Targeted Program Transformations
for Symbolic Execution

Cristian Cadar
Software Reliability Group

Department of Computing

Imperial College

¥
'ala
“‘z:"gx_:-i':;; £

- 4.‘""-\£ ™% IS
1aon

ESEC/FSE New Ideas Track 2nd September 2015

Background:
Dynamic Symbolic Execution

Program analysis technique for automatically exploring
paths through a program

* Determines the feasibility of each explored path using a
constraint solver

* [For each path, can generate a concrete input triggering
the path

Dynamic Symbolic Execution

Many ©

avallab

Received significant interest in the last few years

ynamic symbolic execution/concolic tools
€ as OPEeNn-SoUrce:

= CREST, KLEE, SYMBOLIC JPF, etcC.
Started to be adopted/tried out in the industry:

= SAGE (Microsoft)

= SYMBOLIC JPF (NASA, Fuijitsu, etc.)
= KLEE (Fuijitsu, Hitachi, Citrix, etc.)

= APOLLO (IBM), etc. etc.

KLEE [http://klee.github.io]

Popular open-source engine:
1000+ clones per month

100+ forks on GitHub

Many popular systems built on top of it (KleeNet,
Cloud9, GKLEE, KLEE-MultiSolver, etc.)

Lots of research ideas explored using KLEE as a
platform

KLEE and LLVM

KLEE

!

LLVM

Weird phenomenon

Changing LLVM versions
would sometimes result In
HUGE performance
differences

Performance of symbolic execution
can vary dramatically across
semantically-equivalent programs

To precompute or not to precompute

Unoptimized

Optimized

int get value (int k) {
return k * k * k;

}

// precond: k < 1000
int foo(unsigned k) {
if (get value(k) > 100000 ||
get value(k-1) > 100000)
return O;
else return 1;

}

int values|[1000]
27, 64, 125, 216, 343, 512,
729, 1000, 1331,

= {0, 1, 8,

1728, ... };

int foo(unsigned k) {
if (values[k] > 100000 ||
values[k-1] > 100000)
return O;
else return 1;

b '
250x slower!

k3 > 100,000 VSs.

Vs 50s
values[k] > 100,000 A
values[0] = 0 A
values[l] =1
A\

To -0O2 or not to -02

Compiler optimisations example

int bar(int a[l10]) {
int count=0, 1i;
for (1i=0; i1<10; i++)
if (a[i] > 0)
count++;
if (count == 10)
printf ("Success\n");
return count;

-00: 23s
-02: 0.04s (575x faster!)

Explanation:

—02 transforms the if into a
select(ali]>0, count+1, count)
which KLEE sends directly to
the solver

Essentially —O2 has merged the
paths inside the loop

KLEE 6118403fa4 with LLVM 2.9, STP 1668, on Intel Core2 Duo CPU E8400 at 3.00GHz, Ubuntu 14.04

How do I switch this?

Switch example

int expensive (int x) {

int bits = 0, 1i;
for (i=0; i<k 1))
bits++;

return bits;

}

int foo(int x, int y) {

switch (x) {
case 1l: return expensive (y+1l) ;
case 2: return expensive (y+2) ;
case 3: return expensive (y+3);
case 4: return expensive (y+4) ;
default: return x/y;

}

Binary search: 23s to bug
Linear search: TIMEOUT 1h

KLEE 6118403fa4 with LLVM 2.9, BFS, STP 1668, Intel Core2 Duo CPU E8400 at 3.00GHz, Ubuntu 14.04 3

Testability transformations
= key ingredients in symex

Testability Transformations for SymEx

Semantics-preserving Semantics-altering

o Developers (optimisations, * Approximations (reals
refactorings) instead of FP)

o Compilers (optimisations, * Shrinking large memory
code generation) objects

» Choice of abstraction e ASSIgning concrete values
(source, binary, intermediate to part of the input
language, etc.)

Testability transformations introduced in the
context of SBST by Harman et al. [TSE 2004]

10

Could enable symex to scale to larger
applications

Faster constraint solving

E.g., precomputed lookup example

More targeted path exploration

E.g., path merging examples

More application types

E.g., floating point code

More generally, can we:

« write programs friendly to symex
analysis?

- automatically transform programs
to be symex-friendly?

11

Essential for understanding ongoing
research ideas/experiments

Case study 1. paper reporting10x improvement in
performance on top of some prior KLEE experiments. Is this
due to:

(a) the technique itself
(b) different LLVM versions

(c) different compiler options

Case study 2: study reporting a 10x performance difference
between KLEE and CREST. Is this due to:

(a) the techniques in KLEE vs CREST
(b) the intermediate language used by LLVM and CIL
(c) different compiler optimisations being performed

12

Conclusion

Testabllity transformations should be a key ingredient in
symex. We should:

» Account for them: essential for understanding ongoing
research ideas and experiments in this area

» Understand them: improve performance by carefully
enabling and disabling existing transformations such as
compller optimisations

* Provide guidelines for writing symex-friendly code: similar in
spirit to existing interactive verifiers

* Design targeted transformations: both semantics-
preserving and semantics-altering, and addressing both
constraint solving and path exploration challenges

13

Looking for postdoc applicants
to work in this area:
http://srg.doc.ic.ac.uk/vacancies/

Imperial College ((@)) SOFTWARE RELIABILITY
London GROUP

14

