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Abstract

Attacks often exploit memory errors to gain control over
the execution of vulnerable programs. These attacks remain
a serious problem despite previous research on techniques
to prevent them. We present Write Integrity Testing (WIT), a
new technique that provides practical protection from these
attacks. WIT uses points-to analysis at compile time to
compute the control-flow graph and the set of objects that
can be written by each instruction in the program. Then
it generates code instrumented to prevent instructions from
modifying objects that are not in the set computed by the
static analysis, and to ensure that indirect control transfers
are allowed by the control-flow graph. To improve cover-
age where the analysis is not precise enough, WIT inserts
small guards between the original program objects. We de-
scribe an efficient implementation with optimizations to re-
duce space and time overhead. This implementation can be
used in practice because it compiles C and C++ programs
without modifications, it has high coverage with no false
positives, and it has low overhead. WIT’s average runtime
overhead is only 7% across a set of CPU intensive bench-
marks and it is negligible when IO is the bottleneck.

1. Introduction

Attackers can exploit software errors to control vulnera-
ble programs. Programs written in unsafe languages like C
and C++ are particularly vulnerable because of memory er-
rors, for example, buffer overflows and underflows [5, 35],
dangling pointers [7], and double frees [26]. Despite pre-
vious research on techniques to prevent these attacks (see
Section 8), at least 40% of the vulnerabilities published by
US-CERT in the last six months are memory errors. We
believe there are two reasons for this: techniques that are
used to prevent these attacks fail to prevent many attacks;
and most techniques are not used because they have high
overhead or they require non-trivial changes to the source
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code or the language runtime.

We present Write Integrity Testing (WIT), a new tech-
nique to prevent memory error exploits that addresses the
problems with previous approaches. WIT can be applied to
C and C++ programs without modifications, it does not re-
quire changes to the language runtime, it has high coverage
with no false positives, and it has low overhead.

At compile time, WIT uses interprocedural points-to
analysis [23] to compute the control-flow graph and the set
of objects that can be written by each instruction in the pro-
gram. At runtime, WIT enforces write integrity, that is, it
prevents instructions from modifying objects that are not
in the set computed by the static analysis. Additionally,
WIT inserts small guards between the original objects in
the program. Since the guards are not in any of the sets
computed by the static analysis, this allows WIT to prevent
sequential overflows and underflows even when the static
analysis is imprecise. WIT also enforces control-flow in-
tegrity [6, 28], that is, it ensures that the control flow trans-
fers at runtime are allowed by the control-flow graph com-
puted by the static analysis.

WIT uses the points-to analysis to assign a color to each
object and to each write instruction such that all objects that
can be written by an instruction have the same color. It in-
struments the code to record object colors at runtime and to
check that instructions write to the right color. The color of
memory locations is recorded in a color table that is updated
when objects are allocated and deallocated. Write checks
look up the color of the memory location being written in
the table and check if it is equal to the color of the write
instruction. This ensures write integrity.

WIT also assigns a color to indirect call instructions and
to the entry points of functions that may be called indirectly
such that all functions that may be called by the same in-
struction have the same color. WIT instruments the code to
record function colors in the color table and to check indi-
rect calls. The indirect call checks look up the color of the
target address in the table and check if it matches the color
of the indirect call instruction. These checks together with
the write checks ensure control-flow integrity. Control-flow
integrity prevents the attacker from bypassing our checks
and provides an effective second line of defense against at-



tacks that are not detected by the write checks.
We developed several optimizations to reduce the space

and time overhead of our implementation. First, we use
static analysis to determine memory accesses and objects
that are safe, that is, accesses that cannot violate write in-
tegrity and objects that only have safe accesses. We only
instrument unsafe writes and we assign the same color to
all safe objects. This reduces the number of write checks
and also the overhead to maintain the color table. Addi-
tionally, it reduces the number of bits required to represent
colors. One byte was sufficient to represent colors in all our
experiments. Second, we use a compact representation for
the color table that can be looked up efficiently. The color
table maintains one byte to represent the color of an eight
byte chunk of memory, which reduces space overhead to ap-
proximately 12.5%. Third, we reduce the cost of updating
color table entries on function calls. Since most local vari-
ables are safe, we only update entries for guards and unsafe
variables on function entry and we reset these entries to the
color of safe objects on function exit.

We evaluated the coverage of WIT using a suite of at-
tacks to test buffer overflow prevention techniques [43] and
five real attacks on SQL server, libpng, ghttpd, nullhttpd,
and stunnel. WIT can prevent all these attacks.

We also evaluated the overhead introduced by WIT using
SPEC CPU and Olden benchmarks. WIT’s average over-
head is 7% and the maximum overhead is 25%. In a Web
server running the SPEC Web 1999 benchmark, the over-
head is even lower: response times increase by 0.2% and
peak throughput decreases by 4.8%. We believe that WIT
can be used in practice to protect software from attacks that
exploit memory errors.

2. Overview

WIT has both a compile-time and a runtime component.
We will use the example in Figure 1 to illustrate how both
components work. The example is a simplified Web server
with a buffer overflow vulnerability. It is inspired by a vul-
nerability in nullhttpd [2] that can be exploited to launch a
non-control-data attack [15].

When the Web server in Figure 1 receives a CGI
command, it calls ProcessCGIRequest with the mes-
sage it received from the network and its size as argu-
ments. The function copies the command from the mes-
sage to the global variable cgiCommand and then calls
ExecuteRequest to execute the command. The vari-
able cgiDir contains the pathname of the directory with
the executables that can be invoked by CGI commands.
ExecuteRequest first checks that cgiCommand does not
contain the substring "\\.." and then it concatenates
cgiDir and cgiCommand to obtain the pathname of the
executable to run. The problem is that there is a buffer

1: char cgiCommand[1024];
2: char cgiDir[1024];
3:
4: void ProcessCGIRequest(char* msg, int sz) {
5: int i=0;
6: while (i < sz) {
7: cgiCommand[i] = msg[i];
8: i++;
9: }
10:
11: ExecuteRequest(cgiDir, cgiCommand);
12: }

Figure 1. Example vulnerable code: simplified
Web server with a buffer overflow vulnerability.

overflow vulnerability in lines 5 — 9: if the message is
too long, the attacker can overwrite cgiDir. This allows
the attacker to run any executable (for example, a command
shell) with the arguments supplied in the request message.
This is a non-control-data attack [15]: it does not violate
control-flow integrity.

We start by using points-to analysis [23] to compute the
set of objects that can be modified by each instruction in the
program. For the example in Figure 1, the analysis com-
putes the set {i} for the instructions at lines 5 and 8, and
the set {cgiCommand} for the instruction at line 7.

To reduce space and time overhead at runtime, we also
perform a write safety analysis to compute instructions and
objects that are safe. An instruction is safe if it cannot vi-
olate write integrity and an object is safe if all instructions
that can modify the object (according to the points-to anal-
ysis) are safe. In our example, the write safety analysis de-
termines that instructions 5 and 8 are safe because they can
only modify i and, therefore, i is safe. It also determines
that the arguments to ProcessCGIRequest are safe. In
contrast, instruction 7 is not safe because it may modify ob-
jects other than cgiCommand depending on i’s value.

The results of the points-to and write safety analysis are
used to assign a color to each write instruction and a color
to each object in the program. We attempt to assign dis-
tinct colors to each unsafe object under the constraint that
each instruction must have the same color as the objects it
can write. We assign color 0 to all safe objects and all safe
instructions to reduce the number of bits required to rep-
resent colors. In our example, variables msg, sz, and i
and instructions 5 and 8 are assigned color 0 because they
are safe. We assign color 3 to variable cgiCommand and
instruction 7, and color 4 to variable cgiDir.

To reduce the false negative rate due to imprecision of
the points-to analysis, we insert small guards between the
unsafe objects in the original program. Guard objects have
color 0 or 1. These colors are never assigned to unsafe in-
structions in the program to ensure that WIT can detect at-
tempts to overwrite guards or safe objects.

We also use the points-to analysis to compute the func-
tions that can be called by each indirect call instruction in



the program. We assign colors to indirect call instructions
and to the functions they can call. We attempt to assign
distinct colors to each function while ensuring that each in-
struction and the functions it can call have the same color.
The set of colors assigned to functions is disjoint from the
set of colors assigned to unsafe objects, to safe objects, and
to guards. This prevents unsafe instructions from overwrit-
ing code and prevents control transfers outside code regions.

WIT adds extra compilation phases that insert instru-
mentation to enforce write integrity and control flow in-
tegrity. There are four types of instrumentation: to insert
guards, to maintain the color table, to check writes, and to
check indirect calls. Guards are eight bytes long. In our
example, we instrument the code to add guards just before
cgiCommand, between cgiCommand and cgiDir, and just
after cgiDir. We do not insert guards around the argu-
ments to ProcessCGIRequest and local variable i be-
cause they are safe.

WIT uses the color table to record the color of each
memory location. When an object is allocated, the instru-
mentation sets the color of the storage locations occupied
by the object to its color. In our example, WIT adds instru-
mentation at the beginning of main to set the color of the
storage locations occupied by cgiCommand to 3, the color
of the storage for cgiDir to 4, and the color of the storage
for the guards around them to 0.

We use an optimization to reduce the cost of updating the
color table. We initialize the color table to 0 for all memory
locations and we do not update the color table when safe
objects are allocated on the stack. Instead, we only update
the colors for locations corresponding to unsafe objects on
function entry. On function exit, we reset color table entries
that we updated on function entry to 0. Therefore, there
is no instrumentation to update the color table on function
entry or exit for ProcessCGIRequest.

The checks on writes compare the color of the instruc-
tion performing the write to the color of the storage loca-
tion being written. If the colors are different, they raise a
security exception. The color of each instruction is known
statically and write checks use the color table to lookup the
color of the location being written. We do not insert write
checks for safe instructions to improve performance. In the
example in Figure 1, WIT adds write checks only before in-
struction 7 to check if the location being written has color
3. It does not add write checks before lines 5 and 8 because
these instructions are safe.

WIT also records the color of each function that can be
called indirectly in the color table. It inserts instrumenta-
tion to update the color table at program start-up time and
to check the color table on indirect calls. The indirect call
checks compare the color of the indirect call instruction and
its target. If the colors are different, they raise an exception.
There are no indirect calls in our example.

WIT can prevent all attacks that violate write integrity
but the number of attacks that violate this property depends
on the precision of the points-to analysis. For example if
two objects have the same color, we may fail to detect at-
tacks that use a pointer to one object to write to the other.
Our results show that the analysis is sufficiently precise to
make this hard. Additionally, WIT can prevent many at-
tacks regardless of the precision of the points-to analysis.
For example, it prevents: attacks that exploit buffer over-
flows and underflows by writing elements sequentially un-
til an object boundary is crossed (which are the most com-
mon); attacks that overwrite any safe object (which include
return addresses, exception handler pointers, and data struc-
tures for dynamic linking); and attacks that corrupt heap
management data structures.

Control-flow integrity provides an effective second line
of defense when the write checks fail to detect an attack.
WIT prevents all attacks that violate control-flow integrity
but the number of attacks that violate this property also de-
pends on the precision of the points-to analysis. For exam-
ple, if many functions have the same color as an indirect
call instruction, the attacker may be able to invoke any of
those functions. In the worst case, the analysis may assign
the same color to all functions that may be called indirectly.
Even in this worst case, an attacker that corrupts a func-
tion pointer can only invoke one of these functions. Fur-
thermore, these functions do not include library functions
invoked indirectly though the dynamic linking data struc-
tures. Therefore, the attacker cannot use a corrupt func-
tion pointer to jump to library code, to injected code or to
other addresses in executable memory regions. This makes
it hard to launch attacks that subvert the intended control
flow, which are the most common.

WIT does not prevent out-of-bounds reads. These can
lead to disclosure of confidential data but it is hard to ex-
ploit them to execute arbitrary code without violating write
integrity or control-flow integrity in the process. Therefore,
we chose not to instrument reads to achieve lower overhead.

WIT can prevent attacks on our example Web server.
The write check before line 7 fails and raises an exception
if an attacker attempts to overflow cgiCommand. When i
is 1024, the color of the location being written is 0 (which
is the color of the guard) rather than 3 (which is the color
of cgiCommand). Even without guards, WIT would be able
to detect this attack because the colors of cgiCommand and
cgiDir are different.

3. Static analysis

We implemented the points-to and the write safety analy-
sis using the Phoenix compiler framework [30]. These anal-
ysis operate on Phoenix’s medium level intermediate repre-
sentation (MIR), which enables them to be applied to differ-



ent languages and target architectures. Figure 2 shows the
MIR for the vulnerable C code in Figure 1.

_i = ASSIGN 0 #1
$L6: t273 = COMPARE(LT) _i, _sz #2

CONDITIONALBRANCH(True) t273, $L8, $L7 #3
$L8: t278 = ADD _msg, _i #4

t276 = ADD &_cgiCommand, _i #5
[t276] = ASSIGN [t278] #6
_i = ADD _i, 1 #7

GOTO $L6 #8
$L7: CALL &_ExecuteRequest,&_cgiDir,&_cgiCommand

Figure 2. Example vulnerable code in medium-
level intermediate representation (MIR).

We use an inter-procedural points-to analysis due to An-
dersen [8] that is flow and context insensitive but scales to
large programs. It computes a points-to set for each pointer,
which is the set of logical objects the pointer may refer
to. The logical objects are local and global variables and
dynamically allocated objects (for example, allocated with
malloc). We use a single logical object to represent all ob-
jects that are dynamically allocated at the same point in the
program but we do cloning of simple allocation wrappers to
improve analysis precision. Our implementation is similar
to the one described in [23] but it is field-insensitive rather
than field-based (i.e., it does not distinguish between the dif-
ferent fields in a structure, union, or class). We use Phoenix
to compile each source file to MIR and write points-to con-
straints to a file. The analysis reads the constraints file, com-
putes the points-to sets, and stores them in a file.

The analysis assumes that the relative layout of inde-
pendent objects in memory is undefined [9]. For exam-
ple in Figure 2, it assumes that correct programs will not
use t276, which is a pointer into the cgiCommand array,
to write to cgiDir. Compilers already make this assump-
tion when implementing standard optimizations. Under this
assumption, the analysis is conservative: a points-to set in-
cludes all objects that the pointer may refer to in executions
that do not violate memory safety (but it may include addi-
tional objects). Therefore, WIT has no false positives.

The write safety analysis classifies instructions as safe
or unsafe: an instruction is marked safe if it cannot violate
write integrity. The analysis marks safe all MIR instruc-
tions without an explicit destination operand or whose des-
tination operand is a temporary, a local variable, or a global.
These instructions are safe because they either modify reg-
isters or they modify a constant number of bytes starting at
a constant offset from the frame pointer 1 or the data seg-
ment. Assuming the constants generated by the compiler

1The frame pointer is safe even with recursion and calls to alloca
because there is a guard page at the end of the stack to prevent stack
overflows. The prologues of functions with frames larger than a page and
alloca check if the pages they need are resident. Therefore, they fault
on the guard page to trigger stack growth when necessary. If the operating
system cannot grow the stack, it raises an exception.

and linker are correct, the write safety analysis does not in-
troduce false negatives because control-flow integrity pre-
vents the attacker from bypassing our checks or changing
the data segment or the frame pointer. In the example in
Figure 2, all instructions are safe except instruction 6.

In addition, the write safety analysis runs a simple
intra-procedural pointer-range analysis to compute writes
through pointers that are always in bounds. The instructions
that perform these writes are marked safe. Our pointer-
range analysis is a simplified version of the one described
in [47]. It collects sizes of aggregate objects (e.g., structs)
and arrays that are known statically. Then it uses sym-
bolic execution to compute the minimum size of the ob-
jects each pointer can refer to and the maximum offset of
the pointer into these objects. When the analysis cannot
compute this information or the offset can be negative, it
conservatively assumes a minimum size of zero. Our cur-
rent implementation can track constant offsets and offsets
that can be bound using Phoenix’s built-in value range in-
formation for numeric variables. Given information about
the minimum sizes, the maximum offsets, and the size of
the intended write, the analysis checks if writes through the
pointer are always in bounds. If they are, the corresponding
instruction is marked safe.

While making the global pass over all source files to col-
lect constraints for the points-to analysis, we also run the
write safety analysis. We write unsafe pointers to a file. A
pointer is unsafe if it is dereferenced for writing by an un-
safe instruction.

We use the results of the points-to and write safety anal-
ysis to assign colors to objects and to unsafe instructions.
We use an iterative process to compute color sets, which in-
clude objects and unsafe pointer dereferences that must be
assigned the same color because they may alias each other.
Initially, there is a separate color set for each points-to set
of an unsafe pointer: the initial color set for a points-to set
p → {o1, ..., on} is {[p], o1, ..., on}. Then we merge color
sets that intersect until we reach a fixed point. We assign a
distinct color to each color set: we assign this color to all
objects in the color set and all instructions that write pointer
dereferences in the set. All the other objects in the origi-
nal program are assigned color zero. By only considering
points-to sets of unsafe pointers when computing colors, we
reduce the false negative rate and the overhead to maintain
the color table.

WIT uses a similar algorithm to assign colors to func-
tions that may be called indirectly. The differences are that
this version of the algorithm iterates over the points-to sets
of pointers that are used in indirect call instructions (except
indirect calls to functions in dynamically linked libraries),
and that it only considers the objects in these sets that are
functions. We can exclude indirect calls to library functions
because they use a pointer that our write checks protect from



being corrupted by the attacker. We assign a different color
to each color set. These colors are different from 0, 1, and
the colors assigned to unsafe objects. The rest of the code
is assigned color zero.

4. Instrumentation

We implemented WIT for 32-bit x86 machines running
Windows. We chose this architecture and operating sys-
tem because they are the most common today but it should
be easy to retarget our implementation to other architec-
tures and operating systems. We used several Phoenix plug-
ins [30] to generate WIT’s instrumentation. This section
starts by describing the color table. Then it explains in more
detail how we instrument the code.

4.1. Color table

WIT maintains a color table that maps memory ad-
dresses to colors. The color table must cover the whole
user virtual address space and it is accessed often by write
and indirect call checks. To achieve low space and time
overhead, we designed the color table to be compact and to
enable efficient lookups and updates.

To keep the color table small, we divide the virtual mem-
ory of the instrumented program into aligned eight-byte
slots. The color table is implemented as an array with an
eight-bit color identifier for each of these slots. Therefore,
it introduces a space overhead of only 12.5%.

We are able to record a single color for each eight-byte
slot because we generate code such that no two objects with
distinct colors ever share the same slot. It is easy to en-
force this requirement for heap objects because they are
eight-byte aligned and for functions because they are 16-
byte aligned. But since the stack and data sections are only
four-byte aligned in 32-bit x86 architectures, we cannot cur-
rently force eight byte alignment of objects in these sections
without introducing runtime overhead.

Instead, we force unsafe objects and guard objects in the
stack and data sections to be four-byte aligned and we insert
a four-byte aligned pad after unsafe objects. For an unsafe
object of size s, the pad is eight-bytes long if �s/4� is even
and four-bytes long if �s/4� is odd. We set �s/8� color
table entries to the color of the unsafe object when the pad
is four-bytes long and �s/8�+1 when the pad is eight-bytes
long. We should be able to reduce the space overhead when
targeting 64-bit x86 architectures because the stack and data
sections are eight-byte aligned in these architectures.

Figure 3 shows how padding works. Depending on the
alignment at runtime, the pad gets the color of the unsafe
object, the guard, or both. All these configurations are legal
because the pads and guards should not be accessed by cor-
rect programs and the storage locations occupied by unsafe

objects are always colored correctly. Conceptually, the pads
allow the guards to “move” to ensure that they do not share
a slot with the unsafe objects.

Since our points-to analysis does not distinguish between
different fields in objects and between different elements in
arrays, we always assign the same color to all the elements
of an array and to all the fields of an object. Therefore, it
is not necessary to change the layout of arrays and objects,
which is important for backwards compatibility.

We only require eight bits to represent colors because
the write safety analysis is very effective at reducing the
number of objects that we must assign colors to. However,
it is possible that more bits will be required to represent
colors in very large programs. If this ever happens, there are
several things we can do. For example, we can increase the
size of color table entries to 16-bits and increase memory
slot sizes to 16-bytes, or use 8-bit color identifiers at the
expense of worse coverage.

The color table can be accessed efficiently. Since there
are 2 GB of virtual address space available for the user in
Windows XP and Windows Vista, we allocate 256 MB of
virtual address space for the color table 2. We rely on the
operating system to allocate physical pages for the color ta-
ble on demand when they are first accessed. The base of
the color table is currently at address 40000000h. So to
compute the address of the color table entry for a storage
location, we take the address of the storage location, shift it
right by three, and add 40000000h.

The base of the color table can be at a different address.
For example, we changed the linker to place the base of
the table at address 0h. This reduces the number of bytes
needed to encode the instructions that access the table be-
cause we can omit the large constant. However, it had little
impact on the runtime overhead in our experiments.

To protect the color table from being overwritten by an
attacker, we read-protect the pages in the table that con-
tain the entries for the virtual address range occupied by
the table itself. With the base of the table at 40000000h,
we protect the pages in the address range 48000000h to
4A000000h to prevent reads and writes. Since we add
checks before unsafe writes and control-flow integrity en-
sures that the attacker cannot bypass these checks, the at-
tacker cannot overwrite the color table because the write
check would trigger a read fault on the protected address
range. This technique was first described in [44].

4.2. Inserting guards

We insert small guards before and after unsafe objects
in the vulnerable program. This improves WIT’s coverage

2It is possible to use a boot option to increase the user virtual address
space to 3 GB. In this case, we need to allocate more virtual address space
for the color table.
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Figure 3. Ensuring that two objects with distinct colors never share the same eight-byte slot. The pad after
unsafe objects takes the color of the guard, the unsafe object, or both depending on the alignment. The lowest
addresses are at the bottom of the figure.

when the points-to analysis is imprecise while adding little
runtime overhead. WIT is guaranteed to detect overflows
and underflows that write array elements sequentially until
an object boundary is crossed, which are the most common.

The guards are eight-bytes long to match the size of the
slots that we record colors for in the color table. The instru-
mentation to insert these guards is different for the stack,
heap, and global data sections.

To insert guards in the stack, we replace the compiler
phase that lays out local variables in a stack frame by our
implementation. We segregate safe local variables from un-
safe ones to reduce the space overhead. First, we allocate
contiguous storage for the safe local variables. Then we
allocate storage for the guards, pads, and unsafe local vari-
ables. This allows us to insert only n+1 guards and pads for
n unsafe local variables: the guard that prevents overflows
of a variable prevents underflows of the next variable.

In the rare case where a function argument is written by
an unsafe instruction, we cannot easily insert guards and
pads around it. Therefore, we copy the argument to a local
variable and rewrite the instructions to refer to the copy.
This local variable is marked unsafe and we insert guards
and pads around it.

We mark all heap-allocated objects as unsafe but we do
not insert pads or guards around them. The standard heap
allocator in Windows Vista, Windows XP SP2, and Win-
dows 2003 inserts an eight-byte header before each allo-
cated object. We use this header as a guard by simply setting
its color to 1 in the color table. Since heap objects and head-
ers are eight-byte aligned, we do not need pads either. This
optimization avoids space overhead, which could be signif-
icant for programs with many small allocations. In systems
with different heap allocators, we can achieve similarly low

overhead by modifying the allocator.
We add guards and pads between all variables in the

.data section and .bss sections but not in the read-only
data section (.rdata). We could use the same optimiza-
tions that we used for the stack but our results show that
they would have little impact on overall performance when
applied to globals.

We plan to implement an optimization that avoids the
need for most guards by laying out stack and global objects
such that adjacent objects have different colors.

4.3. Maintaining the color table

We rely on the operating system to initialize color table
pages to zero when they are first accessed. This ensures
security by default: unsafe writes and indirect calls to an
address are not allowed unless we explicitly set the corre-
sponding color table entry.

We initialize the color table entries for global variables
and their guards at program start up. We use color zero for
guards of global variables. We also initialize the color ta-
ble entries corresponding to the first instructions of allowed
indirect call targets at program start up. But we update the
color table dynamically when objects are allocated on the
stack or the heap.

We use an optimization to reduce the cost of updating
the color table when we allocate a new stack frame. Instead
of updating the color table entries for all objects in the stack
frame, we only update entries corresponding to unsafe local
variables and their guards on function entry. On function
exit, we reset the entries that we updated on function entry
to zero. This works because all safe objects have color zero,
which is the initial color of all color table entries. We use



color zero for guards of unsafe local variables.
We instrument function prologues and epilogues to set

and reset color table entries. This instrumentation is added
after the phase that lays out the stack frames. Therefore, it is
dependent on the target architecture. For example, we add
the following code sequence to the prologue of a function
with a single unsafe local variable with 12 bytes:

push ecx # 1 byte
lea ecx,[esp+3Ch] # 4 bytes
shr ecx,3 # 3 bytes
mov dword ptr [ecx+40000000h],00020200h #10 bytes
pop ecx # 1 byte

This sequence saves ecx on the stack to use it as a tempo-
rary. Then it loads the address of the first guard into ecx
and shifts it by three to obtain the index of the guard’s color
table entry. It uses this index to set the color table entries to
the appropriate colors. We set one color table entry for each
guard. For an unsafe object of size s, we set �s/8� color ta-
ble entries when �s/4� is odd and �s/8�+ 1 when �s/4� is
even (see section 4.1). We use 2-byte and 4-byte moves to
reduce the space and time overhead of the instrumentation
whenever possible. In our example, the mov updates the
four color table entries: the entries corresponding to guard
objects are set to 0 and those corresponding to the unsafe
local variable are set to two. The base of the color table is at
address 40000000h. If the base was at address 0h the mov

would be 6 bytes long. The final instruction restores the
original value of ecx. The instrumentation for epilogues is
identical but it sets the color table entries to zero.

An alternative would be to update color table entries only
on function entry for all objects in the stack frame. This
alternative adds significantly higher overhead because on
average only a small fraction of local variables are unsafe.
Additionally, WIT incurs no overhead to update the color
table when functions have no unsafe locals or arguments,
which is common for functions that are invoked often.

We also update the color table when heap objects are
allocated or freed. We instrument the code to call wrap-
pers of the allocation functions, for example, malloc and
calloc. These wrappers receive the color of the object be-
ing allocated as an additional argument. They call the cor-
responding allocator and then set the color table entries for
the allocated object to the argument color. They set �s/8�
color table entries for an object of size s. They also set
the color table entries for the eight-byte slots immediately
before and after the object to color one. These two slots
contain a chunk header maintained by the standard alloca-
tor in Windows. We use these headers as guards. We also
replace calls to free by calls to a wrapper. This wrapper
sets the color table entries of the object being freed to zero
and then invokes free. We use a different color for guards
in the heap to detect some invalid uses of free (as explained
in the next section).

4.4. Instrumenting writes

We only check writes performed by unsafe instructions.
These checks lookup the color of the destination operand in
the color table. Then they compare this color with the color
of the instruction. If the colors are the same, they allow the
write to proceed. Otherwise, they generate an exception.
We insert write checks in the MIR, which makes this instru-
mentation phase independent of the target architecture. For
example, we add the following instrumentation before the
unsafe write in Figure 2:

t300 = SHIFTRIGHT &[t276], 3
t301 = COMPARE(EQ) [t300+40000000h], 3
CONDITIONALBRANCH(True) t301, $L11, $L10

$L10: BREAK
$L11: [t276] = ASSIGN [t278] # unsafe write

where t300 and t301 are fresh temporaries, and the unsafe
write has color 3. Phoenix lowers this into the following
sequence of x86 assembly code:

lea edx,[ecx] # 2 bytes
shr edx,3 # 3 bytes
cmp byte ptr [edx+40000000h],3 # 7 bytes
je $L11 # 2 bytes
int 3 # 1 byte

$L11: mov byte ptr [ecx],ebx #unsafe write

where register ecx holds the target address of the unsafe
write and the color table starts at 40000000h. This code se-
quence loads the address of the destination operand into a
register, and shifts the register right by three to obtain the
operand’s index in the color table. Then it compares the
color in the table with the color of the unsafe instruction. If
they are different, it executes int 3. This raises an excep-
tion that invokes the debugger in debugging runs, or termi-
nates execution in production runs. We could easily raise
a different exception but this one is convenient for debug-
ging. The instructions in the write check are encoded in
15 bytes when the table is at address 40000000h but they
require only 11 bytes when the table is at address 0h.

We treat free as an unsafe instruction that writes to the
object pointed to by its argument. The wrapper for free
receives the color computed by the static analysis for the
object being freed. Then it checks if the pointer argument
points to an object with this color, if it is eight-byte aligned,
if it points to user address space, and if the slot before this
object has color one. If this check fails, we raise an excep-
tion. The first check prevents double frees because we reset
the color of heap objects to zero when we free them. The
last two checks prevent frees whose argument is a pointer
to a non-heap object or a pointer into the middle of an al-
located object. Recall that color one is reserved for heap
guards and is never assigned to other memory locations.



4.5. Instrumenting indirect calls

We also add checks before each indirect call. These
checks lookup the color of the target function in the color
table and compare this color with the color of the indirect
call instruction. If they do not match, we raise an exception.
This instrumentation phase is also independent of the target
architecture because it works with MIR. For example, we
replace the indirect call call t280 by the following MIR
instruction sequence:

t300 = SHIFTRIGHT t280, 3
t301 = COMPARE(EQ) [t200+40000000h], 20
CONDITIONALBRANCH(True) t301, $L10, $L11

$L11: BREAK
$L10: t302 = SHIFTLEFT t300, 3

CALL t302 # indirect call

where t300, t301, and t302 are fresh temporaries and 20
is the color of the indirect call instruction. Phoenix lowers
this MIR instructions into the following sequence of x86
assembly code:

shr edx,3 # 3 bytes
cmp byte ptr [edx+40000000h], 20 # 7 bytes
je $L10 # 2 bytes
int 3 # 1 byte

$L10: shl edx,3 # 3 bytes
call edx # indirect call

where register edx holds the function pointer and the color
table starts at address 40000000h. The first instruction shifts
the function pointer right by three to compute the color table
index of the first instruction in the target function. The cmp
instruction checks if the color in the table is the color of
allowed targets for this indirect call instruction. If they are
different, WIT raises an exception. If they are equal, the
index is shifted left by three to restore the original function
pointer value and the function is called.

This instruction sequence zeroes the three least signifi-
cant bits of the function pointer value. Since the first in-
struction in a function is always 16-byte aligned, this has no
effect if the function pointer value is correct. But it prevents
attacks that cause a control flow transfer into the middle of
the first eight-byte slot of an allowed target function. There-
fore, this instruction sequence ensures that the indirect call
transfers control to the first instruction of a call target that is
allowed by the static analysis. The checks on indirect calls
are sufficient to enforce control-flow integrity because all
other control data is protected by the write checks.

5. Runtime

WIT has a small runtime that includes an initialization
function and some wrappers for C runtime functions, for
example, for malloc and free. The initialization function

allocates the color table using VirtualAlloc, which re-
serves virtual memory for the table without adding space
overhead for pages that are not accessed. The operating
system zeroes the pages in the table when they are first ac-
cessed. The initialization function sets the color table en-
tries for globals an their guard objects, and for the entry
points of indirect call targets. We instrument the C runtime
(libc) start-up function to invoke our initialization.

Since there are many memory errors due to incorrect use
of libc functions, we use a version of libc instrumented
with WIT. If we used the variant of WIT described in the
previous sections, we would require a different libc bi-
nary for each program. Instead we developed a variant of
WIT for libraries. This variant assigns the same well-known
color (different from zero or one) to all unsafe objects al-
located by the library and inserts guards around these ob-
jects. All safe objects used by the library functions have
color zero. Before writes, this variant of WIT checks that
the color of the location being written is greater than one,
that is, that the location is not a safe object or a guard
object. These checks prevent libc functions from violat-
ing control-flow integrity. They also prevent all commmon
buffer overflows due to incorrect use of libc functions.
However, they cannot prevent attacks that overwrite an un-
safe object by exploiting format string vulnerabilities with
the %n specifier, but these can be prevented with static anal-
ysis [38, 9] and are disallowed by some implementations.

We still need to write wrappers for libc functions that
are written in assembly (for example, memcpy and strcpy)
and for system calls (for example, recv). These wrappers
receive the colors of destination buffers as extra arguments
and scan the color table entries corresponding to the slots
written by the wrapped function to ensure that they have
the right color. Since the color table is very compact, these
wrappers introduce little overhead. Other techniques re-
quire similar wrappers, e.g., [37, 21].

6. Effectiveness at preventing attacks

WIT can prevent all attacks that violate write integrity
but the number of attacks that violate this property depends
on the precision of the points-to analysis. For example if
two objects have the same color, we may fail to detect at-
tacks that use a pointer to one object to write to the other.

We ran experiments to evaluate the precision of the
points-to analysis and its impact on security. We used WIT
to compile nine programs from the SPEC CPU 2000 bench-
mark suite [40] (gzip, vpr, mcf, crafty, parser, gap, vortex,
bzip2 and twolf). During compilation, we measured the
number of colors used in each benchmark and the number of
memory write instructions with each color. Then we ran the
benchmarks and measured the maximum number of objects
with each color at runtime, where an object is a local vari-
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Figure 4. Number of colors for SPEC benchmarks.

able, a global variable, or an object allocated dynamically
using malloc, calloc, realloc, or alloca. We com-
bined these measurements to obtain an upper bound on the
number of objects writable by each instruction at runtime.
To compute this upper bound, we assumed a vulnerability
that allows an unsafe instruction to write to any object with
the same color as the instruction. We ignored constraints
imposed by the program code and our guards.

Figure 4 shows the number of colors used by objects and
functions in these benchmarks, and Figure 5 shows a cu-
mulative distribution of the fraction of memory write in-
structions versus the upper bound on the number of objects
writable by each instruction. For example, the first graph in
Figure 5 shows that 88% of the memory write instructions
in bzip can write at most one object at runtime, 99.5% can
write at most two objects, and all instructions can write at
most three objects. Therefore, even in this worst case, the
attacker can only use a pointer to one object to write to an-
other in 12% of the write instructions and in 96% of these
instructions it can write to at most one other object. In prac-
tice, the program code and our guards will further reduce
the sets of objects writable by each instruction.

The results in Figure 5 show that the precision of the
points two analysis can vary significantly from one applica-
tion to the other. For all applications except mcf and parser,
the attacker cannot make the majority of instructions write
to incorrect objects. For bzip, gap, crafty, and gzip, 93%
of the instructions can write to at most one incorrect ob-
ject in the worst case. The precision is worse for twolf, vpr
and vortex because they allocate many objects dynamically.
However, the fraction of instructions that can write a large
number of objects is relatively small.

It is important to note that WIT can prevent many at-
tacks regardless of the precision of the points-to analysis.
Even when the analysis assigns the same color to all unsafe
objects, our write checks can prevent: attacks that exploit
sequential overflows and underflows, attacks that overwrite
safe objects or code, and attacks that corrupt heap manage-
ment data structures.

WIT prevents attacks that exploit buffer overflows and
underflows by writing elements sequentially until an object
boundary is crossed. These attacks are always prevented
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Figure 5. Cumulative distribution of the fraction of
store instructions versus the upper bound on the
number of objects writable by each instruction.

because the write checks fail when a guard is about to be
overwritten. This type of attack is very common.

The write checks do not detect buffer overflows and un-
derflows inside an object. For example, they will not detect
an overflow of an array inside a C structure that overwrites
a function pointer, a data pointer, or some security-critical



data in the same structure. In the first two cases, WIT
can prevent the attacker from successfully exploiting this
type of overflow because the indirect call checks severely
restrict the targets of indirect calls and because the write
checks may prevent writes using the corrupt data pointer.
Overflows inside objects are not detected by any of the
backwards-compatible C bounds checkers [25, 37, 21] and
unlike WIT they have no additional checks to prevent suc-
cessful exploits.

The write checks prevent all attacks that attempt to over-
write objects with color zero or code. Since objects have
color zero by default, this includes many common types of
attacks. For example, return addresses, saved base pointers,
and exception handler pointers in the stack all have color
zero. Other common attack targets like the import address
table (IAT), which is used for dynamic linking, also have
color zero. The write checks prevent the attacker from mod-
ifying code because the colors assigned to indirect call tar-
gets are different from the colors assigned to unsafe objects
and the rest of the code has color zero.

WIT can prevent corruption of the heap management
data structures used by the standard allocator in Windows
without any changes to the allocator code. The checks
on free prevent corruption due to incorrect use of free,
and the write checks prevent corruption by unsafe aligned
writes because the data structures have color one or zero.
However, writes that are not aligned may overwrite the first
few bytes of the heap metadata after an object. Misaligned
writes generate exceptions in many architectures but they
are allowed in the x86. We can prevent corruption in all
cases by adding eight bytes of padding at the end of each
heap object. In most applications, this adds little space and
time overhead but it can add significant overhead in applica-
tions with many small allocations. This overhead may not
be justified because most programs avoid misaligned writes
for portability and performance, and the Windows allocator
can detect corrupt heap meta-data when it tries to use it.

Control-flow integrity provides an effective second line
of defense when the write checks fail to detect an attack.
The number of attacks that violate control-flow integrity
also depends on the precision of the points-to analysis. In
the experiments described above, the maximum number of
indirect call targets with the same color is 212 for gap, 38
for vortex and below 7 for all the other applications.

Even if the analysis assigned the same color to all indi-
rect call targets, an attacker that corrupted a function pointer
could only invoke one of these targets. Furthermore, these
targets do not include functions in dynamically linked li-
braries that are invoked indirectly though the IAT. These
library functions have color zero and we do not check these
indirect calls because the IAT is protected by our write
checks. Therefore, the attacker cannot use a corrupt func-
tion pointer to transfer control to library code, to injected

code, or to other addresses in executable memory regions.
This makes it hard to launch attacks that subvert the in-
tended control flow, which are the most common.

WIT does not prevent out-of-bounds reads. These can
lead to disclosure of confidential data but it is hard to ex-
ploit them to execute arbitrary code without violating write
integrity or control-flow integrity in the process. We ran ex-
periments using the same checks that we used for writes to
prevent most out-of-bounds reads. Since the extra checks
could increase overhead by more than a factor of three, we
decided that the extra overhead did not justify the security
improvement for most applications.

7. Experimental evaluation

We ran experiments to evaluate the overhead of our WIT
implementation and its effectiveness at preventing a broad
range of real and synthetic attacks. This section presents
our results. WIT detects all the attacks in our tests and its
CPU and memory overhead are low.

7.1. Overhead on CPU benchmarks

In our first experiment, we measured the overhead added
by WIT to 9 programs from the SPEC CPU 2000 bench-
mark suite [40] (gzip, vpr, mcf, crafty, parser, gap, vortex,
bzip2 and twolf) 3, and to 9 programs from the Olden [12]
benchmark suite (bh, bisort, em3d, health, mst, perimeter,
power, treeadd, and tsp). We chose these programs to facil-
itate comparison with other techniques that have been eval-
uated using the same benchmark suites.

We compared the running time and peak physical mem-
ory usage of the programs compiled using Phoenix [30]
with and without WIT’s instrumentation. We compiled the
programs with options -O2 (maximize speed), -fp:fast (fast
floating point model), and -GS- (no stack guards). When
building WIT binaries, we linked with our runtime and with
a WIT-instrumented version of libc (see Section 5). We ran
the experiments on Windows Vista Enterprise, on an idle
Dell Optilex 745 Workstation with a 2.46GHz Intel Core 2
processor and 3GB of memory. For each experiment, we
present the average of 3 runs; the variance was negligible.

Figures 6 and 7 show the CPU overhead on SPEC and
Olden benchmarks with WIT. For SPEC, the average over-
head is 10% and the maximum is 25%. For Olden, the av-
erage overhead is 4% and the maximum is 13%. It is hard
to do definitive comparisons with previous techniques be-
cause they use different compilers, operating systems and
hardware, and they prevent different types of attacks. How-
ever, we can compare WIT’s overhead with published over-
heads of other techniques on SPEC and Olden benchmarks.

3We did not run gcc, eon, and perlbmk because our prototype compiler
cannot compile these benchmarks yet.
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Figure 6. CPU overhead on SPEC benchmarks.
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Figure 7. CPU overhead on Olden benchmarks.

For example, CCured [33] reports a maximum overhead of
87% and an average of 28% for Olden benchmarks, but it
slows down some applications by more than a factor of 9.
The bounds checking technique in [21] has an average over-
head of 12% and a maximum overhead of 69% in the Olden
benchmarks. WIT has three times lower overhead on aver-
age and the maximum is five times lower.

Figures 8 and 9 show WIT’s memory overhead on SPEC
and Olden benchmarks. The overhead is low for all bench-
marks. For SPEC, the average memory overhead is 13%
and the maximum is 17%. For Olden, the average is 13%
and the maximum is 16%. This overhead is in line with our
expectations: since WIT uses one byte in the color table for
each 8 bytes of application data, the memory overhead is
close to 12.5%. The overhead can decrease below 12.5%
because we do not set color table entries for safe objects.
On the other hand, the overhead can grow above 12.5% be-
cause we insert guard objects and pads between unsafe ob-
jects, but the results show that this overhead is small. It
is interesting to compare this overhead with previous tech-
niques even though they have different coverage. For ex-
ample, CCured [33] reports an average memory overhead
of 85% for Olden and a maximum of 161%. Xu et al. [45]
report an average increase of memory usage by a factor of
4.31 for Olden benchmarks and 1.59 for SPEC benchmarks.

We also compiled the SPEC and Olden benchmarks with
a version of WIT that adds 8 bytes of padding at the end of
each heap object to protect heap metadata from hypothetical
corruption by misaligned writes. The average time to com-
plete the SPEC benchmarks increases from 10 to 11% and
the average memory overhead increases from 13 to 15%.
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Figure 8. Memory overhead on SPEC benchmarks.
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Figure 9. Memory overhead on Olden benchmarks.

The average time to complete the Olden benchmarks in-
creases from 4 to 7% and the average memory overhead
increases from 13 to 63%. The overhead increases signif-
icantly in the Olden benchmarks because there are many
small allocations. As we discussed earlier, we do not be-
lieve the increased security justifies the extra overhead.

7.2. Overhead on a Web server

The benchmarks used in the previous sections are CPU-
intensive. They spend most time executing instrumented
code at user level. The overhead of our instrumentation
is likely to be higher in these benchmarks than in other
programs where it would be masked by other overheads.
Therefore, we also measured the overhead added by our in-
strumentation to the NullHttpd Web server running the
SPEC WEB 1999 [40] benchmark.

The server ran on a Dell Optilex 745 Workstation with
an Intel Core 2 CPU at 2.4GHz and 2GB of RAM, running
Windows Vista Enterprise. We simulated clients using a
Dell Workstation running Windows XP SP2. The machines
were connected by a 100Mbps D-Link Ethernet switch. We
configured the clients to request only a static 100-byte file
from the SPEC Web benchmark. We could easily drive
our overhead to zero by requesting large files, reading them
from disk, or creating processes to generate dynamic con-
tent. But we chose this setting to measure worst case over-
head for Web server performance with WIT instrumenta-
tion. We measured the average response time and through-
put with and without instrumentation and we increased the
number of clients until the server reached peak throughput.



The results are the average of three runs.
When load is low, WIT’s overhead is masked by the time

to send requests and replies across the network. The average
operation response time in an unloaded server (1 client) is
only 0.2% longer with instrumentation than without. When
load is high and the server is saturated, WIT’s overhead in-
creases because the server is CPU-bound in this benchmark.
The overhead increases up to a maximum of 4.8%, which
shows that WIT can be used in production Web servers.

7.3. Synthetic exploits

We ran the benchmark described in [43] that has 18
control-data attacks that exploit buffer overflow vulnerabil-
ities. The attacks are classified according to the technique
they use to overwrite control-data, the location of the buffer
they overflow, and the control-data they target. There are
two techniques to overwrite control-data. The first over-
flows a buffer until the control-data is overwritten. The sec-
ond overflows a buffer until a pointer is overwritten, and
uses an assignment through the pointer to overwrite the
control-data. The attacks can overflow buffers located in
the stack or in the data segment, and they can target four
types of control-data: the return address on the stack, the old
base pointer on the stack, and function pointers and longjmp
buffers in the stack or in the data segment.

WIT can prevent all the attacks in the benchmark. All
the attacks except one are detected when a guard object is
about to be overwritten. The remaining attack is not pre-
vented by the guard objects because it overflows a buffer
inside a structure to overwrite a pointer in the same struc-
ture. This attack is detected when the corrupted pointer is
used to overwrite a return address because the return ad-
dress has color zero.

These attacks can be prevented by other techniques, for
example, [37, 28, 6, 13], but these techniques are not widely
used because they have high overhead. StackGuard [20] is
widely deployed because it has low overhead but it does not
prevent attacks that overflow non-stack buffers.

7.4. Real vulnerabilities

In our final experiment, we tested WIT’s ability to
prevent attacks that exploit real vulnerabilities in SQL

server, Ghttpd, Nullhttpd, Stunnel, and libpng.
SQL server is a relational database from Microsoft that

was infected by the infamous Slammer [32] worm. The vul-
nerability exploited by Slammer causes sprintf to over-
flow a stack buffer. We used WIT to compile the SQL server
library with the vulnerability. WIT detects Slammer when
the sprintf function tries to write over the guard object
inserted after the vulnerable buffer.

Ghttpd is an HTTP server with several vulnerabil-
ities [1]. The vulnerability that we chose is a stack
buffer overflow when logging GET requests inside a call to
vsprintf. WIT detects attacks that exploit this vulnerabil-
ity when vsprintf tries to write over the guard object at
the end of the buffer.

Nullhttpd is another HTTP server. This server has a
heap overflow vulnerability that can be exploited by send-
ing HTTP POST requests with a negative content length
field [2]. These requests cause the server to allocate a heap
buffer that is too small to hold the data in the request. While
calling recv to read the POST data into the buffer, the server
overwrites the heap management data structures maintained
by the C library. This vulnerability can be exploited to over-
write arbitrary words in memory. We attacked NullHttpd

using the technique described in [15]. The attack works by
corrupting the CGI-BIN configuration string. This string
identifies a directory holding programs that may be exe-
cuted while processing HTTP requests. Therefore, by cor-
rupting it, the attacker can force NullHttpd to run arbi-
trary programs. This is a non-control-data attack because
the attacker does not subvert the intended control-flow in
the server. WIT detects the attack when the wrapper for the
recv call is about to write to the guard object at the end of
the buffer. The example in Section 2 is inspired by this.

Stunnel is a generic tunnelling service that encrypts
TCP connections using SSL. We studied a format string vul-
nerability in the code that establishes a tunnel for SMTP [4].
An attacker can overflow a stack buffer by sending a mes-
sage that is passed as a format string to the vsprintf func-
tion. WIT detects the attack when vsprintf attempts to
write the guard object at the end of the buffer.

Libpng is a library for processing images in the PNG file
format [3]. Many applications use Libpng to display im-
ages. We built a test application distributed with Libpng
and attacked it using the vulnerability described in [31]. The
attacker can supply a malformed image file that causes the
application to overflow a stack buffer. WIT detects the at-
tack when a guard object is about to be written.

8. Related work

Type safe languages like Java and C# eliminate memory
errors. However, there is a large amount of software written
in unsafe languages like C and C++, and these languages are
still widely used to develop new software. So memory er-
rors will remain a problem in the foreseeable future. There
is a large body of work on techniques to protect C and C++
programs from attacks that exploit memory errors.

Some techniques use static analysis to identify vulnera-
bilities, for example, [42, 29, 14]. They have the advantage
of removing vulnerabilities from software before it ships
and they do not introduce any runtime overhead. How-



ever, static analysis techniques are not sufficient because
they are imprecise: they can miss vulnerabilities and raise
false alarms. Too many false alarms are an issue because
they may cause developers to stop using the tools.

Many techniques to prevent attacks that exploit memory
errors are not widely used. We believe there are two reasons
for this: requiring non-trivial changes to the source code or
the language runtime, or incurring high overhead. For ex-
ample, CCured [33] and Cyclone [24] proposed memory
safe dialects of C. They can prevent all memory errors but
require a significant effort to port C applications to the safe
dialects, and require major changes to the runtime. For ex-
ample, they replace free by a garbage collector. Their run-
time overhead is also significantly higher than WIT’s.

Other techniques can be applied to C and C++ programs
without modifications. Several systems detect attacks us-
ing dynamic taint analysis, e.g., [34, 17], which can prevent
many attacks that exploit memory errors and other types of
attacks. They work with binaries and do not require source
code. However, their overhead is several orders of magni-
tude higher than WIT’s. Xu et al [44] describe a dynamic
taint analysis technique that is implemented as a source-to-
source transformation on C programs. Their overheads are
an order of magnitude lower than previous techniques but
they are still above 100% when preventing memory error
exploits on CPU-intensive benchmarks.

There are several bounds checkers for C. For example,
the Jones and Kelly [25] bounds checker does not require
changes to the pointer format. It instruments pointer arith-
metic to ensure that the result and original pointers point
to the same object. To find the target object of a pointer,
it uses a splay tree that keeps track of the base address
and size of heap, stack, and global objects. CRED [37]
is similar but provides support for some common uses of
out-of-bounds pointers in existing C programs. These tech-
niques have high overhead, for example, CRED can slow
down applications by up to a factor of 12. Xu et al [45]
describe a technique that improves the coverage of the pre-
vious bounds checkers and reduces their overhead. Their
average overhead when preventing only spatial errors in the
Olden benchmarks is 12 times larger than WIT’s.

Some techniques to prevent memory error exploits de-
fend from attacks that overwrite specific targets, such as re-
turn addresses, pointers, or other control data (e.g., [20, 19,
39]), or that exploit specific vulnerabilities, such as format
string vulnerabilities (e.g., [18]). These techniques have
low overhead but they cannot defend from other attacks.
Techniques inspired by StackGuard [20] are widely used.
However, there are memory error exploits that they cannot
catch [43]. For example, they provide no protection from
overflows of heap and static variables [35]. WIT has similar
performance and broader coverage than these techniques.

The concept of control-flow integrity generalizes the

work of Wagner and Dean [41] and was introduced in [28,
6]. However, attackers can exploit memory errors to exe-
cute arbitrary code without violating control-flow integrity.
There are examples of several attacks of this type in [15].
CFI [6] and Program Shepherding [28] cannot detect this
type of attack. WIT can and it also detects all attacks that
violate control-flow integrity. Additionally, WIT has lower
overhead because it avoids control-flow integrity checks on
returns. For example, CFI has an average overhead of 15%
and a maximum overhead of 45% on the SPEC benchmarks
where we overlap. The average overhead grows to 24% with
the version of CFI that uses a shadow call stack to ensure
that functions return to their caller. WIT has an average
overhead of 10% and a maximum of 25% and it also en-
sures functions return to their caller.

DFI [13] combines static points-to analysis with runtime
instrumentation like WIT. For each instruction that reads a
value, it uses static analysis to compute the instructions that
are allowed to write the value. Then it instruments writes
and reads to ensure that the values read at runtime were
written by allowed instructions. Its coverage is similar to
WIT’s. It can detect some out-of-bounds reads and reads
after free but it does not have guards to improve coverage
when the analysis is imprecise. DFI’s average overhead on
the SPEC benchmarks where we ovelap is 104%.

The technique described by Yong et al. [46] has some
similarities with WIT. It assigns colors to objects and
checks a color table on writes. However, it has worse cov-
erage than WIT because it uses only two colors, it does not
insert guards, and it does not enforce control-flow integrity.
The two colors distinguish between objects that can be writ-
ten by an unsafe pointer and those that cannot. Yong et al.
incur an average overhead ten times larger than WIT on the
SPEC benchmarks where we overlap.

In concurrent work, Clause et al [16] describe a tech-
nique that assigns colors to objects and pointers dynami-
cally. It assigns a random color to memory objects when
they are allocated and, when a pointer to an object is cre-
ated, it assigns the color of the object to the pointer. Then
it propagates pointer colors on assignment and arithmetic.
On reads and writes to memory, it checks if the color of the
pointer and the memory match. Their software-only version
slows down SPEC INT by a factor of 100 or more. With
special hardware and 256 colors, their average overhead on
SPEC INT is 7%. WIT has similar overhead without special
hardware support.

There are several techniques that insert guard zones or
pages around objects, for example, [36, 22]. WIT achieves
better coverage by combining guard objects with runtime
enforcement of write and control-flow integrity.

Some techniques randomize the layout of objects in
memory to make it harder for attackers to exploit memory
errors. The most comprehensive randomization technique



that we know [11] has an overhead of 17% on gzip and WIT
has an overhead of 7%. DieHard [10] randomizes the loca-
tion of objects in the heap and the order in which objects are
reused after being freed. The geometric mean of their over-
head on SPEC INT is 12% but their maximum overhead is
109% (on twolf). WIT’s overhead on twolf is 3%. Other
techniques do instruction set randomization [27] but have
high overhead without hardware support.

The fastest software-only technique with coverage simi-
lar to WIT was presented by Dhurjati et al [21]. WIT can
prevent attacks that cannot be prevented by this technique.
For example, Dhurjati et al cannot prevent attacks that over-
flow a buffer inside a structure to overwrite a pointer field
in the same structure, or attacks that exploit dereferences
of pointers in objects that are freed and reused [7]. These
attacks can use corrupt pointers to write to arbitrary mem-
ory locations or to invoke arbitrary code. WIT’s write and
indirect call checks severely restrict the use of these cor-
rupt pointers. On the other hand, Dhurjati et al can prevent
most out-of-bounds reads and writes. WIT does not prevent
out-of-bounds reads and it may fail to prevent some out-of-
bounds writes as discussed earlier.

The technique of Dhurjati et al is similar to CRED but in-
troduces several optimizations that reduce runtime overhead
dramatically. For example, it uses points-to analysis to par-
tition objects into pools and uses a splay tree for each pool.
These splay trees can be looked up more efficiently than
the large splay tree used by previous approaches and each
pool has a cache for even faster lookups. This technique
has an average overhead of 12% and a maximum overhead
of 69% in the Olden benchmarks. WIT’s average overhead
on the same benchmarks is 4% and the maximum overhead
is 13%. WIT is three times faster than the fastest technique
with similar coverage.

9. Conclusion

We presented WIT, a new technique to prevent memory
error exploits. WIT uses a combination of static analysis
and runtime instrumentation to enforce two safety proper-
ties: write integrity ensures that instructions do not write
to unintended storage locations, and control-flow integrity
ensures that control is not transferred to unintended targets.
WIT can prevent all memory error exploits that enable arbi-
trary code execution that we know about. We have an effi-
cient implementation of WIT: the average space overhead in
our benchmarks is 13% and the average runtime overhead
is 7%. We believe this overhead is low enough for WIT to
be deployed widely.
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