
Shadow Symbolic Execution for
Better Testing of Evolving Software

Cristian Cadar and Hristina Palikareva
Department of Computing
Imperial College London

ICSE NIER 2014
4 June 2014, Hyderabad, India

Patches, patches, patches…

•  Software evolves, with new versions and patches
being released frequently

•  Patches add new features, fix existing bugs,
improve performance, usability, etc.

•  But are usually poorly tested, and oftentimes
introduce new bugs and vulnerabilities

Crameri, O., Knezevic, N., Kostic, D., Bianchini, R., Zwaenepoel, W.

Staged deployment in Mirage, an integrated software upgrade testing and distribution system. SOSP’07

70% of the sys admins interviewed refuse to upgrade

2/13

Dynamic Symbolic Execution

•  Dynamic symbolic execution is a technique for
automatically exploring paths through a program
•  Determines the feasibility of each explored path using a

constraint solver
•  For each path, can generate a concrete input triggering

the path

3/13

Dynamic Symbolic Execution

•  Received significant interest in the
last few years

•  Most work on whole program
testing/bug-finding

•  Recent focus on evolving software
–  Person et al. FSE’08, PLDI’11
–  Babic et al, ISSTA’11
–  Bohme et al. ICSE’13, FSE’13
–  Marinescu and Cadar, SPIN’12, FSE’13
–  etc.

4/13

[CACM 2013]

• 1 test4

SymEx for Testing Software Patches

commit

SymEx

test1 test4

--- klee/trunk/lib/Core/Executor.cpp 2009/08/01 22:31:44 77819

+++ klee/trunk/lib/Core/Executor.cpp 2009/08/02 23:09:31 77922

@@ -2422,8 +2424,11 @@

 info << "none\n";

 } else {

 const MemoryObject *mo = lower->first;

+ std::string alloc_info;

+ mo->getAllocInfo(alloc_info);

 info << "object at " << mo->address

- << " of size " << mo->size << "\n";

+ << " of size " << mo->size << "\n"

+ << "\t\t" << alloc_info << "\n“;

test3
test4

test4

bug

test4

test4

test4

test4 test4 test4 test4 test4

test4

test4 test4

test4 test4

bug bug

test4

5/13

Generate Inputs to Cover
Each Line in the Patch

Our symex tool KATCH
•  Tested several hundreds patches
•  Significantly increased patch coverage
•  Found (crash) bugs in the process
•  Unreachable by standard symbolic execution given similar

time budget

[Marinescu and Cadar, SPIN’12, ESEC/FSE’13]

Is Line Coverage Enough?

x = 6 x = 7 x = 8 x = 9

if (x % 2 == 0)
 . . .

if (x % 3 == 0)
 . . .

•  If I change a statement, what tests should I add?
Old New

7/13

Is Line Coverage Enough?

if (x % 2 == 0)
 . . .

if (x % 3 == 0)
 . . .

x = 6 x = 7 x = 8

Full branch coverage in the new version

x = 9

•  If I change a statement, what tests should I add?
Old New

8/13

Is Line Coverage Enough?

if (x % 2 == 0)
 . . .

if (x % 3 == 0)
 . . .

x = 6 x = 7 x = 8 x = 9

However, totally useless for testing the patch!

•  If I change a statement, what tests should I add?
Old New

9/13

Is Line Coverage Enough?

•  If I change a statement, what tests should I add?

if (x % 2 == 0)
 . . .

if (x % 3 == 0)
 . . .

x = 6 x = 7 x = 8 x = 9

old à then
new à else

old à else
new à then

Old New

Shadow Symbolic Execution

y = x + 2;
z = x + 3;
if (y + z > 10)
 . . .

The novelty of shadow symbolic execution is to run the two
versions together (in the same symbolic execution instance),

with the old version shadowing the new
•  Provides the ability to reason about specific values and prune

large parts of the search space

y = x + 2;
z = x + 7;
if (y + z > 10)
 . . .

Old New
y = x + 2;
z = (x + 3, x+7);
if (2x + 5, 2x+9) > 10)
 . . .

Shadow SymEx

11/13

Shadow Symbolic Execution

y = x + 2;
z = (x + 3, x + 7);
if (2x + 5, 2x + 9) > 10)
 . . .

(2x+5 > 10) ∧ (2x+9 ≤ 10)

old à then
new à else

old à else
new à then

(2x+5 ≤ 10) ∧ (2x+9 > 10)

x = 1

No solutions 1 ≤ x ≤ 2

No need to explore the else
side of the branch, potentially
pruning a huge # of paths.

We only need to explore the
then path under the constraint
1 ≤ x ≤ 2

*Assumes the current path constraints allow no arithmetic overflow, and no further uses of z

Shadow Symbolic Execution

Opportunities
(Potential impact)

•  Prune large parts of the search
space, for which the two
versions behave identically

•  Obtain simpler constraints
•  Save memory by sharing large

parts of the symbolic store
(symbolic constraints)

•  Find bugs in patches quicker,
add relevant inputs to the
regression test suite

 Challenges

•  Map statements from one
version to another (static
+dynamic analysis)

•  Deal with changes in
multiple parts of the
program (when can we still
prune?)

13/13

Shadow Symbolic Execution for
Better Testing of Evolving Software

Cristian Cadar and Hristina Palikareva
Department of Computing
Imperial College London

ICSE NIER 2014
4 June 2014, Hyderabad, India

