
How to Crash Your Code
Using Dynamic Symbolic Execution

Cristian Cadar
Department of Computing

Imperial College London

SPIN’12
23rd July 2012

Oxford, UK

Joint work with Dawson Engler, Daniel Dunbar,
Paul Marinescu, Peter Collingbourne, Paul Kelly, Junfeng Yang,

Peter Pawlowski, Can Sar, Paul Twohey, Vijay Ganesh,
David Dill, Peter Boonstoppel, JaeSeung Song, Peter Pietzuch

SPIN 2005

Dynamic Symbolic Execution

3

Automated technique for generating high-coverage

test suites, and finding bugs in software systems

• Received significant interest in the last few years

• Many dynamic symbolic execution/concolic tools

available as open-source:

– CREST, KLEE, SYMBOLIC JPF, etc.

• Started to be adopted by the industry:

– Microsoft (SAGE, PEX)

– IBM (APOLLO)

– Fujitsu (KLEE/KLOVER, SYMBOLIC JPF)

– etc.

x = 1234

x < 0

x < 0 x  0

return x

x  1234

return -x

return -x

x = 1234

x = 

x = -2

x = 3 x = 1234

test1.out

test2.out test3.out

Toy Example

TRUE

TRUE FALSE

FALSE int bad_abs(int x)
{
 if (x < 0)
 return –x;
 if (x == 1234)
 return –x;
 return x;
}

Implicit checks before each
dangerous operation

• Pointer dereferences

• Array indexing

• Division/modulo operations

• Assert statements

All-Value Checks

0 ≤ k< 4
TRUE FALSE

int foo(unsigned k) {
 int a[4] = {3, 1, 0, 4};
 k = k % 4;
 return a[a[k]];
}

. . .

{ k = * }

. . .

All-value checks!

• Errors are found if any buggy

values exist on that path!

TRUE FALSE

Infeasible

. . .

0 ≤ k < 4 ¬ 0 ≤ k < 4

5

Implicit checks before each
dangerous operation

• Pointer dereferences

• Array indexing

• Division/modulo operations

• Assert statements

All-Value Checks

0 ≤ a[k]< 4
TRUE FALSE

int foo(unsigned k) {
 int a[4] = {3, 1, 0, 4};
 k = k % 4;
 return a[a[k]];
}

. . .

Buffer overflow!

{ k = * }

. . .

All-value checks!

• Errors are found if any buggy

values exist on that path!

FALSE TRUE

¬ 0 ≤ a[k] < 4 0 ≤ a[k] < 4

. . . k = 3

• Each path is (essentially) explored separately

– As in regular testing

• Mixed concrete/symbolic execution

– All operations that do not depend on the symbolic

inputs are (essentially) executed as in the original code!

Dynamic Symbolic Execution

7

Advantages:

– Ability to interact with the outside environment

• System calls, uninstrumented libraries

– Only relevant code executed symbolically

• Without the need to extract it explicitly

…and disadvantages:

– Can only explore a finite number of paths!

• Important to prioritize most “interesting” ones

8

Dynamic Symbolic Execution

Three tools: EGT, EXE, KLEE

EGT/EXE/

K L E E

Constraint Solver (STP)

x = 3

x = -2

x = 1234

x = 3

 C code

x  0
x  1234

9

Scalability Challenges

Constraint solving
challenges

Path exploration
challenges

Constraint solving
challenges

11

Path Exploration Challenges

Naïve exploration can easily get “stuck”

• Employing search heuristics

• Dynamically eliminating redundant paths

• Statically merging paths

• Using existing regression test suites to

prioritize execution

• etc.
12

Search Heuristics

• Coverage-optimized search

– Select path closest to an uncovered instruction

– Favor paths that recently hit new code

• Best-first search

• Random path search

• etc.

13

Random Path Selection

• NOT random state selection

• Favors paths high in the tree

– less constraints

• Avoid starvation

– e.g. symbolic loop

0 .5

0 .2 5

0 .1 2 50 .0 6 2 50 .0 6 2 5

• Maintain a binary tree of

active paths

• Subtrees have equal prob. of

being selected, irresp. of size

14/

52

Which Search Heuristic?

Our latest system uses multiple heuristics in a
round-robin fashion, to protect against individual

heuristics getting stuck in a local maximum.

15

Eliminating Redundant Paths

• If two paths reach the same program point

with the same constraint sets, we can prune

one of them

• We can discard from the constraint sets of

each path those constraints involving

memory which is never read again

16

. . . flag = 1

flag = 0

arg2 > 100

flag = 1

arg2  100

process(data, 1) process(data, 1)

data, arg1, arg2 = *

flag = 0;

if (arg1 > 100)

 flag = 1;

if (arg2 > 100)

 flag = 1;

process(data, flag);

arg1 > 100 arg1  100

arg2 > 100

arg1 > 100

if arg1, arg2

not read by

process(data, 1)

Many Redundant Paths

0

500

1000

1500

2000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

 Base

 Redundant path elimination

PCI driver (MINIX) – 1h runs

N
on

-r
ed

un
d
an

t
ex

pl
or

ed
 s

ta
te

s

Generated tests 18

Lots of Redundant Paths

tcpdump

udhcpd sb16 lance

pcre expat bpf

19

0%

10%

20%

30%

40%

50%

60%

70%

0 2000 4000 6000 8000

 Base

 Redundant path elimination

Redundant Path Elimination

PCI driver (MINIX) – 1h runs

Generated tests

B
ra

nc
h
 c

ov
er

ag
e

(%
)

20

Statically Merging Paths

if (a > b)
 max = a;
else max = b;

a > b

a > b a ≤ b

max = a

TRUE FALSE

max = b

Default behaviour

if (a > b)
 max = a;
else max = b;

Phi-Node Folding (when no side effects)

max = select(a>b, a, b)

Statically Merging Paths

for (i=0; i < N; i++) {
 if (a[i] > b[i])
 max[i] = a[i];
 else max[i] = b[i];
}

morph computer vision algorithm: 2256  1

• Default: 2N paths

• Phi-node folding: 1 path

Path merging
Outsourcing problem
to constraint solver

≡

(which are often optimized

for conjunctions of constraints) 22

$ cd lighttpd-1.4.29

$ make check

...

./cachable.t ok

./core-404-handler.t .. ok

./core-condition.t ok

./core-keepalive.t ok

./core-request.t ok

./core-response.t ok

./core-var-include.t .. ok

./core.t ok

./lowercase.t ok

./mod-access.t ok

...

Using Existing Regression Suites

• Most applications come

with a manually-written

regression test suite

Regression Suites

24

• Execute each path

with a single set of
inputs

• Often exercise the

general case of a
program feature,

missing corner cases

CONS

• Designed to execute

interesting program
paths

• Often achieve good

coverage of different
program features

PROS

ZESTI:

Using Existing Regression Suites

25

1. Use the paths executed by the regression suite to
bootstrap the exploration process (to benefit from

the coverage of the manual test suite and find
additional errors on those paths)

2. Incrementally explore paths around the dangerous
operations on these paths, in increasing distance

from the dangerous operations (to test all possible
corner cases of the program features exercised by

the test suite)

Multipath Analysis

main(argv, argc)

exit(0)

✓

dangerous operations

divergence points

✗
Bounded symbolic execution

Bounded symbolic execution

Experimental Results
(or what it’s good for)

High-coverage Test Generation

Generic Bug-Finding

Attack Generation

Semantic Error Detection

via Crosschecking

Patch Testing

27

Experimental Results
(or what it’s good for)

High-coverage Test Generation

Generic Bug-Finding

Attack Generation

Semantic Error Detection

via Crosschecking

Patch Testing

37

Bug Finding with EGT, EXE, KLEE:
Focus on Systems and Security Critical Code

Applications

UNIX utilities

ext2, ext3, JFS UNIX file systems

Coreutils, Busybox, Minix (over 450 apps)

Network servers

pci, lance, sb16

Library code libdwarf, libelf, PCRE, uClibc, Pintos

Packet filters FreeBSD BPF, Linux BPF

MINIX device drivers

Bonjour, Avahi, udhcpd, lighttpd

Kernel code HiStar kernel

• Most bugs fixed promptly

OpenCV (filter, remap, resize, etc.) Computer vision code

OpenCL code Parboil, Bullet, OP2

38

Experimental Results
(or what it’s good for)

High-coverage Test Generation

Generic Bug-Finding

Attack Generation

Semantic Error Detection

via Crosschecking

Patch Testing

 40

 Some modern operating systems

allow untrusted users to mount

regular files as disk images!

Attack Generation: File Systems

41

Attack Generation – File Systems

• Mount code is executed by the kernel!

• Attackers may create malicious disk images to

attack a system

42

Attack Generation – File Systems

ext2 ext3 JFS

10111001

01011100

= *

EXE mount()

ext2 / ext3 / JFS

01010110

11010100

01010111

00110101

. . .

[Oakland 2006]

Disk of death (JFS, Linux 2.6.10)

Offset Hex Values

00000 0000 0000 0000 0000 0000 0000 0000 0000

.

08000 464A 3135 0000 0000 0000 0000 0000 0000

08010 1000 0000 0000 0000 0000 0000 0000 0000

08020 0000 0000 0100 0000 0000 0000 0000 0000

08030 E004 000F 0000 0000 0002 0000 0000 0000

08040 0000 0000 0000 . . .

• 64th sector of a 64K disk image

• Mount it and PANIC your kernel

Attack Generation: Network Servers

ext2 ext3 JFS

= *

EXE/KLEE

Network Server

. . .

 recv()

Network

10111001

01011100

10111001

01011100

10111001

01011100

[CCS 2006, ICCCN 2011]

Bonjour: Packet of Death

Offset Hex Values

0000 0000 0000 0000 0000 0000 0000 0000 0000

0010

0020 00FB 0000 14E9 002A 0000 0000 0000 0001

0030 0000 0000 0000 055F 6461 6170 045F 7463

0040 7005 6C6F 6361 6C00 000C 0001

003E 0000 4000 FF11 1BB2 7F00 0001 E000

• Causes Bonjour to abort, potential DoS attack

• Confirmed by Apple, security update released

Experimental Results
(or what it’s good for)

High-coverage Test Generation

Generic Bug-Finding

Attack Generation

Semantic Error Detection

via Crosschecking

Patch Testing

47

Semantic Bugs

• Bugs shown so far are all generic errors

• What about semantic bugs?

• Can find assert() violations

• Can verify assert statements on a per-path basis

48

Option 1: Use manually-written specifications!

Crosschecking (Equivalence Checking)

Option 2: Crosschecking!

• Successfully used in the past

• Great match for symbolic execution

Lots of available opportunities:

• Different implementations of the same functionality:
e.g., libraries, servers, compilers

• Optimized versions of a reference implementation

• Refactored code

• Reverse computations: e.g., compress and uncompress

49

Crosschecking

We can find any mismatches in their behavior by:

1. Using symbolic execution to explore multiple paths

2. Comparing the path constraints across implementations

Implementation A

Implementation B

Symbolic

execution

engine

Mismatches

Crosschecking: Advantages

• No need to write any specifications

• Constraint solving queries can be solved faster

• Can support constraint types not (efficiently)

handled by the underlying solver, e.g., floating-point

 Many crosschecking queries can be

syntactically proved to be equivalent

51

1

<<

2

*

Crosschecking: Advantages

Many crosschecking queries can be

syntactically proved to be equivalent

52

ZeroConf Protocol

• Enables devices to automatically configure

themselves and their services and be discovered

without manual intervention

• Two popular implementations: Avahi (open-

source), and Bonjour (open-sourced by Apple)

Symbolic

execution

engine

Mismatches

Bonjour

Avahi

[ICCCN 2011]

Server Interoperability
Bonjour vs. Avahi

Offset Hex Values

0000 0000 0000 0000 0000 0000 0000 0000 0000

0010

0020 00FB 0000 14E9 002A 0000 0000 0002 0001

0030 0000 0000 0000 055F 6461 6170 045F 7463

0040 7005 6C6F 6361 6C00 000C 0001

003E 0000 4000 FF11 1BB2 7F00 0001 E000

• mDNS specification (§18.11):

 “Multicast DNS messages received with non-zero

Response Codes MUST be silently ignored.”

• Avahi ignores this packet, Bonjour does NOT

56

SIMD Optimizations

Most processors offer support

for SIMD instructions

• Can operate on multiple data

concurrently

• Many algorithms can make

use of them (e.g., computer

vision algorithms)

[EuroSys 2011]

SIMD Optimizations

OpenCV: popular

computer vision

library from Intel and

Willow Garage

[Corner detection algorithm]

59

OpenCV Results

• Crosschecked 51 SIMD-optimized versions

against their reference scalar implementations

• Proved the bounded equivalence of 41

• Found mismatches in 10

• Most mismatches due to tricky FP-related issues:

• Precision

• Rounding

• Associativity

• Distributivity

• NaN values
60

Other Crosschecking Studies

62

UNIX utilities:

desktop vs. embedded

[OSDI 2008]

GPU Optimizations:

Scalar vs. GPGPU code

[HVC 2011]

uDHCPD

DHCP servers:

desktop vs. embedded

[WiP]

Experimental Results
(or what it’s good for)

High-coverage Test Generation

Generic Bug-Finding

Attack Generation

Semantic Error Detection

via Crosschecking

Patch Testing

 65

•1 test4

High-Coverage Symbolic Patch Testing

[Marinescu and Cadar, SPIN 2012]

commit

KATCH

test1 test4

--- klee/trunk/lib/Core/Executor.cpp 2009/08/01 22:31:44 77819

+++ klee/trunk/lib/Core/Executor.cpp 2009/08/02 23:09:31 77922

@@ -2422,8 +2424,11 @@

 info << "none\n";

 } else {

 const MemoryObject *mo = lower->first;

+ std::string alloc_info;

+ mo->getAllocInfo(alloc_info);

 info << "object at " << mo->address

- << " of size " << mo->size << "\n";

+ << " of size " << mo->size << "\n"

+ << "\t\t" << alloc_info << "\n“;

test3
test4

test4

bug

test4

test4

test4

test4
test4 test4 test4 test4

test4

test4 test4

test4 test4

bug
bug

test4

 Symbolic Patch Testing Input

Patch
+ if (errno == ECHILD) +

{ log_error_write(srv,

__FILE__, __LINE__, "s",

”...");

+ cgi_pid_del(srv, p, p-

>cgi_pid.ptr[ndx]);

Program

1. Select the regression

input closest to the patch

(or partially covering it)

•1 test4
test1 test4

test3
test4

test4

bug

test4

test4

test4

test4
test4 test4 test4 test4

test4

test4 test4

test4 test4

bug
bug

test4

KATCH

 Symbolic Patch Testing

Program

Input

Patch

2. Greedily drive

exploration toward

uncovered statements in

the patch

•1 test4
test1 test4

test3
test4

test4

bug

test4

test4

test4

test4
test4 test4 test4 test4

test4

test4 test4

test4 test4

bug
bug

test4

KATCH

 Symbolic Patch Testing Input

3. If stuck, identify the

constraints that disallow

execution to reach the

patch, and backtrack

•1 test4
test1 test4

test3
test4

test4

bug

test4

test4

test4

test4
test4 test4 test4 test4

test4

test4 test4

test4 test4

bug
bug

test4

KATCH

Program

Patch

Preliminary Results

70

Powers several popular sites such as YouTube and Wikipedia

Revision ELOC Covered ELOC

Regression KATCH

2631 20 15 (75%) 20 (100%)

2660 33 9 (27%) 24 (72%)

2747 10 4 (40%) 10 (100%)

Lighttpd r2631

71

Revision ELOC Covered ELOC

Regression KATCH

2631 20 15 (75%) 20 (100%)

https://zz.example.com/ http://zzz.example.com/ KATCH

Lighttpd r2660

72

Revision ELOC Covered ELOC

Regression KATCH

2660 33 9 (27%) 24 (72%)

165 if (str −>ptr[i] >= ’␣’ && str−>ptr[i] <= ’~’) {

166 /* printable chars */

167 buffer_append_string_len(dest,&str −>ptr[i],1);

168 } else switch (str−>ptr[i]) {

169 case ’"’:

170 BUFFER APPEND STRING CONST(dest, "\\\"");

171 break;

Bug reported and fixed promptly by developers

• Automatically explores paths through a program

• Can generate inputs exposing both generic and

semantic bugs in complex software

• Including file systems, library code, utility applications,

network servers, device drivers, computer vision code

Dynamic Symbolic Execution

73

KLEE: Freely Available as Open-Source

http://klee.llvm.org

• Over 200 subscribers to the klee-dev mailing list

• Extended in many interesting ways by several

research groups, in the areas of:

• wireless sensor networks

• schedule memoization in multithreaded code

• automated debugging

• exploit generation

• online gaming, etc.

