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Abstract—Software testing is an expensive and time con-
suming process, often involving the manual creation of com-
prehensive regression test suites. However, current testing
methodologies do not take full advantage of these tests. In
this paper, we present a technique for amplifying the effect
of existing test suites using a lightweight symbolic execution
mechanism, which thoroughly checks all sensitive operations
(e.g., pointer dereferences) executed by the test suite for errors,
and explores additional paths around sensitive operations. We
implemented this technique in a prototype system called ZESTI
(Zero-Effort Symbolic Test Improvement), and applied it to
three open-source code bases—GNU Coreutils, libdwarf and
readelf—where it found 52 previously unknown bugs, many
of which are out of reach of standard symbolic execution.
Our technique works transparently to the tester, requiring no
additional human effort or changes to source code or tests.

Keywords-regression testing; test improvement; symbolic ex-
ecution

I. INTRODUCTION

Testing currently accounts for a large fraction of the
software development life cycle [36] and usually involves
writing large numbers of manual tests that exercise various
paths, with the objective of maximising a certain coverage
metric such as line or branch coverage. This is a tedious pro-
cess that requires significant effort and a good understanding
of the tested system.

As a result, we are witnessing a sustained research ef-
fort directed toward developing automatic techniques for
generating high-coverage test suites and detecting software
errors [4], [8], [12]–[14], [21], [38], [40], with some of
these techniques making their way into commercial and
open-source tools. However, these techniques do not take
advantage of the effort that developers expend on creating
and updating the manual regression suites, which we believe
could significantly enhance and speed up the testing process.

Our key observation is that well-written manual test suites
exercise interesting program features, but often using a
limited number of paths and input values. In this paper, we
propose a zero-effort1 symbolic test improvement technique
that amplifies the effect of a regression test suite by checking
the program paths explored by the regression suite against all

1By effort we refer to human effort, not execution overhead.

possible input values, and also by exploring additional paths
that slightly diverge from the original execution paths in
order to thoroughly check potentially dangerous operations
executed by the program.

The paper makes the following main contributions:

1) We show that the effectiveness of standard regression
tests can be automatically improved using symbolic
execution-based techniques, finding bugs that are often
out of reach of regression testing or standard symbolic
execution alone. From a tester’s perspective, the im-
proved regression suites are executed in exactly the same
manner as their non-symbolic counterparts, without the
need to configure a symbolic execution engine or decide
what symbolic inputs to provide to the program. Our
technique works by reasoning about all possible input
values on the paths executed by the regression suite and
by thoroughly exploring additional paths around sensitive
instructions such as dangerous memory accesses.

2) We provide a theoretical and empirical analysis of the
sensitivity of our approach to the quality of the test suite,
and discuss how the probability of finding a bug varies
with the number of test cases being considered.

3) We demonstrate that our approach works well in prac-
tice, by implementing it in ZESTI (Zero-Effort Symbolic
Test Improvement), a prototype based on the KLEE
symbolic execution engine [9]. We applied ZESTI to
several popular open-source applications, including the
GNU Coreutils suite, the libdwarf library, and the
readelf utility, and found two previously unknown
bugs in Coreutils (despite these applications having
been comprehensively checked before via symbolic exe-
cution [7], [9]), forty in libdwarf, and ten in readelf,
in a manner completely transparent to developers. Fur-
thermore, the inputs generated by ZESTI to reproduce the
bugs discovered are almost well-formed, i.e. they differ
only slightly from the inputs included in the regression
suite, making it easier for developers to analyse them.

The rest of the paper is structured as follows. We start
by giving a general overview of our technique in §II and
discuss the relevant background and related work in §III.
We then present our technique in detail in §IV, describe



the main aspects of our implementation in §V, and present
our experience using ZESTI in §VI. Finally, we discuss the
advantages ZESTI offers, as well as its limitations in §VII,
and conclude in §VIII.

II. OVERVIEW

The main insight used by ZESTI is that regression test
suites exercise interesting program paths. Such test suites are
often created by the programmers who wrote the application
and benefit from deep knowledge of the program logic, or by
dedicated QA teams which systematically evaluate the main
program features and possible corner cases. Furthermore,
regression tests often cover program paths that previously
triggered bugs, which are more likely to contain further
errors [28], [42]. For instance, while the visible symptoms of
the offending bugs are fixed, it can happen that the root cause
of the bugs is not; alternatively, slightly different executions
could still trigger the same bug.

A common way to measure the quality of a test suite is
code coverage. Testing methodologies often require creating
test suites that achieve a certain level of line or branch cov-
erage, and many projects contain relatively high-coverage
test suites: for instance, most applications that we tested in
our experimental evaluation have manual test suites reaching
over 60% line coverage.

Unfortunately, despite the effort invested in creating these
manual regression suites, bugs still remain undetected in the
code covered by the test inputs. First of all, note that line
coverage can be misleading for quantifying the confidence
in a system for two important reasons. First, executing an
operation may or may not cause a violation depending on
its arguments. For example accessing the i-th element of a
vector is safe when i is within vector bounds but causes
an error otherwise. Line coverage, however, considers the
operation tested as soon as it is executed once. Second, code
behaviour depends on the path used to reach it; an instruction
can operate correctly when reached along one path but cause
a violation along a slightly different path. These caveats also
apply to other coverage metrics, such as branch coverage.

In this paper, we propose to augment regression suites
by using symbolic execution [24] to (1) analyse instruction
safety against all inputs that could exercise the instruction
along the same paths (§IV-A) and (2) carefully choose and
explore slightly divergent paths from those executed by the
regression suite (§IV-B). Compared to standard regression
suites, our approach tests the program on all possible inputs
on the paths exercised by the regression suite and on a
large number of neighbouring paths, without any additional
developer effort. Compared to standard symbolic execution,
the approach takes advantage of the effort spent creating
these regression suites, to quickly guide symbolic execution
along paths that exercise interesting program behaviours.

III. BACKGROUND AND RELATED WORK

Symbolic execution is a technique that has received much
attention in recent years in the context of software test-
ing [10] due to its ability to automatically explore multiple
program paths and reason about the program’s behaviour
along each of them. Tools such as KLEE [9], SAGE [17],
JPF-SE [1], BitBlaze [33] and Pex [37] are just some of the
symbolic execution engines currently used successfully in
academia and in industry.

Intuitively, symbolic execution (SE) works by system-
atically exploring all possible program executions and dy-
namically checking the safety of dangerous operations. SE
replaces regular program inputs with symbolic variables that
initially represent any possible value. Whenever the program
executes a conditional branch instruction that depends on
symbolic data, the possibility of following each branch is
analysed and execution is forked for each feasible branch.
To enable this analysis, symbolic execution maintains for
each execution path a set of conditions which characterise
the class of all inputs that drive program execution along
that path. At any time, the path conditions can be solved
to provide a concrete input that exercises that path natively,
making it easy to reproduce, report and analyse an execution
of interest. SE also analyses all potentially dangerous op-
erations as they are executed, verifying their safety for any
input from the current input class. For example, a division
is safe if and only if the denominator cannot be zero given
the current path conditions.

Unfortunately, the number of execution paths in real
programs often increases exponentially with the number of
branches in the code, which may lead symbolic execution
to miss important program paths. One solution is to employ
sound program analysis techniques to reduce the complexity
of the exploration, e.g., as in [6] or [15]. An orthogonal
solution is to limit or prioritise the symbolic program
exploration using different heuristics. For example, directed
symbolic execution methods [3], [11] use techniques such as
static analysis to find instructions or paths of interest which
are then used to guide the symbolic exploration.

Concolic testing [16], [32] starts from the path executed
by a concrete input, and then explores different program
paths by systematically flipping the truth value of the
branch conditions collected on that path. Previous research
has shown that the coverage and bug-finding abilities of
concolic testing can be improved by combining it with
random testing [27] or with well-formed inputs [17], and
the effectiveness of fault-localization can be increased by
aiming to maximize the similarity with the path constraints
of faulty executions [2].

Combining concolic execution with manual test suites
was first proposed in [23], where it was augmented by
assertion hoisting in order to increase the number of bug
checks, and then explored in [39], in which it was compared



against a genetic algorithm test augmentation technique. Our
approach extends previous work by proposing a technique
that explores paths around potentially dangerous instructions
executed by the regression suite, by providing an analysis
of the sensitivity of this approach to the quality of the test
suite, and by presenting a thorough evaluation on real and
complete regression suites of several popular applications.

The idea of augmenting concrete executions with the
ability to reason symbolically about potential violations
was first proposed in [25], which introduces a technique
that keeps track of lower and upper bounds of integer
variables, and of the NUL character in strings. Based on this
information, it can flag bugs such as buffer overflows and
incorrect uses of libc string functions. The technique can
only reason about limited types of constraints, and does not
explore any additional paths.

Research on improving regression testing generally falls
under four main categories: (1) finding redundant tests [19],
(2) ordering tests for finding defects earlier [34], (3) se-
lectively running only relevant tests on new program ver-
sions [30] and (4) enhancing a system’s test suite as the
system evolves [5], [18], [31], [35], [41]. The first three
topics are largely orthogonal and can be combined with
our technique. The state-of-the-art for the latter combines
control- and data-dependence chain analysis and symbolic
execution to identify tests that are likely to exercise the
effects of changes to a program. Making this approach
tractable requires a reasonably small set of differences
between program versions and a depth-bounded analysis on
dependence chains. While our approach could be used for
test augmentation, we see ZESTI primarily as a bug-finding
technique that can increase the effectiveness of regression
suites by combining them with symbolic execution, follow-
ing the manner in which dynamic execution tools such as
Valgrind are often integrated with existing test suites.

IV. ZERO-EFFORT SYMBOLIC TEST IMPROVEMENT

This section describes the two main techniques used by
ZESTI: improving regression suites with additional symbolic
checks (§IV-A), and exploring additional paths around sen-
sitive operations (§IV-B).

A. Thoroughly Testing Sensitive Operations

A standard regression test suite consists of multiple tests,
each being an (input, expected output) pair. The test harness
iterates through the tests and runs for each of them the target
program with the given input and collects its output. ZESTI
hooks into this process by interposing between the testing
script and the tested program, gaining complete control over
the system’s execution.

Similarly to [23], ZESTI replaces the program input
with symbolic values and at the same time remembers the
concrete input, which is used to drive program execution
whenever a branch is encountered. While executing the

1 : i n t v [ 1 0 0 ] ;
2 : vo id f ( i n t x ) {
3 : i f ( x > 99)
4 : x = 9 9 ;
5 : v [ x ] = 0 ;
6 : }

Figure 1. Code snippet showcasing a bug missed by a test suite with
100% code coverage, e.g. x=50, x=100.

program, path conditions are gathered and used to ver-
ify potentially buggy operations. For example, whenever
the program accesses a symbolic memory location, ZESTI
checks that the operation is safe for all inputs that satisfy
the current path condition.

Consider the snippet of code in Figure 1. Function f
contains a bug: it accesses an invalid memory location when
passed a negative argument. A test suite might call this
function with different arguments and verify its behaviour,
attempting to maximise a certain metric, e.g., line coverage.
It can be easily noticed that choosing one value greater than
99 and one smaller than or equal to 99 exercises all instruc-
tions, branches and paths without necessarily finding the
bug. On the other hand, our approach finds the bug whenever
the function argument is smaller than 100: for such values,
symbolic execution gathers the path constraint x ≤ 99 on
line 3, and then on line 5 checks whether there are any values
for x than can overflow the buffer v. More exactly, ZESTI
checks whether the formula x ≤ 99⇒ (x ≥ 0 ∧ x ≤ 99) is
valid and immediately finds a counterexample in the form
of a negative integer assignment to x.

In order to be accepted by software developers, we
strongly believe that ZESTI needs to work transparently. We
envision ZESTI being used in a similar way in which memory
debuggers such as Valgrind [29] or Purify [20] are employed
today in conjunction with test suites to provide stronger
guarantees. For example, many open-source programs pro-
vide a simple way to integrate Valgrind into their regression
test frameworks, with the user simply having to type “make
test-valgrind” to execute the regression suite under
Valgrind. We hope ZESTI will be used in a similar way,
by simply typing a command like “make test-zesti”, as
suggested in our paper title.

In other words, running an existing regression test suite
under ZESTI should happen without user intervention. To
accommodate all testing frameworks, ZESTI treats both the
tests and the testing script as black boxes. It functions by
renaming the original program and replacing it with a script
that invokes the ZESTI interpreter, passing as arguments
the original program and any command line arguments.2

2Because ZESTI is an extension of the KLEE symbolic execution engine,
which operates on LLVM bitcode [26], users need to compile their code to
LLVM in order to use ZESTI. However, this is not a fundamental limitation
of our approach, which could be integrated within a symbolic execution
framework that works directly on binaries.



Inputs: MaxDist, the maximum distance to search,
S, the set of sensitive instructions,
P, the set of divergence points
f, the distance estimation function

1: for D = 1 to MaxDist
2: for sensitive instructions I ∈ S
3: if ∃ divergence point J ∈ P

at distance D from I
4: symbolically execute program starting

from J, without restriction to a
single path, with depth bound f(D)

Figure 2. Algorithm used by ZESTI to explore additional paths.

ZESTI automatically detects several input classes, namely
command-line arguments and files opened for reading, and
treats them as sources of symbolic data. We found these
two sources sufficient for our benchmarks; however, adding
additional input sources is relatively straightforward.

The main downside of this approach is execution over-
head. In particular, there are two main sources of overhead:
first, the overhead of interpreting LLVM code. Second, the
constraint solver overhead: however, note that unlike in
regular symbolic execution, the constraint solver is invoked
in ZESTI only to check sensitive operations.

B. Exploring Additional Paths Around Sensitive Operations

The version of ZESTI described thus far has the disadvan-
tage of being highly dependent on the thoroughness of the
regression test suite. While a quality test suite is expected to
test all program features, it is likely that not all corner cases
are taken into account. Our analysis of Coreutils (§VI),
a mature set of applications with a high quality test suite,
showed that only one out of the ten bugs previously found
via symbolic execution could be detected by the version of
ZESTI described so far. As a result, we extended ZESTI to
explore paths that slightly diverge from those executed by
the regression suite, according to the likelihood they could
trigger a bug.

To mitigate the path explosion problem, ZESTI carefully
chooses divergent paths via two mechanisms: (1) it only
diverges close to sensitive instructions, i.e instructions that
might contain a bug, and (2) it chooses the divergence points
in order of increasing distance from the sensitive instruction.
The key idea behind this approach is to exercise sensitive
instructions on slightly different paths, with the goal of
triggering a bug if the respective instructions contain one.
Choosing a close divergence point ensures that only a small
effort is needed to reach the same instruction again.

ZESTI identifies sensitive instructions dynamically. As it
executes the concrete program path, it keeps track of all in-
structions that might cause an error on alternative executions.
We consider two types of sensitive instructions: memory
accesses and divisions. We treat all pointer dereferences as
sensitive, while for divisions we only consider those with

a symbolic denominator as sensitive. At the LLVM level,
ZESTI treats as sensitive all memory accesses to symbolic
addresses, as well as those (concrete or symbolic) memory
accesses preceded by a GetElementPtr instruction, and all
division and modulo operations with symbolic denominators.
While we currently track only sensitive memory accesses
and divisions, we could also extend the technique to other
types of sensitive operations, such as assertions.

To comprehensively exercise the sensitive instructions
with different inputs, ZESTI tries to follow alternative exe-
cution paths that reach these instructions. To this purpose, it
identifies all points along the concrete path where execution
can diverge, i.e. the branches depending on symbolic input.
ZESTI then prioritises the divergence points in increasing
order of distance from sensitive instructions and uses them
as starting points for symbolic execution. Figure 2 outlines
the strategy used by ZESTI. Line 1 goes through distances
from 1 to a user-specified maximum and line 2 iterates
through all sensitive instructions. If any divergence point
is found at the current distance from the current instruction,
it is used to start a depth-bounded symbolic execution run,
with bound f(D). The function f should be a function that
closely overestimates the distance between the divergence
point and the sensitive instruction on an alternative path.
A function which underestimates this distance will give an
SE depth bound too small to reach the sensitive instruc-
tion, while a function that largely overestimates it would
needlessly increase ZESTI’s overhead. (However, note that
not all additional paths explored by ZESTI are guaranteed to
reach the sensitive instruction.) We empirically found that a
linear function works well, and in our experiments we used
f(D) = 2 ∗D.

As an optimisation, line 2 of the algorithm considers
sensitive instructions in decreasing order of distance from
the program start. This favours the exploration of deeper
states first, on the premises that (1) deeper states are more
interesting because they contain the functionality exercised
by the test suite as opposed to the shallow states that are
often related to command-line parsing or input validation,
and (2) standard symbolic execution is less likely to be
able to reach those states in reasonable time due to path
explosion.

Intuitively, the metric used by ZESTI to measure the
distance between two execution points needs to estimate the
effort required by symbolic execution to reach one point
from the other. To this end, ZESTI defines the distance
between two instructions as the number of branches between
them where inputs could allow execution to follow either
side of the branch. This metric captures the number of points
where the program could have taken a different path (and
which ZESTI could explore), and is inherently insensitive to
large blocks of code that use only concrete data.

In practice, the optimal maximum distance (MaxDist in
Figure 2) for which to run ZESTI is hard to determine. Using



Depth Code I n s t r T y p e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i n t v [ 1 0 0 ] ;
vo id f ( i n t x ) {

0 i f ( x > 99) D
x = 9 9 ;

1 v [ x ] = 0 ; S
}

Figure 3. Code snippet showcasing an execution generated by an input
x > 99, annotated by ZESTI. The Depth column records the distance
from the start of the execution, and the InstrType column keeps track
of divergence points (D) and sensitive instructions (S).

Depth Code I n s t r T y p e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i n t v [ 1 0 0 ] ;
vo id f ( i n t x ) {

0 i f ( x > 99) { D1
1 i f ( x > 199) D2

r e t u r n ;
x = 9 9 ;

}
2 v [ x ] = 0 ; S

}

Figure 4. Code snippet showcasing an execution generated by an input
99 < x ≤ 199, annotated by ZESTI. The Depth and InstrType
columns have the same meaning as in Figure 3.

a small value may miss bugs, while using a large value
may be too time-consuming and leave no time to execute
the rest of the tests within the allocated time budget. Our
approach to solve this problem is to allocate a certain time
budget to the entire testing process and use an iterative
deepening approach: conceptually, all the tests are first
executed without exploring any additional paths, then up to
distance 1, 2, 3, etc., until the time budget expires.

To illustrate ZESTI’s exploration of additional paths, con-
sider the code in Figure 1. In the previous section we showed
how ZESTI finds the bug starting from a test that calls
function f with an argument smaller than 100. We now
show how it can find the bug for any argument value. For
values smaller than 100, the previous analysis applies and
the bug is found without having to explore divergent paths.
Therefore, we only discuss arguments greater than or equal
to 100. Figure 3 shows the same code, annotated by ZESTI,
when executed using such an argument. While running the
function, ZESTI records all the sensitive instructions (S), and
divergence points (D) being executed (InstrType field),
and computes their distance from the start of the execution
(Depth field).

After running the entire function, ZESTI looks for in-
structions labelled as sensitive located at distance 1 after
a divergence point (i.e., the difference between their Depth
fields is 1), and finds instruction v[x] = 0 with correspond-
ing divergence point if (x > 99). These steps correspond
to lines 2 and 3 of Figure 2. ZESTI then starts bounded
symbolic execution from D (line 4 of Figure 2). The new

path discovered corresponds to an input that makes the code
take the (empty) else branch at D, i.e. a value smaller than
100. On this path x is no longer set to 99 but is used directly
to index v. When executing the sensitive instruction v[x]

= 0, ZESTI checks whether a violation can occur based on
the current path condition, and finds that a negative function
argument causes a memory violation.

To further illustrate ZESTI’s algorithm, we consider the
slightly more complicated code snippet in Figure 4. The
code contains an additional if statement that creates a new
divergence point D2. Assuming a test input between 100 and
199, the sensitive instruction is at distance 1 from divergence
point D2 and at distance 2 from D1. Therefore, ZESTI first
considers D2, and explores its then path, which does not
trigger the bug. Going further, it finds D1 which leads to the
bug as in the previous example.

C. Improving Efficiency by Discarding Test Cases

An interesting question is how sensitive ZESTI is to the
program test suite. The time in which ZESTI finds a bug
depends on three main factors: the number of tests that are
run, the percentage of them that expose the bug, and the
minimum distance at which the bug is found.

As discussed above, because the distance at which a
certain test case exposes the bug is difficult to predict, ZESTI
first checks the concrete execution path and then uses an
iterative deepening approach to check divergent paths. Under
this strategy, the only other parameter that ZESTI can vary
is the number of test cases that are run. In the rest of this
section, we provide a theoretical estimate of the probability
of finding a bug if ZESTI runs only a randomly chosen
fraction of the test suite.

Creating a sub-test suite out of the initial test suite by
randomly picking tests is an instance of the urn model
without replacement [22], i.e. the marbles (tests) are not
replaced in the urn (initial test suite) once picked. Consider
that the urn model has the following parameters: N – the
total number of tests, m – the number of tests which expose
the bug at the minimum distance, and k – the number of tests
picked. The probability distribution which characterises the
number of successes (i.e. tests which find the bug at the
minimum distance) in the sequence of k picks is called the
hypergeometric distribution [22].

In terms of this model, we are interested in the probability
of having at least one success, which is 1−P (failure), the
probability of having only failures:

P (success) = 1−P (failure) = 1−
(

N −m

k

)/(
N

k

)
where the fraction denominator represents the total number
of possible test combinations and the numerator represents
the number of combinations which contain zero successes.

Figure 5 plots the probability of finding a bug using a
subset of a hypothetical initial test suite of 100 test cases
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Figure 5. Probability to find a bug using a randomly picked fraction of
an initial test suite of 100 test cases. The three lines show the probability
considering that 6%, 10% and respectively 30% of the initial tests find the
bug.

for three fractions of tests exposing the bug: 6%, 10% and
30%, which are representative for the programs that we
analysed with ZESTI (see §VI). As this graph shows, it is
possible to discard a large fraction of the test suite while
still finding the bug with high probability. For example, for
a test suite of size 100, in order to find the bug with at
least 90% probability, it is enough to run only 7 (when
m=30%), 20 (when m=10%), and 32 tests (when m=6%).
If the minimum distance at which the bug is found is
relatively large, discarding a large number of tests can
have a big positive impact on ZESTI’s performance, without
significantly lowering the probability of finding the bug. In
Section VI-C we show that our analysis holds in practice by
examining the test suite characteristics of real programs.

V. IMPLEMENTATION

ZESTI is integrated in the KLEE symbolic execution
engine [9]; a user can choose whether to run KLEE or
ZESTI via command line switches. When enabled, ZESTI
intercepts all calls that create symbolic data, (e.g., read
from a file), and records the concrete value of the variables
in a shadow data structure. ZESTI also intercepts all calls
made to the STP constraint solver, via a custom concretizing
module inserted in KLEE’s solver chain between the front-
end and the query optimisers. When enabled, this module
replaces all symbolic variables in a query with their con-
crete values and evaluates the resulting concrete expression,
obtaining a value that is then returned directly back to
KLEE. This implementation allows enabling and disabling
symbolic execution by disabling and respectively enabling
ZESTI’s concretizing module. The module is always disabled
before executing a sensitive operation such as a memory
access and re-enabled afterwards. This permits checking
sensitive operations symbolically while executing the rest
of the program concretely.

In order to explore paths around sensitive instructions,
ZESTI associates with each program state that is not on the
concrete path a time-to-live (TTL) value which keeps track

of how long this state continues to be executed before it
is suspended. This mechanism allows executing states in
any order and guarantees execution for the exact desired
distance. The TTL uses the same metric used to measure dis-
tances between program states, i.e. symbolic branch count.
It is initialised with the distance for which the state has to
be executed, and decremented whenever the state is forked
as a result of a symbolic branch condition.

ZESTI also implements its own state prioritization algo-
rithm based on a breadth-first traversal of the state space,
consistent with the distance metric used. The algorithm is
implemented as a searcher, a pluggable abstraction used by
KLEE to encapsulate the prioritization logic. This approach
decouples the search algorithm from the symbolic execution
functionality and allows updating or replacing the imple-
mentation with ease.

VI. EXPERIMENTAL EVALUATION

This section covers the results obtained with ZESTI,
describing our benchmarks and methodology (§VI-A), bugs
found (§VI-B), and quantifying the test improvements and
overhead of using ZESTI (§VI-C).

A. Benchmarks

To evaluate ZESTI, we used three different software
suites:
1) GNU Coreutils 6.10, a suite of commonly-used

UNIX utilities such as ls, cat and cp. Coreutils

consists of a total of 89 individual programs and has
a comprehensive regression test suite totalling 393 indi-
vidual tests obtaining overall 67.7% line coverage. We
used the older 6.10 version in order to facilitate the
comparison against KLEE, which was previously used to
comprehensively check this version of Coreutils [9].
The largest Coreutils program (ls) has 1429 effective
lines of code (ELOC) but also uses part of a monolithic
library shared by all the utilities, making it hard to
compute an accurate line count. We therefore employed
the same approach used by KLEE’s authors, of computing
the number of LLVM instructions after compiler optimi-
sations are applied (especially the dead code elimination
pass). This yields 20,700 instructions for ls.3

2) libdwarf 20110612, a popular open-source library for
inspecting DWARF debug information in object files.
libdwarf has 13,585 ELOC as reported by gcov and
31,547 LLVM instructions, as reported by KLEE. Its test
suite consists of two parts: 88 manually created tests
and a larger number of automatically-generated tests
obtained by exhaustively mixing common command-line
arguments and input files, achieving in total 68.6% line
coverage.

3Line count and coverage information was obtained using gcov 4.4.3
and LLVM 2.9. Numbers can vary between different versions.



3) readelf 2.21.53, a component of GNU binutils for
examining ELF object files, included in most Linux dis-
tributions. readelf has 9,938 ELOC and 30,070 LLVM
instructions, and comes with a small test suite of only
seven tests obtaining 24% line coverage. One reason we
included this benchmark was to see how ZESTI performs
with a weaker regression suite. The other was that both
libdwarf and readelf need large inputs (executable
files), which would make a pure symbolic execution
choke. For example, executing libdwarf using KLEE
and a relatively small, 512 byte input file consumes all
available memory on our test machine within a few tens
of minutes.
To test these programs, we imposed a per-test time limit

dependent on program complexity: we chose 15 minutes for
the Coreutils programs and 30 minutes for libdwarf

and readelf. For libdwarf, we used the 88 manual tests
and 12 of the automatically-generated ones. We ran all
libdwarf experiments on a 64bit Fedora 16 Xeon E3-1280
machine with 16GB of RAM, while the rest were performed
on a 64bit Ubuntu 10.04 i5-650 machine with 8GB of RAM.

B. Bugs Found

ZESTI found a total of 58 bugs, out of which 52 were
previously unknown. The new bugs were reported to the
maintainers and most of them have already been fixed by the
time of this writing. Table I shows a summary of the bugs
found by ZESTI, along with the distance from the concrete
path and the depth at which they were found. We compute
the depth as the number of visited symbolic branches from
the program start where both sides could be explored, as
this is a rough estimation of the effort required by standard
symbolic execution to find the bug. If the same bug is
discovered by two or more test cases we report the minimum
distance and for equal distances the minimum depth. Both
the minimum distance and depth are influenced by program
inputs; it may be possible to reach the bugs by traversing
fewer symbolic branches when using other inputs.

We describe below three representative errors found by
ZESTI, and then compare its bug-finding ability against
standard symbolic execution.

cut case study: The bug found in the cut utility is a mem-
ory access violation. The test leading to its discovery uses
the command line arguments -c3-5,6- --output-d=:

file.inp. The -c argument specifies two ranges, from the
3rd to the 5th character and from the 6th character to the
end of the line. Internally, cut allocates a buffer that is later
indexed by the range endpoints. Its size is computed as the
maximum of the right endpoints across all ranges. However,
in this case, the ranges unbounded to the right are incorrectly
not considered in the computation. Therefore the value 6
is used to index a (zero-based) vector of only 6 elements.
However, because the cut implementation uses a bitvector,

Table I
BUGS FOUND BY ZESTI ALONG WITH THE DISTANCE (FROM THE

CONCRETE TEST PATH) AND THE DEPTH (FROM THE PROGRAM START)
AT WHICH THE BUG WAS FOUND. NEW BUGS ARE IN BOLD.

Bug no. Location Distance Min Depth
Coreutils
1 cut.c:267 0 65
2 printf.c:188 1 9
3 seq.c:215 1 7
4 paste.c:107 1 8
5 mkdir.c:192 6 9
6 mknod.c:169 8 12
7 mkfifo.c:117 6 10
8 md5sum.c:213 10 45
libdwarf
9 dwarf form.c:458 2 491
10 dwarf form.c:503 0 1229
11 dwarf form.c:525 0 490
12 dwarf elf access.c:663 0 382
13 dwarf elf access.c:664 0 383
14 dwarf arange.c:160 0 319
15 dwarf arange.c:179 0 321
16 dwarf util.c:90 0 746
17 dwarf util.c:396 0 923
18 dwarf elf access.c:640 0 495
19 dwarf print lines.c:385 0 514
20 dwarf global.c:305 0 2057
21 dwarf global.c:239 0 1508
22 dwarf global.c:267 2 400
23 dwarf leb.c:58 0 396
24 dwarf leb.c:62 1 650
25 dwarf leb.c:69 1 650
26 dwarf leb.c:128 1 650
27 esb.c:117 0 1248
28 print die.c:1523 0 1292
29 dwarf util.c:116 0 488
30 dwarf util.c:363 0 1248
31 dwarf util.c:418 0 498
32 dwarf query.c:325 0 648
33 dwarf abbrev.c:119 0 543
34 dwarf frame2.c:936 1 376
35 dwarf frame2.c:948 0 389
36-48 dwarf line.c:*4 * *
readelf
49 readelf.c:5020 0 134
50 readelf.c:10140 0 285
51 readelf.c:10600 0 73
52 readelf.c:10607 5 51
53 dwarf.c:182 0 277
54 dwarf.c:549 0 276
55 dwarf.c:2596 0 585
56 elfcomm.c:69 0 287
57 elfcomm.c:142 0 258
58 elfcomm.c:149 0 261

allocations are inherently done in chunks of 8 elements and
the bug is not triggered by the test input (and thus a tool
such as Valgrind could not find it). However, ZESTI detects
the problem by deriving a new input which triggers the bug,
namely -c3-5,8- --output-d=: file.inp.

libdwarf case study: One of the bugs found in libdwarf

is a division by zero, caused by improper handling of debug

4Bugs were found at 13 different locations in dwarf_line.c. For
brevity we omit the details.



Table II
A ONE BYTE CORRUPTION AT OFFSET 0X1073 IN A LIBDWARF TEST

FILE, WHICH CAUSES A DIVISION BY ZERO.

Offset Original Buggy
0000 7F 45 4C 46 7F 45 4C 46
. . . . . . . . .
1070 00 00 00 04 00 00 00 00
. . . . . . . . .
2024 69 74 00 69 74 00

information data. Before reading the debug aranges section,
libdwarf computes the size of each entry by looking at
two fields in the executable file: the address size and the
segment size. The entry size is computed using the formula
entry size = 2 ∗ address size + segment size. A check
is then made to ensure that the section size is a multiple
of the entry size via a modulo operation, which causes an
exception when the entry size equals zero.

Table II shows the input generated by ZESTI by changing
one byte in the original test file. The byte corresponds to
the address size, which is changed from 4 to 0 (the segment
size is already 0). The new file causes the division by zero
when passed to libdwarf. One advantage of ZESTI over
standard symbolic execution is that it can generate “almost
well-formed” inputs. While symbolic execution can only
use the current path constrains to generate an input, leaving
all unconstrained data to a default value, ZESTI creates an
input that matches as close as possible the test data, while
still reproducing the bug. The feedback to our bug reports
indicates that this approach creates inputs that are easier to
understand by programmers.

printf case study: ZESTI found a previously unknown bug
in the printf program, a utility that prints formatted text in
a similar fashion to the printf libc function. The bug was
found at distance 1, i.e., ZESTI had to flip the outcome of one
branch in order to trigger it. The bug resides in a program
feature that interprets a character as its integer ASCII code
if preceded by a single or double quote. The implementation
incorrectly assumes that all quotes are followed by at least
one character; when a lone quote is provided as input, an off-
by-one memory access is performed. ZESTI infers from the
printf %c x test, the input printf %d ’, which triggers
the bug.

Comparison with standard symbolic execution: In terms
of bug-finding capabilities, ZESTI and KLEE enjoy different
advantages. On the one hand, ZESTI is able to avoid certain
scalability problems that symbolic execution is facing, by
using the paths executed by the regression suite to reach
interesting program states. For example, ZESTI was able to
find forty bugs in libdwarf and ten in readelf, while
KLEE was not able to find any of them, because it ‘got
lost’ in the large program state space, ending up consuming
all available memory on our test machine. The large depth

Figure 6. Number of unique (by line of code) and total checks performed
by ZESTI on Coreutils 6.10.

at which the libdwarf and readelf bugs are found in
the symbolic state tree (Min Depth column in Table I)
shows that symbolic execution needs to search through a
significantly larger number of states. For example, to find
a bug at depth 100 requires searching through roughly 290

times more states than it does for a bug at depth 10.
On the other hand, four of the bugs found by KLEE

were not detected by ZESTI, showing its limitations. One
of the bugs, found in the tac utility, is only triggered when
providing more than one input file to the program. Because
none of the tests do so, the buggy code is never executed in
the inconsistent state. The two bugs found by KLEE in ptx

are missed because the regression suite does not contain
any tests for this program. Finally, the bug in the pr utility
was not found due to the highly solver-intensive test inputs,
which were consuming all the allocated time budget on the
concrete path, not allowing ZESTI to explore beyond it in
the allocated time budget.

C. Symbolic Bug Checks and Performance Overhead

Symbolic bug checks: One measure of ZESTI’s effectiveness
is the number of symbolic checks (in our case memory ac-
cess checks) made when running a regression suite. Figure 6
shows the number of total and unique checks performed
for each program in the Coreutils suite when running
ZESTI on the regression suite with distance 0 (i.e., with
no additional paths explored) and a timeout of two minutes
per program execution. Uniqueness was determined solely
through the line of code that triggers the check.

Figure 6 shows 46 bars, one for each Coreutils ap-
plication in which ZESTI performed symbolic checks while
running the regression suite. The rest of the Coreutils

programs do not provide any opportunities for such checks
because they either are too simple (e.g., yes), do not
take user input, or do not use it to access memory, (e.g.,
id, uname). This does not represent a limitation of ZESTI
but instead shows that not all programs are susceptible to
memory access bugs.



Figure 7. ZESTI execution overhead compared to KLEE as an interpreter,
when run with distance 0 on the Coreutils regression suite.

Overhead of ZESTI’s checks: Under the same setup, we also
measured the time taken by ZESTI to run each test in the
regression suite. To compute ZESTI’s overhead, we use as
baseline KLEE as an interpreter only, i.e. without any sym-
bolic data. Because no symbolic data is introduced, KLEE
uses its system call models, object management system and
the same internal program representation as in symbolic
execution mode but follows only one execution path and
does not use the constraint solver.

To eliminate potential inconsistencies, we only consider
tests that complete successfully, as reported by the regression
suite. This eliminates 21 tests that result in ZESTI timeouts
and a small number of early program exits due to imperfec-
tions in uClibc or KLEE’s models, which would otherwise
add noise to our experiments.

The results are presented in Figure 7, which shows one
pair of bars for each program execution: one for the time
taken by the interpreter, and one for the time taken by
ZESTI. The times are sorted by interpreter time. The last two
tests, not completely shown, take 250 seconds to terminate
under the interpreter and have less than 1% overhead under
ZESTI. We see that for most tests, the execution times are
virtually identical for KLEE and ZESTI. However, there are
several executions for which ZESTI takes significantly more
time, due to the constraint solver queries that it issues while
making the symbolic checks. Finally, note that the interpreter
time adds significant overhead on top of native execution
(which for Coreutils usually takes only milliseconds
per program execution), and one way to improve ZESTI’s
performance is to speed-up the interpreter (which in KLEE
is not optimised, because in standard symbolic execution it
is rarely a bottleneck).

Effect of discarding test cases: Table III shows the size of
the test suite for each application in Coreutils for which
ZESTI found a bug (#T), and the distance distribution for the
bugs, across all available tests for each program (D0-D12).
The Not found value corresponds to not finding the bug in
15 minutes (60 minutes for md5sum).
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Figure 8. Probability to find the Coreutils bugs at the minimum
distance, relative to the size of a randomly chosen sub-test suite.

Based on the information in Table III and using the
formula presented in Section IV-C, we plotted in Figure 8 the
probability of finding the bug at the minimum distance for
each of these applications, relative to the size of a randomly
chosen sub-test suite. It can be noticed that the worst
scenarios correspond to the printf and md5sum programs,
where more than half of the tests are needed to have at
least 90% confidence in finding the bug. For the rest of the
programs, a confidence of at least 90% can be achieved by
using roughly one third (or less) of the tests. This indicates
that in practice, it might be possible to improve ZESTI’s
efficiency—without significantly affecting the probability of
finding a bug—by randomly discarding a large part of the
test suite. libdwarf’s test suite corroborates these results,
while readelf has a test suite too small to be considered
for this analysis.

VII. DISCUSSION AND FUTURE WORK

The ultimate goal of our project is to make ZESTI ac-
cessible to testers through a simple, standardised interface.
Most systems already include a regression test suite, usually
invoked from the command line via a make check or make
test command. Some systems also allow running the re-
gression suite through a memory debugger such as Valgrind,
using a simple command such as make test-valgrind, in
order to catch invalid memory operations which do not result
in observable errors. We envision exposing ZESTI through
a similar command, e.g. make test-zesti, which would
enable all the additional checks made by it.

The approach implemented by ZESTI has several ad-
vantages: (1) it does not require changes to the program
source code or to the regression tests, as ZESTI is inter-
posed transparently between the test harness and the actual
program; (2) it takes advantage of the effort put in the
original test cases, as they are reused to drive symbolic
execution under ZESTI; and (3) for each bug found, an input
that reproduces the bug is generated; furthermore, to help
developers understand the bug, this input is kept as similar
as possible to the original test input.



Table III
BUG DISTANCE DISTRIBUTION FOR THE BUGS FOUND BY ZESTI IN COREUTILS . THE MINIMUM DISTANCE AT WHICH THE BUG IS FOUND FOR EACH

PROGRAM IS IN BOLD. THE NOT FOUND VALUE CORRESPONDS TO NOT FINDING THE BUG IN 15 MINUTES (60 MINUTES FOR MD5SUM).

App #T D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 Not found
cut 163 9.2% – – – – – – – – – – – – 90.8%
printf 17 – 17.6% 5.9% 5.9% – – – – – 17.6% – – – 53.0%
md5sum 22 – – – – – – – – – – 13.6% – – 86.4%
mkdir 44 – – – – – – 11.3% – 4.5% 4.5% – – – 79.7%
mknod 1 – – – – – – – – 100% – – – – –
mkfifo 1 – – – – – – 100% – – – – – – –
paste 8 – 50.0% – – – – – – – – – 50.0% – –
seq 33 – 33.3% – 3.0% 9.1% 3.0% 9.1% – 3.0% – 18.2% – 6.1% 15.2%

The main disadvantage of this approach is that it can
take significantly more time than natively executing the
regression tests. However, our empirical analysis showed
that a good regression suite allows finding bugs close to
the concrete execution path, thus minimising the time spent
symbolically executing the program. Furthermore, ZESTI can
be tuned to specific time budgets through various config-
urable settings which limit the exploration via timeouts (per-
instruction, per-solver query, per-branch from the concrete
path) or by disallowing execution beyond a certain distance.
Finally, if necessary, developers can only run a part of the
test suite under ZESTI, often without significantly lowering
the probability of finding bugs.

One of the problems of symbolic execution is that it can
get stuck in uninteresting parts of the code, such as input
parsing code, and therefore miss interesting “deep paths.”
ZESTI solves this problem by first executing the entire
program along the paths from the regression suite, and then
exploring additional branches symbolically, in increasing
distance from sensitive instructions and the program end.

One problem that we observed in the pr utility from
the Coreutils suite is a very expensive—in terms of
symbolic checks—concrete path. This prevents ZESTI from
exploring paths which diverge from the test suite in the
given time budget. In the future, we plan to incorporate in
ZESTI techniques for adaptively skipping checks, effectively
allowing the tester to trade checks at a lower depth for
checks at a higher depth.

Unlike symbolic execution, ZESTI eliminates the guess-
work involved in setting up symbolic data. In particular,
choosing the appropriate number and size of symbolic inputs
is non-trivial: on the one hand, small inputs may miss
bugs, while on the other hand large inputs can significantly
increase execution overhead, by generating very expensive
constraint solving queries, or by causing symbolic execution
to spend most of its time in non-interesting parts of code.
While analysing the two Coreutils bugs detected by ZESTI
but missed by KLEE, we found that carefully tuning the
symbolic input size allows standard symbolic execution to
find them. Surprisingly, one of the bugs can be found only
with larger inputs, while the other only with smaller ones.
The cut bug can be found only when using two long
arguments—but the original KLEE tests were using a single

long argument—and the printf bug can only be found with
an argument of size one—but the original KLEE tests used
a larger size. Good regression test suites invoke applications
with representative arguments, both in number and size,
which ZESTI successfully exploits.

VIII. CONCLUSION

We have presented ZESTI, a lightweight symbolic
execution-based tool that automatically improves regression
test suites with the ability to reason about all possible
input values on paths executed by the test suite, as well as
explore additional paths around sensitive instructions. ZESTI
approaches testing from two different angles: first, ZESTI
significantly broadens the number of bug checks performed
by a regression suite and therefore the number of bugs
found. Second, by using the regression suites as a starting
point, ZESTI provides an effective solution for guiding the
exploration of the symbolic search space. As a result of these
features, we were able to successfully apply ZESTI to three
popular software systems—GNU Coreutils, readelf, and
libdwarf—where it found 52 previously unknown errors,
including two in the Coreutils suite, which was previously
checked thoroughly via symbolic execution.

We believe our technique can be effectively integrated
with existing regression suites, and could help bridge the gap
between standard regression testing and symbolic execution,
by providing a lightweight, incremental way of combining
the two techniques.

We are making our tool ZESTI available as open-source
at http://srg.doc.ic.ac.uk/projects/zesti.
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