized reads
• Found in Midnight Commander
• Automatic zero-initialization

Evaluation

  Tested several open source programs
• Servers: Apache, Sendmail
• Mailers: Pine, Mutt
• Utilities: Midnight Commander

  On publicized buffer overflow security
vulnerabilities
• SecuriTeam, Security Focus

Vulnerabilities – Pine 4.44

Vulnerabilities – Apache 2.0.47

  Apache can redirect some URLs, which are
specified by regular expressions

  Example: redirect URLs of the form http://
myhost.mydomain/D_(a*)_(b*)_(c*)_(d*) to
URLs of the form http://myhost.mydomain/
documents?input=$1_$2_$3_$4

Vulnerabilities – Apache 2.0.47

D_(a*)_(b*)_(c*)_(d*) 
documents?input=$1_$2_$3_$4

Static buffer contains space for only 10 parenthesized captures!

Evaluation (cont.)

  Three versions per benchmark
• GCC (Standard Compilation)
• CRED (Bounds Check Compilation)
• BMB (Boundless Memory Blocks Compilation)

  Tested each versions on the acquired
vulnerabilities

Results

Pine

MC

Mutt

Sendmail

Apache

Secure

Results

Pine

MC

Mutt

Sendmail

Apache

Secure Continues
Correctly

Results

Pine

MC

Mutt

Sendmail

Apache

Secure Initializes Continues
Correctly

Results

Pine

MC

Mutt

Sendmail

Apache

Secure Initializes Continues
Correctly

Correct
For Attack

Decoupled Errors

  Developers may incorrectly calculate the
size of a buffer
• Hard to reason about the worst case, which is

usually exploited by security attacks
  But the rest of code is correct

•  Although the programmer failed to allocate
enough space, the program usually correct when
provided with (conceptually) unbounded memory
blocks.

Performance

Pine Mutt Apache Sendmail MC

Related Work – Continued
Execution

  Failure Oblivious Computing [Rinard et al,
OSDI 2004]

  Execution Transactions [Sidiroglou et al,
Columbia Univ. TR 2004]

  BMB compiler generates anticipated and
correct executions, but is less general

Related Work – Safe C Compilers

  Jones and Kelly [AADEBUG 1997],
enhanced by Ruwase and Lam [NDSS 2004]

  Austin et. al [PLDI 1994]
  Yong and Horwitz [FSE 2003]
  Necula et al [POPL 2002]
  Jim, Morrisett et al [USENIX 2002]

Buffer Overflow Detection Tools

  StackGuard [Cowan et al, USENIX 1998]
  StackShield [http://www.angelfire.com/sk/stackshield/]

  Purify [Hastings and Joyce, USENIX 1992]
  Program shepherding [Kiriansky, Bruening,

Amarasinghe, USENIX 2002]
  Rebooting, checkpointing, manual error

detection and repair etc.

Extensible Arrays

  Many languages provide some form of
extensible arrays – e.g. Java

  BMB
• Preservation of the address space from the

original implementation
• Efficiency – allocates only elements which are

actually accessed
• Avoids denial of service attacks

Conclusion

  Boundless Memory Blocks
•  Eliminates security vulnerabilities and data

structure corruption
•  Enhances availability

  Implementation
•  Store out of bounds writes in a hash table
•  Retrieve value from the hash table for out of

bounds reads
  Net Effect

•  Give each data block its own address space
•  Address spaces dense in the middle, sparse

everywhere else

Questions

