
Targeted Program Transformations
for Symbolic Execution

Cristian Cadar
Software Reliability Group
Department of Computing

2nd September 2015

ESEC/FSE New Ideas Track

2

Background:
 Dynamic Symbolic Execution

Program analysis technique for automatically exploring
paths through a program

•  Determines the feasibility of each explored path using a

constraint solver

•  For each path, can generate a concrete input triggering

the path

Dynamic Symbolic Execution

3

Received significant interest in the last few years

Many dynamic symbolic execution/concolic tools
available as open-source:

§  CREST, KLEE, SYMBOLIC JPF, etc.

Started to be adopted/tried out in the industry:

§  SAGE (Microsoft)

§  SYMBOLIC JPF (NASA, Fujitsu, etc.)

§  KLEE (Fujitsu, Hitachi, Citrix, etc.)

§  APOLLO (IBM), etc. etc.

4

KLEE [http://klee.github.io]

Popular open-source engine:

•  1000+ clones per month

•  100+ forks on GitHub

•  Many popular systems built on top of it (KleeNet,

Cloud9, GKLEE, KLEE-MultiSolver, etc.)

•  Lots of research ideas explored using KLEE as a

platform

KLEE and LLVM

Weird phenomenon

Changing LLVM versions
would sometimes result in
HUGE performance
differences

5

LLVM

KLEE

Performance of symbolic execution
can vary dramatically across
semantically-equivalent programs

Unoptimized

int get_value(int k){
 return k * k * k;
}

// precond: k < 1000
int foo(unsigned k) {
 if (get_value(k) > 100000 ||
 get_value(k-1) > 100000)
 return 0;
 else return 1;
}

To precompute or not to precompute

 k3 > 100,000

0.2s vs. 50s
 250x slower!

Optimized

int values[1000] = {0, 1, 8,
27, 64, 125, 216, 343, 512,
729, 1000, 1331, 1728, ... };

int foo(unsigned k) {
 if (values[k] > 100000 ||
 values[k-1] > 100000)
 return 0;
 else return 1;
}

values[k] > 100,000 ˄
values[0] = 0 ˄
values[1] = 1
˄ ...

vs.

To –O2 or not to –O2

7

Compiler optimisations example

int bar(int a[10]) {
 int count=0, i;
 for (i=0; i<10; i++)
 if (a[i] > 0)
 count++;
 if (count == 10)
 printf ("Success\n");
 return count;
}

Explanation:

–O2 transforms the if into a
select(a[i]>0, count+1, count)
which KLEE sends directly to
the solver

Essentially –O2 has merged the
paths inside the loop

-O0: 23s
-O2: 0.04s (575x faster!)

KLEE 6118403fa4 with LLVM 2.9, STP 1668, on Intel Core2 Duo CPU E8400 at 3.00GHz, Ubuntu 14.04

How do I switch this?

8

Switch example

int expensive(int x) {
 int bits = 0, i;
 for (i=0; i<< i))
 bits++;
 return bits;
}

int foo(int x, int y) {
 switch (x) {
 case 1: return expensive(y+1);
 case 2: return expensive(y+2);
 case 3: return expensive(y+3);
 case 4: return expensive(y+4);
 default: return x/y;
 }
}

Binary search: 23s to bug
Linear search: TIMEOUT 1h

KLEE 6118403fa4 with LLVM 2.9, BFS, STP 1668, Intel Core2 Duo CPU E8400 at 3.00GHz, Ubuntu 14.04

9

Testability transformations
= key ingredients in symex

Testability Transformations for SymEx

10

Semantics-altering

•  Approximations (reals

instead of FP)

•  Shrinking large memory

objects

•  Assigning concrete values

to part of the input

Semantics-preserving

•  Developers (optimisations,

refactorings)

•  Compilers (optimisations,

code generation)

•  Choice of abstraction

(source, binary, intermediate
language, etc.)

 Testability transformations introduced in the
context of SBST by Harman et al. [TSE 2004]

Could enable symex to scale to larger
applications

Faster constraint solving

•  E.g., precomputed lookup example

More targeted path exploration

•  E.g., path merging examples

More application types

•  E.g., floating point code

11

More generally, can we:
•  write programs friendly to symex

analysis?
•  automatically transform programs

to be symex-friendly?

Essential for understanding ongoing
research ideas/experiments

Case study 1: paper reporting10x improvement in
performance on top of some prior KLEE experiments. Is this
due to:
 (a) the technique itself
 (b) different LLVM versions

 (c) different compiler options

12

Case study 2: study reporting a 10x performance difference
between KLEE and CREST. Is this due to:

 (a) the techniques in KLEE vs CREST
 (b) the intermediate language used by LLVM and CIL
 (c) different compiler optimisations being performed

Conclusion
Testability transformations should be a key ingredient in
symex. We should:

•  Account for them: essential for understanding ongoing

research ideas and experiments in this area

•  Understand them: improve performance by carefully

enabling and disabling existing transformations such as
compiler optimisations

•  Provide guidelines for writing symex-friendly code: similar in
spirit to existing interactive verifiers

•  Design targeted transformations: both semantics-
preserving and semantics-altering, and addressing both
constraint solving and path exploration challenges

13

Looking for postdoc applicants
to work in this area:

http://srg.doc.ic.ac.uk/vacancies/

14

