Shadow Symbolic Execution for
Better Testing of Evolving Software

Cristian Cadar and Hristina Palikareva

Department of Computing
Imperial College London

Imperial College ICSE NIER 2014
London 4 June 2014, Hyderabad, India

Patches, patches, patches...

« Software evolves, with new versions and patches
being released frequently

« Patches add new features, fix existing bugs,
improve performance, usability, etc.

* But are usually poorly tested, and oftentimes
introduce new bugs and vulnerabilities

70% of the sys admins interviewed refuse to upgrade

Crameri, O., Knezevic, N., Kostic, D., Bianchini, R., Zwaenepoel, W.
Staged deployment in Mirage, an integrated software upgrade testing and distribution system. SOSP’07

2/13

Dynamic Symbolic Execution

* Dynamic symbolic execution 1s a technique for
automatically exploring paths through a program

« Determines the feasibility of each explored path using a
constraint solver

« For each path, can generate a concrete input triggering
the path

3/13

Dynamic Symbolic Execution

» Received significant interest in the
last few years

review articles

ég";;;ﬁ; S e Most work on whole program
ecution - 1 1

for Software |- testing/bug-finding

Testing: Three |- - .

DecadesLater) - | ¢ Recent focus on evolving software

— Person et al. FSE’08, PLDI’11
— Babic et al, ISSTA’11
— Bohme et al. ICSE’13, FSE’13

[CACM 2013] — Marinescu and Cadar, SPIN’12, FSE’13

— etc.

4/13

SymEXx for Testing Software Patches

--- klee/trunk/lib/Core/Executor.cpp 2009/08/01 22:31:44 77819
+++ klee/trunk/lib/Core/Executor.cpp 2009/08/02 23:09:31 77922
Q@ -2422,8 +2424,11 @@
info << "none\n";
} else {
const MemoryObject *mo = lower->first;

+ std::string alloc_info;

+ mo->getAllocInfo(alloc_info);

info << "object at " << mo->address
- << " of size " << mo->size << "\n";

+ << " of size " << mo->size << "\n"

+ << "\t\t" << alloc_info << "\n%“;

v

commit

SymEx

5/13

(A

Generate Inputs to Cover
Each Line 1n the Patch

Our symex tool KATCH
* Tested several hundreds patches
 Significantly increased patch coverage

* Found (crash) bugs 1n the process

* Unreachable by standard symbolic execution given similar
time budget

[Marinescu and Cadar, SPIN’12, ESEC/FSE’13]

Is Line Coverage Enough?

* If I change a statement, what tests should I add?

old New
if(xo/oZ::O) if(x°/03::O)

—)

D

O

?2 7

O

P

7/13

Is Line Coverage Enough?

* If I change a statement, what tests should I add?

Old

if (X % 2 == O)

New

if (X Yo 3 == O)

Full branch coverage in the new version ‘

Is Line Coverage Enough?

* If I change a statement, what tests should I add?

Old

if (X % 2 == O)

New

if (X Yo 3 == O)

However, totally useless for testing the patchl!

Is Line Coverage Enough?

* If I change a statement, what tests should I add?

Old New
if(x°/02==O) if(xo/o3=:O)

old - then old = else
new =2 else new = then

Shadow Symbolic Execution

The novelty of shadow symbolic execution is to run the two
versions together (in the same symbolic execution instance),
with the old version shadowing the new

* Provides the ability to reason about specific values and prune
large parts of the search space

Old New Shadow SymEx
y:x+2; y:x+2; y:x+2;
Z=X+3; Z=X+7, ‘ Z=(x+ 3, x+7);

if (y+z>10) | |if (y + z>10) if (2x +5, 2x+9) > 10)

11/13

Shadow Symbolic Execution

y=x+2;

z=(x+3,x+7),
if (2x +5, 2x + 9) > 10)

No need to explore the else
side of the branch, potentially
pruning a huge # of paths.

(2x+5 > 10) A (2x+9 < 10)

7,

No solutions

We only need to explore the
then path under the constraint
1<x<2

(2x+5 < 10) A (2x+9 > 10)

1 <x<2

* Assumes the current path constraints allow no arithmetic overflow, and no further uses of z

Shadow Symbolic Execution

Challenges Opportunities
(Potential impact)

* Prune large parts of the search
space, for which the two
versions behave identically

* Map statements from one
version to another (static
+dynamic analysis)

o Deal with changes in * Obtain simpler constraints

multiple parts of the * Save memory by sharing large
program (when can we still parts of the symbolic store
prune?) (symbolic constraints)

* Find bugs in patches quicker,
add relevant inputs to the
regression test suite

13/13

Shadow Symbolic Execution for
Better Testing of Evolving Software

Cristian Cadar and Hristina Palikareva

Department of Computing
Imperial College London

Imperial College ICSE NIER 2014
London 4 June 2014, Hyderabad, India

