
Symbolic Crosschecking of Floating-Point and SIMD Code

Peter Collingbourne Cristian Cadar Paul H. J. Kelly
Department of Computing
Imperial College London

{peter.collingbourne03, c.cadar, p.kelly}@imperial.ac.uk

Abstract
We present an effective technique for crosschecking an IEEE
754 floating-point program and its SIMD-vectorized ver-
sion, implemented in KLEE-FP, an extension to the KLEE
symbolic execution tool that supports symbolic reasoning on
the equivalence between floating-point values.

The key insight behind our approach is that floating-
point values are only reliably equal if they are essentially
built by the same operations. As a result, our technique
works by lowering the Intel Streaming SIMD Extension
(SSE) instruction set to primitive integer and floating-point
operations, and then using an algorithm based on symbolic
expression matching augmented with canonicalization rules.

Under symbolic execution, we have to verify equiva-
lence along every feasible control-flow path. We reduce the
branching factor of this process by aggressively merging
conditionals, if-converting branches into select operations
via an aggressive phi-node folding transformation.

We applied KLEE-FP to OpenCV, a popular open source
computer vision library. KLEE-FP was able to successfully
crosscheck 51 SIMD/SSE implementations against their cor-
responding scalar versions, proving the bounded equivalence
of 41 of them (i.e., on images up to a certain size), and find-
ing inconsistencies in the other 10.

Categories and Subject Descriptors C.1.2 [Multiple Data
Stream Architectures (Multiprocessors)]: Single-instruction-
stream, multiple-data-stream processors (SIMD); D.2.4
[Software/Program Verification]: Reliability; D.2.5 [Test-
ing and Debugging]: Symbolic execution

General Terms Reliability, Verification
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1. Introduction
Single Instruction Multiple Data (SIMD) computing is an in-
creasingly popular means of improving the performance of
programs by exploiting their data level parallelism. A num-
ber of traditionally scalar architectures have been extended
with SIMD support, such as the Streaming SIMD Extensions
(SSE), 3DNow! and Advanced Vector Extensions (AVX) for
x86, NEON for ARM, or AltiVec for PowerPC. Further-
more, GPU programming languages, such as OpenCL and
CUDA, are based on the SIMD execution model.

SIMD processors exploit data level parallelism by pro-
viding instruction sets that operate on one-dimensional ar-
rays of data called vectors. While automatic vectorization is
an active area of research [Eichenberger 2004, Larsen 2000,
Naishlos 2003], the difficulty of reasoning about data de-
pendencies and arithmetic precision means that optimizing
scalar code to use SIMD instructions is still a mostly manual
process. Unfortunately, manually translating scalar code into
an equivalent SIMD version is a difficult task, because any
programming error may cause the hand-optimized SIMD
code to act differently from the purportedly equivalent scalar
version. In this paper, we propose a novel automatic tech-
nique for verifying that the SIMD version of a piece of code
is equivalent to its (original) scalar version.

Our technique is based on symbolic execution [King
1975], which provides a systematic way for exploring all
feasible paths in a program for inputs up to a certain size.
On each explored path, our technique works by building
the symbolic expressions associated with the scalar and re-
spectively the SIMD version of the code, and proving their
equivalence.

While symbolic crosschecking has been successfully em-
ployed in the past (e.g., in the context of block cipher im-
plementations [Smith 2008]), we need to address a series
of challenges to apply it to the verification of SIMD vec-
torizations. First, we need to model the semantics of a real
SIMD instruction set, which the current generation of sym-
bolic execution tools do not handle. Second, and more im-
portantly, SIMD code makes intensive use of floating point
operations. Due to the complexity of floating point seman-
tics [IEEE Task P754 2008], it is extremely difficult — if not
infeasible — to build a constraint solver for floating point,



and as a result there are currently no such constraint solvers
available. Thus, in this paper we take a different approach,
in which we prove the equivalence of two symbolic float-
ing point expressions by first applying a series of expres-
sion canonicalization rules, and then syntactically matching
the two expressions. The key insight into why our approach
works is that constructing two equivalent values from the
same inputs in floating point can usually only be done reli-
ably by performing the same operations.

This paper makes the following contributions:

1. We present a symbolic execution (SE) based technique
for crosschecking SIMD vectorizations against their
scalar implementations.

2. We implement our technique in a tool called KLEE-FP,
an extension to the open source symbolic execution tool
KLEE [klee.llvm.org].

3. We reason about floating-point values (which KLEE’s
constraint solver cannot handle), using expression match-
ing augmented with canonicalization rules that express
strict equivalences in floating-point and mixed FP-integer
expressions. As far as we know, this is the first practical
SE-based technique that can precisely handle IEEE 754
floating point arithmetic.

4. We evaluate our technique by applying KLEE-FP to
OpenCV [Intel], a popular open source computer vision
library. KLEE-FP was able to crosscheck a total of 51
SIMD/SSE implementations against their corresponding
scalar versions, proving the bounded equivalence of 41
of them on images up to a certain size, and finding incon-
sistencies in the other 10 pairs.

To achieve this, the semantics for a substantial portion of
the Intel SSE instruction set are implemented via translation
to an intermediate representation. We improve the tractabil-
ity of our technique by implementing an aggressive variant
of if-conversion using phi-node folding [Chuang 2003, Lat-
tner 2004], to replace control-flow forking with predicated
select instructions, in order to reduce the number of paths
explored by symbolic execution.

2. Overview
This section illustrates the main features of our technique
by showing how it can be used to verify the equivalence
between a scalar and an SIMD implementation of a simple
routine. Our code example, shown in Figure 1, is based on
one of the OpenCV benchmarks we evaluated (specifically
thresh(BINARY INV, f32); see §5). The code defines a rou-
tine called zlimit, which takes as input a floating point ar-
ray src of size size, and returns as output the array dst
of the same size. Each element of dst is the greater of the
corresponding elements of src and 0. The routine consists
of both a scalar and an SIMD implementation; users choose

1 void zlimit ( int simd, float ∗src , float ∗dst ,
2 size t size ) {
3 if (simd) {
4 m128 zero4 = mm set1 ps(0.f );
5 while ( size >= 4) {
6 m128 srcv = mm loadu ps(src );
7 m128 cmpv = mm cmpgt ps(srcv, zero4);
8 m128 dstv = mm and ps(cmpv, srcv);
9 mm storeu ps(dst , dstv );

10 src += 4; dst += 4; size −= 4;
11 }
12 }
13 while ( size ) {
14 ∗dst = ∗src > 0.f ? ∗src : 0. f ;
15 src++; dst++; size−−;
16 }
17 }
18
19 int main(void) {
20 float src [64], dstv [64], dsts [64];
21 uint32 t ∗dstvi = ( uint32 t ∗)dstv ;
22 uint32 t ∗ dstsi = ( uint32 t ∗) dsts ;
23 unsigned i ;
24 klee make symbolic(src , sizeof ( src ), "src");
25 zlimit (0, src , dsts , 64);
26 zlimit (1, src , dstv , 64);
27 for ( i = 0; i < 64; ++i)
28 assert ( dstvi [ i ] == dstsi [ i ]);
29 }

Figure 1. Simple test benchmark.

between the two versions via the simd argument. The SIMD
implementation makes use of Intel’s SSE instruction set.

The first loop of the routine, at lines 5–11, contains the
core of the SIMD implementation, and is a good illustration
of how SIMD code is structured. Each iteration of the loop
processes four elements of array src at a time. The variables
srcv, cmpv and dstv are of type m128, i.e., 128-bit vec-
tors consisting of four floats each. The code first loads four
values from src into srcv by using the SIMD instruction
mm loadu ps() (line 6). It then compares each element of
srcv to the corresponding element of zero4, which was ini-
tialized on line 4 to a vector of four 0 values (line 7). The
output vector cmpv contains the result of each comparison
as a vector of four 32-bit bitmasks each consisting of all-
ones (if the srcv element was > 0) or all-zeros (otherwise).
Next it applies the cmpv bitmask to srcv by performing a
bitwise AND of cmpv and srcv to produce dstv, a copy of
srcv with values≤ 0 replaced by 0 (line 8). Finally, it stores
dstv into dst (line 9).

The second loop of the zlimit routine, at lines 13–16, is
the scalar implementation, which is also used by the SIMD
version to process the last few elements of src when the size
is not an exact multiple of 4.
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Figure 2. Symbolic expressions assigned to variables srcv, cmpv, dstv and to the array elements dstvi[0] and dstsi[0]
of Figure 1. src represents the symbolic array src. The ReadLSB (Read Least Significant Byte first) node represents a 4-byte
little-endian array read, FOgt floating point greater-than comparison, SExt sign extension, Select the equivalent of the C
ternary operator and Concat bitwise concatenation.

The main function constitutes the test harness. In order to
use KLEE-FP, developers have to identify the scalar and the
SIMD versions of the code being checked, and the inputs and
outputs to these routines. In our example, we have one input,
namely the array src. Thus, the first step is to mark this array
as symbolic, meaning that its elements could initially have
any value (see §4.1 for more details). This is accomplished
on line 24 by calling the function klee make symbolic()
provided by KLEE, which takes three arguments: the address
of the memory region to be made symbolic, its size in bytes,
and a name used for debugging purposes only. Then, on line
25 we call the scalar version of the code and store the result
in dsts, and on line 26 we call the SIMD version and store
the result in dstv. Finally, on lines 27–28 each element
of dstv is compared against the corresponding element of
dsts. Note that we use bitcasting to integers via the pointers
dstvi and dstsi for a bitwise comparison. As we will
further discuss in Section 3, this is necessary because in the
presence of NaN (Not a Number) values, the C floating point
comparison operator == does not always return true if its
floating-point operands are the same, as distinguished from
a bitwise comparison.

To use KLEE-FP to run this benchmark, the user first
compiles the code to LLVM bitcode [Lattner 2004], the
low level representation on which KLEE and our extension
KLEE-FP operate. The bitcode file can then be run directly
by KLEE-FP.

Before KLEE-FP begins executing the input bitcode file,
it first carries out a number of transformations. One of these
is a lowering pass that replaces instruction-set specific SIMD
operations with standard, instruction-set neutral instructions.
Section 3.3 discusses this pass in more detail.

KLEE-FP interprets a program by evaluating the trans-
formed bitcode instructions sequentially. During symbolic
execution, values representing variables and intermediate
expressions are manipulated. Both vector and scalar values
are represented as bitvectors: concrete values by bitvector
constants and symbolic ones by bitvector expressions. Vec-
tors have bitwidth s×n, where s is the bitwidth of the under-
lying scalar and n is the number of elements in the vector.
Section 3 gives more details on our modeling approach.

For example, during the first iteration of the zlimit
SIMD loop, the variables srcv, cmpv and dstv defined at
lines 6–8 in Figure 1 are represented by the three expres-
sions shown on the left hand side of Figure 2. Similarly, the
results dstvi[0] and dstsi[0] are represented by the two
expressions shown on the right side of Figure 2.

When KLEE-FP reaches an assert statement, it tries
to prove that the associated expression is always true. For
example, during the first iteration of the loop at lines 27–28
the expressions dstvi[0] and dstsi[0] are compared. To
this end, KLEE-FP applies a series of expression rewrite
rules, whose goal is to bring the expressions to a canoni-
cal normal form. As discussed in Section 4.4, one of our
canonicalization rules transforms an expression tree of the



form And(SExt(P ), X) into Select(P,X, 0), where P is
an arbitrary boolean predicate and X an arbitrary expres-
sion. For our example, this rule transforms the expression
corresponding to dstvi[0] shown in Figure 2 to be identi-
cal to expression dstsi[0], shown in the same figure. Once
both expressions are canonicalized, we attempt to prove their
equivalence by (1) using a simple syntactical matching for
the floating-point subtrees, and (2) using a constraint solver
for the integer subtrees. As highlighted in the introduction,
the reason we are able to prove the equivalence of floating-
point expressions by bringing them to canonical form and
then syntactically matching them is that constructing two
equivalent values from the same inputs in floating point can
usually only be done reliably in a limited number of ways.
As a consequence, we found that in practice we only need a
relatively small number of expression canonicalization rules
in order to apply our technique to real code (see §4.4).

One concern not covered by this simple example, which
has a single execution path, is the number of proofs that are
needed: under symbolic execution, every feasible program
path is explored, and we have to conduct the proof on ev-
ery path. Thus, an important optimization is to reduce the
number of paths explored by merging multiple ones together.
This optimization is discussed in detail in Section 4.2.

3. Modeling Floating Point and SSE
Operations

This section discusses our approach for modeling floating
point and SSE operations in KLEE-FP. In Section 3.1 we
start by presenting our floating point extension to KLEE.
Then, in Section 3.2 we describe our modeling of SSE vec-
tor operations, and in Section 3.3 we present our lowering
pass that translates SSE intrinsics into standard LLVM oper-
ations. Finally, in Section 3.4 we discuss the way we handle
LLVM atomic intrinsics.

3.1 Floating Point Operations
In order to add support for floating point, we extended
KLEE’s constraint language to include floating point types
and operations. Floating point operation semantics are de-
rived from those presented by LLVM, whose floating point
instructions include +, −, ×, ÷, remainder, conversion
to and from signed or unsigned integer values (FPToSI,
FPToUI, UIToFP, SIToFP), conversion between floating
point precisions (FPExt, FPTrunc) and the relational op-
erators <, =, >, ≤, ≥ and 6=. Of particular importance for
our crosschecking algorithm (§ 4.3) is the fact that relational
operators can occur in both ordered and unordered form.
Ordered and unordered operators differ in the way they treat
NaN values: if any operand is a NaN, ordered comparisons
always evaluate to false while unordered ones to true.

A comparison of two floating point values x and y must
have one of four mutually exclusive outcomes: x < y,
x = y, x > y or x UNO y (either or both of x and y

Shorthand FCmp operation Meaning
FOeq(X, Y ) FCmp(X, Y, {=}) Ordered =
FOlt(X, Y ) FCmp(X, Y, {<}) Ordered <
FOle(X, Y ) FCmp(X, Y, {<, =}) Ordered ≤
FUno(X, Y ) FCmp(X, Y, {UNO}) Unordered test

Table 1. Floating point predicate shorthand semantics.

are NaN). We establish a set O = {<,=, >, UNO} of these
outcomes. Then, any floating point relational operator may
be represented by a subset of O: for example, ordered ≤
(FOle) is represented by {<,=}.

In KLEE-FP, all floating point relational operators are
represented using a generic FCmp expression. The first two
operands to FCmp are the comparison operands, whereas the
third operand is a subset of O, known as the outcome set
(represented internally using a vector of four bits, based on
the floating point predicate representation used by LLVM
[Lattner 2004]). In this paper we normally refer to predicate
operations using shorthand names rather than using FCmp.
Table 1 gives a few examples of mappings between short-
hand names and associated FCmp operations. In Section 4.4
we show how outcome sets can be used to simplify expres-
sions involving floating-point comparisons.

In future work, we may also wish to store the rounding
mode of each non-relational operation. However, we have
not yet found this necessary, because none of the code we
have worked with changes the rounding mode.

3.2 SSE Vector Operations
Intel’s Streaming SIMD Extension operates on a set of eight
128-bit vector registers, called XMM registers. Each of these
registers can be used to pack together either four 32-bit
single-precision floats, two 64-bit double-precision floats, or
various combinations of integer values (e.g., four 32-bit ints,
or eight 16-bit shorts).

Since the same register set is used to operate on different
data types, it is possible to perform an operation of a certain
type on the result of an operation of a different type: e.g.,
one could perform a single-precision computation on the re-
sult of a double-precision, or even integer, computation. As
a consequence, in order to capture the precise semantics of
SSE vector operations, it is important to model SSE regis-
ters at the bit-level. Fortunately, KLEE already models its
constraints with bit-level accuracy [Cadar 2008] by using
the bitvector data type provided by its underlying constraint
solver, STP [Ganesh 2007]. Thus, we model each XMM reg-
ister as a 128-bit STP bitvector that can be treated as storing
different data types, depending on the instruction that uses
the register.

At the LLVM intermediate language level, SSE vec-
tors are represented by 128-bit typed arrays. There are
only three generic operations that operate on these arrays:
insertelement, extractelement and shufflevector.



# LLVM intrinsic # Occurrences Instruction Function
(llvm.x86.) in OpenCV

1 sse.cmp.ps 19 CMPPS Compare Packed Single-Precision Floating-Point Values
2 sse.max.ps 4 MAXPS Return Maximum Packed Single-Precision Floating-Point Values
3 sse.min.ps 6 MINPS Return Minimum Packed Single-Precision Floating-Point Values
4 sse2.pslli.w 5 PSLLW Shift Packed Data Left Logical
5 sse2.psubus.b 17 PSUBUSB Subtract Packed Unsigned Integers with Unsigned Saturation6 sse2.psubus.w 11 PSUBUSW

Table 2. Examples of SSE intrinsics supported by KLEE-FP. The entire list consists of 37 intrinsics.

All other SSE instructions are implemented as LLVM intrin-
sics, as discussed in the next section.

The extractelement operation takes as arguments a
128-bit wide array (e.g., an eight element array of 16-bit
integers) and an offset into this array, and returns the element
at that offset. For example,

%res = extractelement <8 x i16> %a, i32 3

extracts the fourth element of the array a (which contains
eight 16-bit shorts) and stores it in %res. Similarly,

%res = insertelement <8 x i16> %a, i16 10, i32 2

returns in %res an array with all values equal to those of
the array %a except for the third element which receives the
value 10.

The shufflevector instruction takes two vectors of the
same type and returns a permutation of elements from those
two vectors. The permutation is specified using an immedi-
ate vector argument whose elements represent offsets into
the vectors. For example,

%res = shufflevector <4 x float > %a, <4 x float> %b,
<4 x i32> <i32 0, i32 1, i32 4, i32 5>

returns in %res a vector with its 2 lower order elements taken
from the 2 lower order elements of %a and its 2 higher order
elements from the 2 lower order elements of %b.

In our implementation, we model these three opera-
tions using the bitvector extraction and concatenation prim-
itives provided by STP. The modeling is straightforward.
For example, if A is the 128-bit bitvector representing
the array a, Extract16(A, 48) is the bitvector expression
encoding the extractelement operation above, where
ExtractW (BV, k) extracts a bitvector of size W starting
at offset k of bitvector BV .

3.3 SSE Intrinsic Lowering
Not all SSE instructions are implemented in terms of vec-
tor operations; most of them are represented using LLVM
intrinsics. To enable comparison with scalar code, we im-
plemented a pass that translates them into standard LLVM
instructions by making use of the extractelement and
insertelement operations presented in Section 3.2.

We added support for 37 SSE intrinsics; Table 2 shows a
few examples. These 37 intrinsics were sufficient to handle

the OpenCV benchmarks on which we evaluated our tech-
nique (§ 5). An example of a call to an SSE-specific intrinsic
is shown below:

%res = call <8 x i16> @llvm.x86.sse2.pslli.w (
<8 x i16> %arg, i32 1)

This instruction shifts every element of %arg left by 1 yield-
ing %res. The lowering pass transforms this call into the fol-
lowing sequence of instructions:

%1 = extractelement <8 x i16> %arg, i32 0
%2 = shl i16 %1, 1
%3 = insertelement <8 x i16> undef, i16 %2, i32 0
%4 = extractelement <8 x i16> %arg, i32 1
%5 = shl i16 %4, 1
%6 = insertelement <8 x i16> %3, i16 %5, i32 1
...

%22 = extractelement <8 x i16> %arg, i32 7
%23 = shl i16 %22, 1
%res = insertelement <8 x i16> %21, i16 %23, i32 7

These instructions carry out the same task as the intrinsic but
are expressed in terms of the standard LLVM instructions
insertelement, extractelement and shl.

3.4 Atomic Intrinsics
LLVM provides a number of intrinsics which are used to
represent atomic operations. Since our OpenCV benchmarks
use atomic operations, we needed to add support for them to
KLEE-FP.

An example of such an LLVM atomic intrinsic is the
following:

%res = call i32 @llvm.atomic.load.add.i32.p0i32 (
i32∗ %ptr, i32 1)

This operation atomically loads a 32-bit integer from the
given memory pointer %ptr, increments it, stores the result
to %ptr and returns the value originally loaded from %ptr
in %res.

Since KLEE does not support threading or signals, KLEE-
FP uses a very simple work-around for atomic operations: it
simply lowers them to equivalent sequences of non-atomic
instructions. For example, the atomic operation shown above
is translated to:

%res = load i32∗ %ptr
%1 = add i32 %res, 1
store i32 %1, i32∗ %ptr



Our atomic lowering pass handles all 13 atomic intrinsics
supported by LLVM 2.7, and was subsequently contributed
to the main LLVM branch to be used by similar tools.

4. Crosschecking Algorithm
Crosschecking an SIMD routine against its scalar equiva-
lent using our technique involves four main stages. First, we
write a test harness that invokes the scalar and SIMD ver-
sions of the code on the same symbolic input, and asserts
that their results are equal. For example, the main() func-
tion in Figure 1 represents the test harness for our simple
zlimit benchmark. Second, we use symbolic execution to
explore all the feasible paths in the code under test (§4.1). To
increase the applicability of symbolic execution, we apply
an aggressive version of phi node folding to statically merge
paths (§4.2), which reduces the number of paths we have to
track by an exponential factor on some benchmarks. Then,
on each explored path, we try to prove that the symbolic
expressions corresponding to the scalar and SIMD variants
are equivalent. To do so, we first canonicalize the expres-
sions through a series of expression rewrite rules and analy-
ses (§4.4), and then use expression matching and constraint
solving to prove that the resulting expressions are equivalent
(§4.3).

4.1 Symbolic Execution
KLEE-FP uses symbolic execution [King 1975] to explore
all the feasible paths in a program up to a certain input
size. Symbolic execution runs the program on a symbolic
input, whose value is initially unconstrained. As the program
runs, it tracks the constraints on each symbolic memory
location. If code uses a symbolic expression in a conditional,
it follows both outcomes of the branch (if both are possible),
constraining the conditional expression to be true on the
true path and false on the other. Each of the two paths is
explored in the same way, forking execution whenever both
sides of a conditional expression are possible.

There are two fundamental limitations of symbolic exe-
cution which are relevant to this work:

1. It does not handle symbolically-sized objects. Thus, for
code that uses arbitrarily-sized data structures, we can
only verify the bounded equivalence of SIMD and scalar
versions, i.e. we can verify they are equivalent up to a
certain input size.

2. The number of paths in a program is in general exponen-
tial in the number of branches encountered during exe-
cution, thus for some programs, symbolic execution may
fail to explore all feasible paths in a practical amount of
time even for small input sizes. To reduce the number of
explored paths, we discuss in Section 4.2 an approach for
statically merging paths via phi-node folding.

In our work, we use the symbolic execution tool KLEE,
which is built on top of the LLVM compiler infrastructure.

A

B
%r1 = ...
... C

%r2 = ...
...

D %r = phi [%r1, %B], [%r2, %C]
...

p ¬p

Figure 3. Diamond control flow pattern.

We found KLEE to be a good match for implementing our
technique because it handles C/C++ code, tracks constraints
with bit-level accuracy, and provides an easily extensible
expression language [Cadar 2008].

4.2 Phi Node Folding
To reduce the number of explored paths, we apply a more
aggressive variant of phi-node folding (also known as if-
conversion) [Chuang 2003, Lattner 2004], which attempts
to statically merge program paths.

Phi-node folding usually operates on the static single-
assignment (SSA) form of a program [Alpern 1988] and
targets branches with a control flow structure matching the
diamond pattern shown in Figure 3, commonly associated
with if statements and the C ternary operator. The beginning
of block D contains one or more phi nodes, which select the
correct register values (in our example, that of %r) depending
on what block was previously executed.

We can reduce the amount of branching in a program by
merging all four basic blocks in a diamond pattern into a
single block. This is accomplished by unconditionally exe-
cuting blocks B and C and using the branch predicate p to
select the result via select instructions.

The traditional application of phi-node folding in com-
pilers has both safety and performance restrictions. Because
blocks B and C are executed unconditionally, it is only safe
to perform the transformation if neither block contains an
instruction that may throw an exception or cause any other
side effects. Most arithmetic instructions satisfy these con-
straints. However, floating point instructions do not, because
they may throw an exception if either operand is a NaN. Fur-
thermore, the transformation is only performed when folding
is cheap enough, in order to minimize the amount of unnec-
essary work done by the CPU.

Due to forking, the cost of not applying the optimization
in a symbolic execution context is usually greater than that of
applying it. Furthermore, since KLEE-FP’s crosschecking
algorithm (§4.3) and expression canonicalization rules (§4.4)
do not interfere with the side effects associated with floating
point expressions, is it is always safe to fold floating point
instructions in KLEE-FP.



Thus, we have adapted phi-node folding to aggressively
merge paths when we encounter the diamond pattern shown
in Figure 3. Our implementation is built on top of LLVM’s
SimplifyCFG pass, and always merges paths regardless of
the costs of blocks B and C.

4.3 Crosschecking of Floating Point Expressions
On every path explored via symbolic execution, KLEE-FP
tries to prove that the symbolic floating-point expressions
associated with the scalar and the SIMD implementations
are equivalent.

Proving that two floating point expressions are equivalent
involves two main steps. First, KLEE-FP applies a series of
expression rewrite rules that aim at bringing each expression
to a simple canonical form. These transformations include,
among others, category analysis, identity reduction, folding
of bitwise operations, and concat merging, and are discussed
in detail in Section 4.4.

After these canonicalization rules are applied, KLEE-FP
determines if the two normalized expressions are equivalent
by using a simple expression matching algorithm. Starting
at the root of each expression, KLEE-FP recursively com-
pares pairs of subtrees from the two expressions. For integer
subtrees, the STP constraint solver is used to determine the
equivalence of the two subtrees. On the other hand, for float-
ing point subtrees, the algorithm does not use the semantics
of the floating point expressions themselves, which are in-
stead treated as abstract binary functions. While this may
not work very well for integers, it is a good fit for floating
point — unlike integer arithmetic, constructing two equiva-
lent values from the same inputs in floating point can usually
only be done reliably by performing the same operations.

If the matching algorithm fails to prove expression equiv-
alence, we try to substitute rewritten constraints that are im-
plied by the original constraints (i.e., they impose fewer con-
straints on the input). This has the important property that
no false negatives are produced, i.e., that there are no unde-
tected errors. Any input that invalidates the original equiva-
lence will also invalidate the less constrained rewritten one.

One important way in which we use this idea is in han-
dling expressions of the form FPToSI(X) and FPToUI(X)
(conversion from floating point to integer). Each expression
of this form is substituted by an unconstrained symbolic
integer variable. While a new variable is created for each
unique expression of this type, identical expressions are sub-
stituted with references to the same variable. After the sub-
stitution, we can use our constraint solver STP to determine
if the rewritten integer expressions are equivalent. If this is
the case, then we know the original expressions are also
equivalent. However, if the constraint solver cannot prove
the equivalence, the mismatch could be a false positive.

4.4 Symbolic Expression Canonicalization
The expression canonicalization rules presented in this sec-
tion are essential to the success of our expression matching

approach. Their main goal is to bring expressions to a sim-
plified normal form, in which they are easier to compare.

Table 3 lists the main rewrite rules we implemented. The
first ten are specifically targeted to floating point expres-
sions, while the other eight are applicable to both floating
point and integer ones. The remainder of this section dis-
cusses these rules in more detail.

1. Floating point relational operators

As explained in Section 3.1, each floating point relational
operator has an associated outcome set. Rules 1–3 apply
simplifications to boolean And, Or and Not operators by ma-
nipulating the outcome set. For example, Or(FOlt(X,Y ),
FOeq(X,Y )) simplifies to FOle(X,Y ).
Rules 4–6 implement similar simplifications, making use of
the swap function defined below:

If o ∩ {<,>} = {>}, swap(o) = (o \ {>}) ∪ {<}
If o ∩ {<,>} = {<}, swap(o) = (o \ {<}) ∪ {>}

Otherwise swap(o) = o

2. Category analysis

Category analysis, a simplified form of interval analysis
[Moore 1959], affords us a crude means of expression op-
timization using a simple abstract interpretation of the se-
mantics of certain floating point expressions. We establish
a category set C = {NaN,−∞,−, 0,+,+∞} which covers
all categories of floating point values (NaN values, negative
infinity, negative values except negative zero/infinity, posi-
tive or negative zero, positive values except positive zero/in-
finity, and positive infinity). The category set cat(x) ⊆ C
of an expression x is defined as the set of categories the ex-
pression x may be in. We define cat(x) recursively based
on the category sets of subexpressions of x. For example, if
+ ∈ cat(x) and + ∈ cat(y) then {+,+∞} ⊆ cat(x + y).
Our system is capable of computing an accurate category set
for most floating point expressions.
Category sets are used to simplify and normalize floating
point relational operations. For example, if cat(x) = {0,−}
and cat(y) = {0,+} then both x > y and x UNO y are
infeasible. Therefore x > y is simplified to false, x ≤ y to
true and ¬(x < y) (unordered ≥) is normalized to x = y.

3. Floating point equality comparison

SSE code sometimes performs integer comparisons by first
converting to floating point format. This may be due to com-
bining floating point and integer comparisons in a single ex-
pression. An example of this is found in the OpenCV routine
cvUpdateMotionHistory in the silhouette benchmark,
which converts an integer vector to a floating point vector s0,
compares the elements to 0 and performs a logical AND with
another operation:

m128 s0 = mm cvtepi32 ps (...);
m128 fz = mm setzero ps ();
m128 m0 = mm and ps( mm xor ps(v0, ts4),

mm cmpneq ps(s0, fz));



# Condition Expression Result Section
1 - And(FCmp(X, Y, O1), FCmp(X, Y, O2)) FCmp(X, Y, O1 ∩O2)

§4.4(1)

2 - Or(FCmp(X, Y, O1), FCmp(X, Y, O2)) FCmp(X, Y, O1 ∪O2)
3 - Eq(FCmp(X, Y, O), false) FCmp(X, Y,O \O)
4 O ∩ {<, >} = {>} FCmp(X, Y, O) FCmp(Y, X, swap(O))
5 - And(FCmp(X, Y, O1), FCmp(Y, X, O2)) FCmp(X, Y, O1 ∩ swap(O2))
6 - Or(FCmp(X, Y, O1), FCmp(Y, X, O2)) FCmp(X, Y, O1 ∪ swap(O2))

7 Category analysis §4.4(2)
8 C constant, see §4.4(3) FOeq(SIToFP(X), C) Eq(X, FPToSI(C)) §4.4(3)
9 C constant, see §4.4(3) FOeq(UIToFP(X), C) Eq(X, FPToUI(C))

10 f ∈ {FPToSI, FPToUI} f(FPExt(X)) f(X) §4.4(4)
11 C1, C2 constants Concat(C1, Concat(C2, X)) Concat(Concat(C1, C2), X) §4.4(5)
12 Partial constant folding with equality §4.4(6)
13 - ZExt(X) Concat(0, X)

§4.4(7)
14 - And(SExt(P 1), X) Select(P 1, X, 0)
15 C constant ShlW (X, C) Concat(ExtractW−C(X, C), 0C)
16 C constant LShrW (X, C) Concat(0C , ExtractW−C(X, 0))

17 f ∈ {Or, And, Xor}, f(Concat(X0, Y0), Concat(X1, Y1)) Concat(f(X0, X1), f(Y0, Y1))
width(X0) = width(X1) §4.4(8)

18 f ∈ {Or, And, Xor} ExtractW (f(X, Y ), N) f(ExtractW (X, N), ExtractW (Y, N))

Table 3. Symbolic expression canonicalization rules. Where necessary, bitwidths of expressions are denoted by superscripts.

The corresponding scalar code performs a straightforward
integer comparison of the values here loaded to s0.
Rewrite rules 8 and 9 support such cases by providing a nor-
malization of floating point comparisons to integer compar-
isons. It is not sound to perform this normalization unless
two conditions are met. First, C must be representable in
X’s type. This means that C must not have a fractional com-
ponent and must satisfy −2W−1 ≤ C < 2W−1 (for signed
conversion) or 0 ≤ C < 2W (for unsigned conversion)
where W = width(X). If C does not meet these require-
ments, the comparison will always yield false.
Second, X must not be subject to rounding if it is to match
C. IfX could be rounded, then the comparison would match
multiple values of X . For example, using the IEEE single
precision format, with a 23-bit mantissa, the values 224 and
224 + 2 have adjacent representations. If X were 224 + 1
it would be rounded to 224 + 2 during integer to floating-
point conversion and would match a C of that value. We
must therefore require that |C| < 2M+1 where M is the
mantissa bitwidth of C’s type.

4. Removing unnecessary FPExt operations

Transformation rule 10 eliminates redundant floating-point
extensions (e.g., from float to double) where the result is
coerced to integer.

5. Folding Concat sequences

Rule 11 performs constant folding on sequences of Concat
operations. For example, Concat(11, Concat(00, X)) gets
simplified to Concat(1100, X).

6. Partial constant folding with equality

Given an expression of the form Eq(C, Concat(X,Y ))
where C is a constant, if either X or Y is constant then
we compare the higher order bits of C to X (or the lower
order bits to Y ). If the bits are not equal, we can safely re-
place the entire expression with false. If the bits are equal,
we replace the expression with an equality comparison of
either the lower order bits of C with Y (ifX constant) or the
higher order bits of C with X (if Y constant).

7. Simple normalization rules

Rules 13–16 implement simple expression transformations
via which certain bit-level operations are rewritten using
Concat, Extract and Select. For example, a shift left on
W bits by a constant amountC can be rewritten as an extract
of length W − C from offset C concatenated with C zero
bits.

8. Folding and unfolding of bitwise operations

Rewrite rule 17 implements folding of bitwise operations
through Concat to take advantage of partial constant fold-
ing. For example, if f = And and X0 = 0 then X1 can be
completely eliminated since And(0, X1) reduces to 0.
Note that this rewrite rule can also be applied if any of the
operands to the bitwise operation is a constant expression, by
treating the constant as a Concat of two smaller constants.
Rewrite rule 18 implements a similar transformation that un-
folds the Extract of a bitwise operation to take advantage
of partial constant folding. For example, if W = 2, N = 0,
f = Or and Y = 1100, then the rule will simplify the entire
expression to bitvector 00.



Source File (src/) Benchmarks # SIMD Cov.

cv/cvcorner.cpp
eigenval

44 100%
harris

cv/cvfilter.cpp filter 1332 0%

cv/cvimgwarp.cpp

remap

1070 74.6%resize

warpaff

cv/cvmoments.cpp moments 35 100%
cv/cvmorph.cpp morph 1220 43.6%
cv/cvmotempl.cpp silhouette 43 100%
cv/cvpyramids.cpp pyramid 125 44.0%
cv/cvstereobm.cpp stereobm 270 53.3%
cv/cvthresh.cpp thresh 238 100%

cxcore/cxmatmul.cpp

transcf.43

352 100%
transsf.43

transff.43

transff.44

Table 4. OpenCV code we tested with KLEE-FP. Cov-
erage data refers to coverage of SIMD instructions, where
an SIMD instruction is any instruction of vector type, any
extractelement instruction, stores of vector operand type,
casts from vector type and SSE intrinsics (name begins
llvm.x86.mmx, llvm.x86.sse or llvm.x86.ssse).

5. Evaluation
We evaluated our technique on a set of benchmarks that com-
pare scalar and SIMD variants of code developed indepen-
dently by third parties. The codebase that we selected was
OpenCV 2.1.0, a popular C++ open source computer vision
library, initially developed by Intel, and now an open-source
project available under a BSD license [Bradski 2008, Intel].

Although we had to make some changes to OpenCV for
compatibility with KLEE-FP, these were minimal—they
either replaced inline assembly code, which KLEE does not
support, or disabled some functionality unrelated to the SSE
code under test, but which KLEE had trouble executing.

Our benchmarks test a substantial amount of SSE code in
OpenCV. Due to time constraints, out of the twenty OpenCV
source code files containing SSE code, we arbitrarily se-
lected ten files for testing with KLEE-FP. To build bench-
marks, we had to acquire a (brief) understanding of how to
invoke each OpenCV algorithm in order to build a test har-
ness similar to that in Figure 1. Section 5.3 provides more
details regarding the manual effort involved in constructing
a test harness.

Table 4 presents the ten files we tested, together with a
list of benchmarks for that code and coverage data. Each
of our benchmarks tests one of the algorithms provided by
OpenCV. For example, harris tests the Harris corner detec-
tion algorithm, which finds a corner in a given image, intu-
itively a window that produces large variations when moved
in any direction [Bradski 2008]. Each benchmark takes a
number of parameters, including the size and format of the

input and output images (represented by matrices) and the
specific algorithm to test (for example, the morph bench-
mark can test an erode algorithm, which returns in each cell
of the output matrix the minimum value of the correspond-
ing cell in the input matrix and its neighbors, and a dilate
algorithm which instead takes the maximum).

Since we are unable to use symbolically sized images (see
§4.1), our methodology was instead to test each benchmark
on all possible image sizes up to 16 × 16 pixels. More
precisely, we start with the minimum size for which an SSE
variant of the algorithm under test exists (usually 4 × 1
pixels), and test all possible sizes until we reach images of
16 × 16 pixels or are unable to test any further due to the
high complexity of the generated queries.

The SIMD instruction count for each source file gives a
rough approximation of the overall complexity of the SSE
code tested by our benchmarks. While it does not necessarily
follow that the equivalent scalar code or the surrounding
control flow is of similar complexity, we found the SIMD
instruction count to be a good metric for the complexity of
the computational routines of interest to us.

Some coverage numbers do not reach 100%. We found
that this was generally caused by the presence of unrolled
SSE code that was unreachable due to query complexity. The
filter benchmark has 0% coverage because we weren’t
able to run it at all. We discuss the reasons in §5.3.

We constructed a total of 58 benchmarks to cover the
functions in these ten files. KLEE-FP was able to success-
fully verify 41 benchmarks up to a certain image size (§5.1)
and find mismatches in 10 benchmarks (§5.2). In addition,
three benchmarks triggered false positives (§5.3(2)) and four
benchmarks couldn’t be run at all by KLEE-FP (§5.3(3)).

5.1 Benchmarks verified up to a certain image size
Table 5 presents the list of benchmarks and associated pa-
rameters that we were able to verify using KLEE-FP up to
a certain image size. The Format column shows the format
of the input and output images in terms of the data type (f
= floating point, s = signed integer, u = unsigned integer)
and the bitwidth of the format. The Max Size column shows
the maximum image size we tested using our methodology.
Sizes of the form X → Y indicate that the benchmark’s in-
put and output images are of different sizes: X is the maxi-
mum input image size, and Y the maximum output image
size that we tested. The K column is used by the morph
benchmark, which contains two variants of its algorithm:
one for rectangular kernels (represented by R) and one for
non-rectangular kernels (represented by NR).

The transff, transsf and transcf benchmarks use
fixed size matrices. The .43 variants take a 3-channel source
array of size 4 × 4 and a 1-channel transformation matrix
of size 3 × 4 and produce a 3-channel array of size 4 × 4,
while the .44 variants take a 4-channel source array of size
4 × 4 and a 1-channel transformation matrix of size 4 × 4
and produce a 4-channel array of size 4× 4.



# Bench Algo K Format Max Size
1

morph

dilate

R
u8 5× 5

2 s16 16× 16
3 u16 16× 16
4

NR

u8 8× 3
5 s16 16× 16
6 u16 16× 16
7 f32 15× 15
8

erode
R

u8 4× 4
9 s16 16× 16
10 u16 16× 16
11

NR
s16 16× 16

12 u16 16× 16

13 pyramid u8 8× 2→ 4× 1

14

remap

u8 16× 16
15 nearest s16 16× 16
16 neighbor u16 16× 16
17 f32 16× 16
18

linear

u8 16× 16
19 s16 16× 16
20 u16 16× 16
21 f32 16× 16
22

cubic

u8 16× 16
23 s16 16× 16
24 u16 16× 16
25 f32 16× 16

26

resize

linear
s16 8× 8→ 8× 8

27 f32 8× 8→ 8× 8
28

cubic
s16 8× 8→ 8× 8

29 f32 8× 8→ 8× 8

30 silhouette u8 f32 16× 16

31

thresh

BINARY
u8 16× 16

32 f32 16× 16
33

BINARY INV
u8 16× 16

34 f32 16× 16
35 TRUNC u8 16× 16
36

TOZERO
u8 16× 16

37 f32 16× 16
38

TOZERO INV
u8 16× 16

39 f32 16× 16

40 transff.43 f32 See §5.1
41 transff.44 f32 See §5.1

Table 5. OpenCV benchmarks verified up to a certain size.

The remap benchmark tests the cvRemap routine, which
performs symbolic conditional branching over the data con-
tained in two of its three input matrices. Because the phi
node folding pass is unable to simplify this branching struc-
ture, exponential forking results. Our compromise for this
benchmark is to supply two concrete matrices and one sym-
bolic matrix to cvRemap.

As mentioned before, we ran each benchmark on matrices
of up to 16 × 16 pixels or until we were unable to test
any further due to the high complexity of the generated
queries. While these are relatively small matrices, our results
should be viewed in combination with the SIMD coverage

data which shows that the image sizes we tested cover most
SIMD code.

We evaluated our phi node folding technique (§4.2) by
running our benchmarks both with and without this opti-
mization enabled, and measuring the amount of branching.
We found that phi-node folding was essential for two of our
benchmarks, silhouette and morph (which itself encom-
passes a large number of algorithm/format combinations). In
both cases, we were able to merge all program branches into
a single large select expression. This in turn decreased the
number of paths explored by KLEE-FP by an exponential
factor of the number of elements in the input image. E.g., for
the largest image we tested in the morph benchmarks, sized
16× 16, the number of paths decreased from approximately
2256 paths (according to our theoretical calculations) to 1.

We measured the execution time taken by KLEE-FP for
all of our experiments. However, because we ran our bench-
marks on a heterogeneous cluster of machines, these times
are mainly intended to give a rough idea of the computa-
tional cost involved in using our tool. The runtime of individ-
ual experiments (i.e., one benchmark run with a single ma-
trix size) varied between less than one second to more than
40 hours. The total cumulative execution time per bench-
mark (i.e., for all matrix sizes) ranged from only a few sec-
onds (for the transff benchmarks, which only work with a
fixed matrix size) up to 27 days for morph (dilate, R, u16).
Approximately 21.1% of benchmarks had cumulative exe-
cution times of under ten minutes, 34.2% between ten min-
utes and one hour, 18.4% between one and twelve hours, and
26.3% over twelve hours.

5.2 Invalidated Benchmarks
Table 6 presents the list of benchmarks in which we found
mismatches between the scalar and SSE implementations.
Each mismatch was detected by KLEE-FP in less than 30
seconds.

We discuss each of the mismatches found below:

1. eigenval and harris:
Both the eigenval and harris benchmarks compute cer-
tain values in double precision in the scalar implementation,
which are computed in single precision in the SSE imple-
mentation. To determine whether this was the only differ-
ence between the implementations, we modified the scalar
implementation to use single precision by replacing double
with float and casting to single precision where appropri-
ate (in C, a binary operation taking two floating point val-
ues promotes the lower precision operand to the type of the
higher precision operand [Int 1999]).
This modification caused eigenval to pass our tests, but
there was a further issue with harris regarding associa-
tivity. The scalar implementation of eigenval computes
the expression ((float)k)*(a + c)*(a + c), which the
SSE code computes as mm mul ps( mm mul ps(t, t),



# Benchmark Algorithm K Format Size Description
1 eigenval f32 4× 4 Precision
2 harris f32 4× 4 Precision, associativity
3

morph
dilate

R f32 4× 1

Order of min/max operations
4 NR f32 4× 1
5 erode R f32 4× 1
6 thresh TRUNC f32 4× 4

7 pyramid f32 16× 2→ 8× 1 Associativity, distributivity
8 resize linear u8 4× 4→ 8× 8 Precision
9 transsf.43 s16 f32 See §5.1 Rounding issue
10 transcf.43 u8 f32 See §5.1 Integer/FP differences

Table 6. OpenCV benchmarks in which we found mismatches between the scalar and the SSE versions.

k4), where the variable t initially holds the four a+c values,
and k4 holds four copies of k.
The IEEE floating point operations + and× are not associa-
tive, so these two expressions are not equivalent. The asso-
ciativity issue may not be immediately obvious, but because
* in C is left associative [Int 1999], the scalar multiplica-
tion is implicitly bracketed as (((float)k)*(a + c))*(a
+ c), which is clearly not equivalent to the SSE version. The
discrepancy is also revealed by KLEE-FP, which is capable
of printing the symbolic expressions involved. In this case,
KLEE-FP outputs the following expressions, where N0 and
N65 are complex subexpressions shared between the two ex-
pressions:

SIMD : N0 − ((N65 ×N65)× 0.04)
Scalar : N0 − ((0.04×N65)×N65)

As it can be seen, the KLEE-FP encoding of the operation,
which provides explicit bracketing, makes associativity er-
rors such as this much easier to spot.

2. morph (f32) and thresh (TRUNC, f32)
Both benchmarks involve floating point min and/or max op-
erations. The SSE and scalar variants of the implementations
apply min and max to the same operands but in a different
order. We cannot consider the two expressions to be equiv-
alent because the implementations of min and max used by
the benchmarks are neither associative nor commutative.
The canonical way of expressing a floating point min or max
operation, which is employed by the SSE instructions MINPS
and MAXPS, is:

min(X,Y ) = Select(FOlt(X,Y ), X, Y )
max(X,Y ) = Select(FOlt(Y,X), X, Y )

The STL functions std::min and std::max used by the
scalar variants of the benchmarks are not required by the
C++ 2003 standard [Int 2003] to be implemented in any
specific way (the result is undefined if any of the operands is
NaN), and the GNU STL implements them with the operand
order reversed:

stl min(X,Y ) = min(Y,X)
stl max(X,Y ) = max(Y,X)

To see why the operations are not commutative, consider
the evaluation of min(X,Y ) where one of the operands is
NaN and the other is not NaN. In this case, the condition
would always evaluate to false and Y is always returned
regardless of which operand is NaN. A similar result can be
drawn for max.
To see why the operations are not associative, consider
min(min(X, NaN), Y ) and min(X, min(NaN, Y )). As we
have seen min(X, NaN) evaluates to NaN and min(NaN, Y )
to Y so the expressions reduce to Y and min(X,Y ) respec-
tively.

3. pyramid (f32)
The SIMD variant of this code produces radically different
symbolic expressions than the scalar variant. To give an
example, we show below an expression extracted from the
scalar variant of the algorithm:

((N0 +N0) + (N0 +N0)) + ((N3 +N0)× 4.0)

The corresponding SSE expression at the same position is:

(((N0 × 6.0) + (N3 × 4.0)) +N0) +N0

N0 and N3 are complex subexpressions shared between the
two expressions. To rearrange the first form into the second
would require not only associativity but distributivity prop-
erties. Because the IEEE floating point + and × are neither
associative nor distributive, the equality does not hold.

4. resize (linear, u8)
The scalar variant of this code produces expressions of the
form (simplified to remove irrelevant saturation checks):

(((1536×N0) + (512×N0)) + 2097152) >> 22

whereas the SIMD variant produces expressions of the form:
(2 + (((1536× (N0 >> 4)) >> 16)+
((512× (N0 >> 4)) >> 16))) >> 2



All intermediate values are 32 bits. The SIMD variant loses
11 bits of precision through right shifts before the addition
operation, while the scalar variant retains all precision until
the final right shift. This leads to differences where the lower
11 bits of N0 affect the upper 10 bits of the addition result.

5. transsf.43
The scalar variant of this code performs a rounds-to-nearest
floating-point to unsigned 16-bit integer conversion. Be-
cause of the CPU’s lack of support for floating-point to un-
signed integer conversion, the conversion is performed by
converting to a signed 32-bit integer and downcasting. On
the other hand, the SIMD variant performs the conversion by
first subtracting 32768 from the floating point number, per-
forming a conversion directly to a 16-bit signed integer and
adding 32768 to the result. While this may appear correct, it
will produce different results in certain edge cases.
For example, consider the value 0.5 + ε, where ε is a value
sufficient to shift 0.5 to the next highest floating point rep-
resentation. If this value is converted directly to an integer,
as in the scalar version of the code, the value is rounded up
to the nearest integer value, this being 1. On the other hand
if we subtract 32768 from the floating point value, as in the
SIMD variant of this code, ε will be lost during rounding
and the result is −32767.5. When this value is converted to
an integer, it is rounded down to −32768 (under this round-
ing mode, ties are rounded to the nearest even value), and
the result is 0 after adding 32768 back.

6. transcf.43
The scalar variant of this code performs floating point calcu-
lations whereas the SIMD variant operates over 32-bit fixed
point values with 10 bits of precision below the radix point.
When the SIMD variant converts the floating point input val-
ues into this format, precision can be lost if the floating point
exponent is less than 13. This leads to different results where
the lower order bits of the floating point input values affect
the final result.

We reported the mismatches we found to the OpenCV devel-
opers. At the time of this writing, we have received an an-
swer for five out of the ten mismatches listed in Table 6. The
developers confirmed the precision and associativity mis-
matches in the eigenval and harris benchmarks as real
issues and informed us of their intention to fix them. In re-
sponse to the mismatches in morph caused by the different
order of min/max operations, we received the following an-
swer:

“I wonder, if your tool can be told to ignore the NaN’s in the certain
function? Because we never assumed that NaN’s are possible in the
morphological functions’ input data and do not see any reason for
such assumption.” (Vadim Pisarevsky, personal communication)

As a result, we added an option to KLEE-FP which
would ignore the order of min/max operations. The fea-
ture was implemented by simply adding another expression

transformation rule to KLEE-FP. With this rule enabled,
KLEE-FP was now able to prove the equivalence of the
respective benchmarks on images up to 15 × 15. The tool
reported another mismatch on an image of 16 × 16, which
we are currently investigating.

5.3 Applicability and Limitations
Our experimental evaluation has helped us better understand
the applicability of our tool, and its main limitations. We
have identified three main aspects that developers should be
aware of when using KLEE-FP:

1. Manual effort: To use our tool, developers have to write
a test harness, similar to the one implemented by the main()
function in Figure 1. This requires the ability to construct the
input data structures required to invoke the function under
testing, and to identify the output structures that should be
compared for equivalence. In the case of code operating
on complex, application-specific data structures, this can be
a difficult task, especially for people not familiar with the
codebase under testing. This is a problem shared with testing
in general, and unit testing in particular, and represents the
main reason for which we did not have time to test all the
SIMD code in OpenCV. However, KLEE-FP is designed
as a developer tool, and the software developers familiar
with the API of the code under testing would be in a better
position to rapidly develop this kind of test harnesses.

2. False positives: Because KLEE-FP’s verification pro-
cess is based on expression matching augmented by canon-
icalization rules, it is prone to false positives, i.e., it can say
that two expressions are not equivalent when in fact they are.
(However, remember that KLEE-FP has no false negatives,
i.e., when it says that two expressions are equivalent, this is
guaranteed to be true).
We discovered three false positives in the OpenCV experi-
ments. Two benchmarks—namely resize (linear, u16) and
resize (cubic, u16)—used query expressions of the form
FPToSI(X) or FPToUI(X), which were converted to un-
constrained variables (see §4.3). While the variable was un-
constrained, the underlying floating point expression X was
limited in its range, and STP produced counterexamples for
the unconstrained variables outside of their feasible range.
The SSE variant of resize (cubic, u8) performed floating
point calculations whereas the scalar variant performed inte-
ger calculations. Analysis of such expressions would require
reasoning about floating point semantics, which KLEE-FP
is not capable of.

3. Symbolic execution and constraint solving limita-
tions: There were also four benchmarks that we were un-
able to run at all using KLEE-FP. The filter benchmark
invoked malloc with a symbolic argument. While KLEE is
normally able to recover from a symbolic memory allocation
using STP to determine the maximum value of the argument,
in this case the argument was built from a floating point ex-



pression and KLEE-FP was unable to find a maximum, re-
sulting in an error. The other three benchmarks (stereobm,
moments and warpaff) presented queries to STP that were
too complex to handle, meaning that they caused STP to run
for an unbounded amount of time or consume all available
memory.

5.4 KLEE-FP as a Development Tool
Manually translating scalar code into an equivalent SSE ver-
sion is a difficult process. Due to the restrictions of floating
point arithmetic, constructing two equivalent floating point
expressions usually requires the same sequence of opera-
tions, and as a result, we found that in writing the SSE vec-
torizations, OpenCV developers try to closely imitate the
operations performed by the scalar code. Unfortunately, the
process is error-prone, and developers often make invalid as-
sumptions about the properties of floating point arithmetic,
such as those related to associativity, distributivity, preci-
sion, and rounding. We believe that KLEE-FP could be ef-
fectively applied as a development-time tool that would as-
sist programmers with the vectorization process, or with any
other optimization task that requires the equivalence of two
different code fragments.

We believe the initial feedback we received from the
OpenCV developers is consistent with our envisioned use of
KLEE-FP as a development tool. Developers would incre-
mentally apply our technique on increasingly bigger inputs
until no more mismatches are found and/or they gain enough
confidence in their translation. Once a mismatch is found,
they would either fix the code and look for more problems,
or they would improve the precision of the tool by adding
additional expression rewrite rules. To improve the usability
of KLEE-FP for the latter scenario, the tool would benefit
from the ability to specify additional rules in a higher-level
language like the one we use to describe the rules in Table 3.

6. Related Work
SIMD-vectorized code makes intensive use of floating point
arithmetic. Previous work on formally verifying floating
point programs has used theorem proving [Boldo 2007,
Harrison 2007], constraint solving based on approximation
with rationals or reals [Holzbaur 1995] and symbolic execu-
tion using projection functions over floating point intervals
[Botella 2006, Michel 2002]. While promising, these tech-
niques have only been shown to work on very small hand-
crafted programs. An alternative to formal verification is
testing. For example, Aharoni [2003] uses randomized test-
ing coupled with coverage requirements to test floating point
programs. Random testing can easily be applied to large ap-
plications, but misses corner-case bugs that are common in
floating point programs.

Our approach of using symbolic execution combined with
expression matching and canonicalization rules has been
successfully used in the past to verify code equivalence,

e.g., in the context of hardware verification [Clarke 2003],
embedded software [Currie 2006], compiler optimizations
[Necula 2000] and block cipher implementations [Smith
2008]. The main contribution of this work lies in the tech-
niques for handling floating-point arithmetic and in applying
this approach to SIMD vectorizations.

Our application of phi-node folding [Chuang 2003, Lat-
tner 2004] aims at reducing the state space explored by sym-
bolic execution by statically merging paths. Recent work in
the area provides alternative approaches that we could ap-
ply to reduce the number of paths explored: using composi-
tional dynamic test generation to create function summaries
[Godefroid 2007], using read-write sets to track the values
accessed by the program [Boonstoppel 2008], or using in-
formation partitions to track information flow between in-
puts [Majumdar 2009].

Automatic vectorization techniques provide an alterna-
tive to verifying the correctness of manually written SIMD
code [Eichenberger 2004, Larsen 2000, Naishlos 2003].
However, even as these techniques will start to be more
widely adopted, the approach presented in this paper can
be applied to verify these automatically generated SIMD-
vectorizations.

7. Conclusion
SIMD computing is an increasingly popular means of im-
proving the performance of programs by exploiting their
data level parallelism. Unfortunately, manually translating
scalar code into an equivalent SIMD version is a difficult
task, because any programming error may cause the hand-
optimized SIMD code to act differently from the original
scalar version. In this paper, we introduced KLEE-FP, a
novel technique for crosschecking an SIMD implementation
against its scalar version, which we believe would be valu-
able to authors of SIMD code. KLEE-FP was able to suc-
cessfully crosscheck 51 SSE benchmarks from the popular
OpenCV library against their corresponding scalar versions,
proving the bounded equivalence of 41 of them, and finding
inconsistencies in the other 10 pairs.

8. Availability
KLEE-FP and our OpenCV benchmarks are freely available
from our website:

http://www.pcc.me.uk/~peter/klee-fp/
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