
Enhancing Server Availability and Security Through
Failure-Oblivious Computing

Martin Rinard, Cristian Cadar, Daniel Dumitran, Daniel M. Roy,
Tudor Leu, and William S. Beebee, Jr.

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139

Abstract
We present a new technique,failure-oblivious comput-

ing, that enables servers to execute through memory er-
rors without memory corruption. Our safe compiler for
C inserts checks that dynamically detect invalid memory
accesses. Instead of terminating or throwing an excep-
tion, the generated code simply discards invalid writes
and manufactures values to return for invalid reads, en-
abling the server to continue its normal execution path.

We have applied failure-oblivious computing to a
set of widely-used servers from the Linux-based open-
source computing environment. Our results show that
our techniques 1) make these servers invulnerable to
known security attacks that exploit memory errors, and
2) enable the servers to continue to operate successfully
to service legitimate requests and satisfy the needs of
their users even after attacks trigger their memory errors.

We observed several reasons for this successful con-
tinued execution. When the memory errors occur in ir-
relevant computations, failure-oblivious computing en-
ables the server to execute through the memory errors to
continue on to execute the relevant computation. Even
when the memory errors occur in relevant computations,
failure-oblivious computing converts requests that trig-
ger unanticipated and dangerous execution paths into an-
ticipated invalid inputs, which the error-handling logic
in the server rejects. Because servers tend to have small
error propagation distances (localized errors in the com-
putation for one request tend to have little or no effect
on the computations for subsequent requests), redirect-
ing reads that would otherwise cause addressing errors
and discarding writes that would otherwise corrupt crit-
ical data structures (such as the call stack) localizes the
effect of the memory errors, prevents addressing excep-
tions from terminating the computation, and enables the
server to continue on to successfully process subsequent
requests. The overall result is a substantial extension of
the range of requests that the server can successfully pro-
cess.

1 Introduction

Memory errors such as out of bounds array accesses and
invalid pointer accesses are a common source of program
failures. Safe languages such as ML and Java use dy-
namic checks to eliminate such errors — if, for exam-
ple, the program attempts to access an out of bounds ar-
ray element, the implementation intercepts the attempt
and throws an exception. The rationale is that an invalid
memory access indicates an unanticipated programming
error and it is unsafe to continue the execution without
first taking some action to recover from the error.

Recently, several research groups have developed
compilers that augment programs written in unsafe lan-
guages such as C with dynamic checks that intercept out
of bounds array accesses and accesses via invalid point-
ers (we call such a compiler asafe-Ccompiler) [17, 58,
45, 36, 50, 37]. These checks use additional information
about the layout of the address space to distinguish ille-
gal accesses from legal accesses. If the program fails a
check, it terminates after printing an error message.

1.1 Failure-Oblivious Computing

Note that it is possible for the compiler to automatically
transform the program so that, instead of throwing an ex-
ception or terminating, it simply ignores any memory er-
rors and continues to execute normally. Specifically, if
the program attempts to read an out of bounds array ele-
ment or use an invalid pointer to read a memory location,
the implementation can simply (via any number of mech-
anisms) manufacture a value to supply to the program as
the result of the read, and the program can continue to ex-
ecute with that value. Similarly, if the program attempts
to write a value to an out of bounds array element or use
an invalid pointer to write a memory location, the im-
plementation can simply discard the value and continue.
We call a computation that uses this strategy afailure-
obliviouscomputation, since it is oblivious to its failure
to correctly access memory.

It is not immediately clear what will happen when a
program uses this strategy to execute through a memory
error. When we started this project, our hypothesis was
that, for at least some programs, this continued execution
would produce acceptable results. To test this hypothe-
sis, we implemented a C compiler that generates failure-
oblivious code, obtained some C programs with known
memory errors, and observed the execution of failure-
oblivious versions of these programs. Here is a summary
of our observations:

• Acceptable Continued Execution: We targeted
memory errors in servers that correspond to security
vulnerabilities as documented at vulnerability track-
ing web sites [13, 12]. For all of our tested servers,
failure-oblivious computing 1) eliminates the secu-
rity vulnerability and 2) enables the server to suc-
cessfully execute through the error to continue to
serve the needs of its users.

• Acceptable Performance:Failure-oblivious com-
puting entails the insertion of dynamic bounds
checks into the compiled program. Previous ex-
periments with safe-C compilers have indicated that
these checks usually cause the program to run less
than a factor of two slower than the version without
checks, but that in some cases the program may run
as much as eight to twelve times slower [58, 50].
Our results are consistent with these previous re-
sults. Note that many of our servers implement
interactive computations for which the appropriate
performance measure is the observed pause times
for processing interactive requests. For all of our in-
teractive servers, the application of failure-oblivious
computing does not perceptibly increase the pause
times.

Our conclusion is that continued execution through
memory errors produces completely acceptable results
for all of our serversas long as failure-oblivious com-
puting prevents these errors from corrupting the server’s
address space or data structures.

1.2 Reason for Successful Execution
Memory errors can damage a computation in several
ways: 1) they can cause the computation to terminate
with an addressing exception, 2) they can cause the com-
putation to become stuck in an infinite loop, 3) they can
change the flow of control to cause the computation to
generate a new and unacceptable interaction sequence
(either with the user or with I/O devices), 4) they can
corrupt data structures that must be consistent for the re-
mainder of the computation to execute acceptably, or 5)
they can cause the computation to produce unacceptable
results.

Because failure-oblivious computing intercepts all in-
valid memory accesses, it eliminates the possibility that
the computation may terminate with an addressing ex-
ception. It is still possible for the computation to infi-
nite loop, but we have found a sequence of return values
for invalid reads that, in practice, appears to eliminate
this problem for our server programs. Our servers have
simple interaction sequences — read a request, process
the request without further interaction, then return the re-
sponse. As long as the computation that processes the
request terminates, control will appropriately flow back
to the code that reads the next request and there will
be no unacceptable interaction sequences. Discarding
invalid writes tends to localize any memory corruption
effects. In particular, it prevents an access to one data
unit (such as a buffer, array, or allocated memory block)
from corrupting another data unit. In practice, this lo-
calization protects many critical data structures (such as
widely used application data structures or the call stack)
that must remain consistent for the program to execute
acceptably.

The remaining issue is the potential production of
unacceptable results. Manufacturing values for reads
clearly has the potential to cause a subcomputation to
produce an incorrect or unexpected result. The key ques-
tion is how (or even if) the incorrect or unexpected result
may propagate through the remaining computation to af-
fect the overall results of the program.

All of our initially targeted memory errors eventually
boil down to buffer-overrun problems: as it processes a
request, the server allocates a fixed-size buffer, then (un-
der certain circumstances) fails to check that the data ac-
tually fits into this buffer. An attacker can exploit this
error by submitting a request that causes the server to
write beyond the bounds of the buffer to overwrite the
contents of the stack or heap, typically with injected code
that the server then executes. Such attacks are currently
the most common source of exploited security vulnera-
bilities in modern networked computer systems [2]. Es-
timates place the total cost of such attacks in the billions
of dollars annually [3].

Failure-oblivious computing makes a server invulner-
able to this kind of attack — the server simply discards
the out of bounds writes, preserving the consistency of
the call stack and other critical data structures. For two
of our servers the memory errors occur in computations
and buffers that are irrelevant to the overall results that
the server produces for that request. Because failure
oblivious computing eliminates any addressing excep-
tions that would otherwise terminate the computation,
the server executes through the irrelevant computation
and proceeds on to process the request (and subsequent
requests) successfully. For the other servers (in these
servers the memory errors occur in relevant computa-

tions and buffers) , failure-oblivious computing converts
the attack request (which would otherwise trigger a dan-
gerous, unanticipated execution path) into an anticipated
invalid input which the server’s standard error-handling
logic rejects. The server then proceeds on to read and
process subsequent requests acceptably.

One of the reasons that failure-oblivious computing
works well for our servers is that they have short error
propagation distances — an error in the computation for
one request tends to have little or no effect on the com-
putation for subsequent requests. By discarding invalid
writes, failure-oblivious computing isolates the effect of
any memory errors to data local to the computation for
the request that triggered the errors. The result is that
the server has short data error propagation distances —
the errors do not propagate to data structures required to
process subsequent requests. The servers also have short
control flow error propagation distances: by preventing
addressing exceptions from terminating the computation,
failure-oblivious computing enables the server to return
to a control flow path that leads it back to read and pro-
cess the next request. Together, these short data and con-
trol flow propagation distances ensure that any effects of
the memory error quickly work their way out of the com-
putation, leaving the server ready to successfully process
subsequent requests.

1.3 Scope
Our expectation is that failure-oblivious computing will
work best with computations, such as servers, that
have short error propagation distances. Failure-oblivious
computing enables these programs to survive otherwise
fatal errors or attacks and to continue on to execute and
interact acceptably. Failure-oblivious computing should
also be appropriate for multipurpose systems with many
components — it can prevent an error in one component
from corrupting data in other components and keep the
system as a whole operating so that other components
can continue to successfully fulfill their purpose in the
computation.

Until we develop technology that allows us to track re-
sults derived from computations with memory errors, we
anticipate that failure-oblivious computing will be less
appropriate for programs (such as many numerical com-
puting programs) in which a single error can propagate
through to affect much of the computation. We also an-
ticipate that it will be less appropriate for programs in
which it is acceptable and convenient to terminate the
computation and await external intervention. This sit-
uation occurs, for example, during development — the
program is typically not producing any useful results and
developers with the ability and motivation to find and
eliminate any errors are readily available. We therefore
see failure-oblivious computing as useful primarily for

deployed programs whose users 1) need the results that
the program produces and 2) are unable or unwilling to
tolerate failures or to find and fix errors in the program.

1.4 Advantages and Drawbacks
The primary characteristic of failure-oblivious comput-
ing as compared with previous approaches is continued
execution combined with the elimination of data struc-
ture corruption caused by memory errors. The potential
benefits include:

• Availability: The combination of protection against
data structure corruption and continued execution in
the face of memory errors can significantly increase
the availability of the server. This combination en-
ables the server to continue to provide service to le-
gitimate users even in the face of repeated attacks
(or, for that matter, other infrequently-triggered fa-
tal memory errors).

• Security: Failure-oblivious computing eliminates
the possibility that an attacker can exploit memory
errors to corrupt the address space of the server. The
result is a more secure system that is immune to
buffer-overrun attacks.

• Minimal Adoption Cost: The net adoption cost
to the developer is to recompile the server using
a compiler that generates failure-oblivious code.
There is no need to change programming languages,
write exception handling code, or modify the soft-
ware in any way. Failure-oblivious computing can
therefore be applied immediately to today’s soft-
ware infrastructure.

• Reduced Administration Overhead: One of the
most challenging system administration tasks is en-
suring that servers are kept up to date with a con-
stant stream of (potentially disruptive) patches and
upgrades; this stream is driven, in large part, by
the need to eliminate memory-error based secu-
rity vulnerabilities in otherwise perfectly acceptable
servers. Because failure-oblivious computing elim-
inates this class of errors, it may enable system ad-
ministrators to safely ignore patches whose purpose
is to eliminate security vulnerabilities caused by
memory errors. Ideally, administrators would be-
come able to patch their systems primarily to obtain
new functionality, not because they need to close se-
curity vulnerabilities in programs that are otherwise
fully serving the needs of their users.

There are also several potential drawbacks:

• Unanticipated Execution Paths:Failure-oblivious
computing has the potential to take the program
down an execution path that was unanticipated by
the programmer, with the prospect of this path pro-
ducing unacceptable results.1 This possibility can
be especially problematic if errors in the unantici-
pated path have long propagation distances through
the relevant data or when control fails to flow back
to an appropriate point in the program. This draw-
back is, in our view, an unavoidable consequence of
any mechanism that is intended to increase the re-
silience of programs in the face of errors — errors
occur precisely because the program encountered a
situation that the programmer either did not antici-
pate or did not deem worth handling correctly.

• The Bystander Effect: A more abstract issue is the
potential for failure-oblivious computing to trigger
the bystander effectin developers. In a variety of
settings that range from manufacturing [25] to per-
sonal relationships [40, 24], the mere presence of
mechanisms that may detect and compensate for er-
rors has the effect of reducing the effectiveness of
the participants in the setting and, in the end, the
overall quality of the system as a whole. A po-
tential explanation is that the participants start to
rely psychologically on the error recovery mech-
anisms, which reduces their motivation to elimi-
nate errors in their own work. Deploying failure-
oblivious computing into a software development
setting may therefore reduce the quality of the soft-
ware that the developers are able to deliver. One
obvious way to combat the bystander effect in this
setting is to ban the use of failure-oblivious comput-
ing during development. Once again, note that the
possibility of triggering the bystander effect is not
restricted to failure-oblivious computing —anyer-
ror recovery mechanism has the potential to trigger
this effect.

1.5 Contributions
This paper makes the following contributions:

• Failure-Oblivious Computing: It introduces the
concept of failure-oblivious computing, in which
the program discards illegal writes, manufactures
values for illegal reads, and continues to execute
through memory errors without address space or
data structure corruption.

1We note in passing that this potential is already present in every
program — the mere absence of memory errors provides no guarantee
that the program is, in fact, operating acceptably.

• Experience: It presents our experience using
failure-oblivious computing to enhance the security
and availability of a range of widely used open-
source servers. Our results show that:

– Standard Compilation: With the standard
unsafe C compiler, the servers are vulnerable
to memory errors and attacks that exploit these
memory errors.

– Safe Compilation: With a C compiler that
generates code that exits with an error mes-
sage when it detects a memory error, the
servers exit when presented with an input that
triggers a memory error (denying the user ac-
cess to the services that the server is intended
to provide).

– Failure-Oblivious Compilation: With our C
compiler that generates failure-oblivious code,
all of our servers execute successfully through
memory errors and attacks to continue to sat-
isfy the needs of their users. Failure-oblivious
computing improves both the availability and
the security of the servers in our test suite.

• Explanation: By relating the properties of servers
to the properties of failure-oblivious computing, we
explain why failure-oblivious computing may work
well for this general class of programs.

2 Example
We next present a simple example that illustrates how
failure-oblivious computing operates. Figure 1 presents
a (somewhat simplified) version of a procedure from the
Mutt mail client discussed in Section 4.6. This procedure
takes as input a string encoded in the UTF-8 format and
returns as output the same string encoded in modified
UTF-7 format. This conversion may increase the size
of the string; the problem is that the procedure fails to
allocate sufficient space in the return string for the worst-
case size increase. Specifically, the procedure assumes a
worst-case increase ratio of 2; the actual worst-case ratio
is 7/3. When passed (the very rare) inputs with large
increase ratios, the procedure attempts to write beyond
the end of its output array.

With standard compilers, these writes succeed, corrupt
the address space, and the program terminates with a seg-
mentation violation. With safe-C compilers, Mutt exits
with a memory error and does not even start the user
interface. With our compiler, which generates failure-
oblivious code, the program discards all writes beyond
the end of the array and the procedure returns with an
incompletely translated (truncated) version of the string.
Mutt then uses the return value to tell the mail server

static char *
utf8_to_utf7 (const char *u8, size_t u8len) {

char *buf, *p;
int ch, int n, i, b = 0, k = 0, base64 = 0;

/* The following line allocates the return
string. The allocated string is too small;
instead of u8len*2+1, a safe length would
be u8len*4+1.

*/
p = buf = safe_malloc (u8len * 2 + 1);

while (u8len) {
unsigned char c = *u8;
if (c < 0x80) ch = c, n = 0;
else if (c < 0xc2) goto bail;
else if (c < 0xe0) ch = c & 0x1f, n = 1;
else if (c < 0xf0) ch = c & 0x0f, n = 2;
else if (c < 0xf8) ch = c & 0x07, n = 3;
else if (c < 0xfc) ch = c & 0x03, n = 4;
else if (c < 0xfe) ch = c & 0x01, n = 5;
else goto bail;

u8++, u8len--;
if (n > u8len) goto bail;
for (i = 0; i < n; i++) {

if ((u8[i] & 0xc0) != 0x80) goto bail;
ch = (ch << 6) | (u8[i] & 0x3f);

}
if (n>1 && !(ch >> (n*5+1))) goto bail;
u8 += n, u8len -= n;

if (ch < 0x20 || ch >= 0x7f) {
if (!base64) {

*p++ = ’&’;
base64 = 1;
b = 0;
k = 10;

}
if (ch & ˜0xffff) ch = 0xfffe;
*p++ = B64Chars[b | ch >> k];
k -= 6;
for (; k >= 0; k -= 6)

*p++ = B64Chars[(ch >> k) & 0x3f];
b = (ch << (-k)) & 0x3f;
k += 16;

} else {
if (base64) {

if (k > 10) *p++ = B64Chars[b];
*p++ = ’-’;
base64 = 0;

}
*p++ = ch;
if (ch == ’&’) *p++ = ’-’;

}
}

if (base64) {
if (k > 10) *p++ = B64Chars[b];
*p++ = ’-’;

}

*p++ = ’\0’;
safe_realloc ((void **) &buf, p - buf);
return buf;

bail:
safe_free ((void **) &buf);
return 0;

}

Figure 1: String Encoding Conversion Procedure

which mail folder it wants to open. The mail server re-
sponds with an error code indicating that the folder does
not exist. Mutt correctly handles this error and continues
to execute, enabling the user to process email from other,
legitimate, folders.

This example illustrates two key aspects of applying
failure-oblivious computing:

• Subtle Errors: Real-world programs can contain
subtle memory errors that can be very difficult to
detect by either testing or code inspection, and these
errors can have significant negative consequences
for the program and its users.

• Mostly Correct Programs: Testing usually en-
sures that the program is mostly correct and works
well except for exceptional operating conditions or
inputs. Failure-oblivious computing can therefore
be seen as a way to enable the program to pro-
ceed past such exceptional situations to return back
within its normal operating envelope. And as this
example illustrates, failure-oblivious computing can
actually facilitate this return by converting unantici-
pated memory corruption errors into anticipated er-
ror cases that the program handles correctly.

3 Implementation
A failure-oblivious compiler generates two kinds of ad-
ditional code: checking code and continuation code. The
checking code detects memory errors and can be the
same as in any memory-safe implementation. The con-
tinuation code executes when the checking code detects
an attempt to perform an illegal access. This code is rela-
tively simple: it discards erroneous writes and manufac-
tures a sequence of values for erroneous reads.

Our implementation uses a checking scheme origi-
nally developed by Jones and Kelly [37] and then signif-
icantly enhanced by Ruwase and Lam [50]. This check-
ing scheme maintains a table that maps locations to data
units (each struct, array, and variable is a data unit) and
uses this table to distinguish in bounds and out of bounds
pointers.

Our implementation of the write continuation code
simply discards the value. Our implementation of the
read continuation code redirects the read to a preallo-
cated buffer of values. In principle, any sequence of man-
ufactured values should work. In practice, these values
are sometimes used to determine loop conditions. Mid-
night Commander (see Section 4.5), for example, con-
tains a loop that, for some inputs, searches past the end
of a buffer looking for the “/ ” character. If the sequence
of generated values does not include this character, the
loop never terminates and Midnight Commander hangs.
We therefore generate a sequence that iterates through

all small integers, increasing the chance that, if the val-
ues are used to determine loop conditions, the compu-
tation will hit upon a value that will exit the loop (and
avoid nontermination). Because zero and one are usu-
ally the most commonly loaded values in computer pro-
grams [59], the sequence is designed to return these val-
ues more frequently than other, less common, values.

One potential concern is that failure-oblivious com-
puting may hide errors that would otherwise be detected
and eliminated. To help make the errors more apparent,
our compiler can optionally augment the generated code
to produce a log containing information about the pro-
gram’s attempts to commit memory errors. This log may
help administrators to detect and respond appropriately
to the presence such errors. Note, however, that hiding
errors is one of the primary goals of this research, and
that any technique that makes programs more resilient in
the face of errors will reduce the negative impact of the
errors and therefore the incentive to find and eliminate
them.

4 Experience
We implemented a compiler that generates failure-
oblivious code, obtained several widely-used open-
source servers with known memory errors, and evalu-
ated the impact of failure-oblivious computing on their
behavior. Many of these servers are key components of
the Linux-based open-source interactive computing en-
vironment.

4.1 Methodology
We evaluate the behavior of three different versions of
each server: theStandardversion compiled with a stan-
dard C compiler (this version is vulnerable to any mem-
ory errors that the server may contain), theBounds Check
version compiled with the CRED safe-C compiler [50]
(this version terminates the server with an error message
at the first memory error), and theFailure Obliviousver-
sion compiled with our compiler. We evaluate three as-
pects of each server’s behavior:

• Security and Resilience:We chose a workload that
contains an input that triggers a known memory er-
ror in the server; this input typically exploits a secu-
rity vulnerability as documented by vulnerability-
tracking organizations such as Security Focus [13]
and SecuriTeam [12]. We observe the behavior of
the different versions on this workload; for the Fail-
ure Oblivious version we focus on the acceptability
of the continued execution after the error.

• Performance: We chose a workload that both the
Standard and Failure Oblivious versions can exe-
cute successfully. We use this workload to measure
the request processing time, or the time required

for each version to process representative requests.
We obtain this time by instrumenting the server to
record the time when it starts processing the request
and the time when it stops processing the request,
then subtracting the start time from the stop time.

• Stability: When possible, we deploy the Failure
Oblivious version of each server into daily use
as part of our normal computational environment.
During this deployment we ensure that the work-
load contains attacks that trigger memory errors in
each server. We focus on the long-term acceptabil-
ity of the continued execution of the Failure Oblivi-
ous version of the deployed server.

We note that two of our servers (Pine and Midnight
Commander) use out of bounds pointers in pointer in-
equality comparisons. While this is, strictly speaking, an
error, the intention of the programmer is clear. To avoid
having these errors cripple the Bounds Check versions of
these servers, we (manually) rewrote the code containing
the inequality comparisons to eliminate pointer compar-
isons involving out of bounds pointers.

We ran all the servers on a Dell workstation with two
2.8 GHz Pentium 4 processors, 2 GBytes of RAM, and
running Red Hat 8.0 Linux.

4.2 Pine
Pine is a widely used mail user agent (MUA) that is dis-
tributed with the Linux operating system [11]. Pine al-
lows users to read mail, fetch mail from an IMAP server,
compose and forward mail messages, and perform other
email-related tasks. We use Pine 4.44, which is dis-
tributed with Red Hat Linux version 8.0. This version
of Pine has a memory error associated with a failure to
correctly parse certain From fields [10].

4.2.1 The Memory Error

When Pine displays a list of messages, it processes the
From field of each message to quote certain characters.
This quoting is implemented by transferring the From
field into a heap-allocated character buffer for display,
inserting a\ character into the buffer before any quoted
character. As part of the transfer, the length of the string
can increase because of the additional\ characters. The
procedure that calculates the maximum possible length
of the character buffer fails to correctly account for the
potential increase and produces a length that is too short
for messages whose From fields contain many quoted
characters.

4.2.2 Security and Resilience

The Standard version of Pine writes beyond the end of
the buffer, corrupts its heap, and terminates with a seg-
mentation violation. The Bounds Check version detects

the memory error and terminates the computation. With
both of these versions, the user is unable to use Pine to
read mail because Pine aborts or terminates during ini-
tialization as the mail file is loaded and before the user
has a chance to interact with the server. The user must
manually eliminate the From field from the mail file (us-
ing some other mail reader or file editor) before he or she
can use Pine to read mail at all.

The Failure Oblivious version discards the out of
bounds writes (in effect, truncating the translated From
field) and continues to execute through the memory er-
ror, enabling the user to process their mail. Because the
mail list user interface displays only an initial segment of
long From fields, the truncation is not visible to the user.
If the user selects the message, a different execution path
correctly translates the From field. The displayed mes-
sage contains the complete From field and the user can
read, forward, and otherwise process the message.

4.2.3 Performance

Figure 2 presents the request processing times for the
Standard and Failure Oblivious versions of Pine. All
times are given in milliseconds. The Read request dis-
plays a selected empty message, the Compose request
brings up the user interface to compose a message, and
the Move request moves an empty message from one
folder to another. We performed each request at least
twenty times and report the means and standard devia-
tions of the request processing times. All times are given
in milliseconds.

Request Standard Failure Slowdown
Oblivious

Read 0.287± 7.1% 1.98± 1.5% 6.9
Compose 0.385± 4.3% 3.11± 2.6% 8.1
Move 1.34± 10.4% 1.80± 11.2% 1.34

Figure 2: Request Processing Times for Pine
(milliseconds)

As these numbers indicate, the Failure Oblivious ver-
sion is not substantially slower than the Standard ver-
sion. Because Pine is an interactive program, its perfor-
mance is acceptable as long as it feels responsive to its
users. Assuming a pause perceptibility threshold of 100
milliseconds for this kind of interactive program [21], it
is clear that failure-oblivious computing should not de-
grade the program’s interactive feel. Our subjective ex-
perience confirms this expectation: all pause times are
imperceptible for all versions.

4.2.4 Stability

During our stability testing period, we used Pine as a de-
fault mail reader. Our activities included reading mail,
replying to mails, forwarding mails, and managing mail
folders. During this time we used Pine to process roughly

25 new mail messages a day (after spam filtering). To test
Pine’s ability to successfully execute through errors, we
periodically sent an email that triggered the memory er-
ror discussed above in Section 4.2.1. We also used the
failure-oblivious version of Pine to successfully process
a large mail folder containing over 100,000 messages.
During this usage period, the Failure Oblivious version
executed successfully through all errors to perform all
requests flawlessly.

4.3 Apache
The Apache HTTP server is the most widely used web
server in the world: a recent survey found that 64% of
the web sites on the Internet use Apache [9]. Apache
version 2.0.47 contains a (under certain circumstances)
remotely exploitable memory error [1].

4.3.1 The Memory Error

Apache can be configured to automatically redirect in-
coming URLs via a set of URL rewrite rules. Each
rewrite rule contains amatch pattern(a regular expres-
sion that may match an incoming URL) and areplace-
ment pattern. The match pattern may contain paren-
thesizedcaptures, each of which may match a sub-
string from the incoming URL. The replacement pattern
may reference these captures. When an incoming URL
matches the match pattern, Apache replaces the URL
with the replacement pattern after substituting out any
referenced captures with the corresponding captured sub-
strings from the incoming URL. As Apache processes
the incoming URL, it uses a (stack-allocated) buffer to
hold pairs of offsets that identify the captured substrings
in the incoming URL. The buffer contains enough room
for ten captures. If there are more, Apache writes the cor-
responding pairs of offsets beyond the end of the buffer.

4.3.2 Security and Resilience

The Standard version performs the out of bounds writes,
corrupts its stack, and terminates with a segmentation vi-
olation. The Bounds Check version correctly processes
legitimate requests without memory errors until it is pre-
sented with a URL that triggers the memory error. At this
point the child process serving the connection detects the
error and terminates. Apache uses a pool of child pro-
cesses to serve incoming requests. When one of the child
processes terminates, the main Apache process creates
a new child process to take its place. This mechanism
allows both the Standard and Bounds Check versions of
Apache to continue to service requests even when repeat-
edly presented with inputs that cause the child processes
to terminate because of memory errors.

The Failure Oblivious version discards the out of
bounds writes and continues to execute. It proceeds on to
copy the first ten pairs of offsets into another data struc-

ture. Apache uses this data structure to apply the rewrite
rule and generate the new URL. Because the rewrite
rule uses a single digit to reference each captured sub-
string (these substrings have names $0 through $9), it
will never attempt to access any discarded substring off-
set data. The Failure-Oblivious version of Apache there-
fore processes each input correctly and continues on to
successfully process any subsequent requests. Because
the memory errors occur in irrelevant data structures and
computations, Failure Oblivious computing eliminates
the memory error without affecting the results of the
computation at all.

Because Apache isolates request processing inside a
pool of regenerating processes, the Bounds Check ver-
sion successfully processes subsequent requests. The
overhead of killing and restarting child processes, how-
ever, makes this version vulnerable to an attack that ties
up the server by repeatedly presenting it with requests
that trigger the error. To investigate this effect, we used
several (local) machines to load the server with requests
that trigger the error. We then used another client ma-
chine to repeatedly fetch the home page of our research
project and measured the request throughput at the client.
For this workload, the Failure Oblivious version provides
a throughput roughly 5.7 times more than the Bounds
Check version provides (the insecure Standard version
provides a throughput roughly 4.8 times less than the
Failure Oblivious version). We attribute the slowdown
for the Bounds Check and Standard versions to process
management overhead.

4.3.3 Performance

Figure 5 presents the request processing times for the
Standard and Failure Oblivious versions of Apache. The
Small request serves an 5KByte page (this is the home
page for our research project); the large request serves
an 830KByte file used only for this experiment. Both re-
quests were local — they came from the same machine
on which Apache was running. We performed each re-
quest at least twenty times and report the means and stan-
dard deviations of the request processing times. All times
are given in milliseconds.

Request Standard Failure Slowdown
Oblivious

Small 44.4± 1.3% 47.1± 2.5% 1.06
Large 48.7± 1.8% 50.0± 1.3% 1.03

Figure 3: Request Processing Times for Apache
(milliseconds)

4.3.4 Stability

For the last nine months we have been using the Fail-
ure Oblivious version of Apache to serve our research
project’s web site atwww.flexc.csail.mit.edu; during this

time period we measured approximately 400 requests a
day from outside our institution. We also generated tens
of thousands of requests from another machine, all of
which were served correctly. We anticipate that we will
continue to use the Failure Oblivious version to serve this
web site for the foreseeable future.

During this time period we periodically presented the
web server with requests that triggered the vulnerability
discussed above. The Failure Oblivious version executed
successfully through all of these attacks to continue to
successfully service legitimate requests. We observed no
anomalous behavior and received no complaints from the
users of the web site.

4.4 Sendmail

Sendmail is the standard mail transfer agent for Linux
and other Unix systems [15]. It is typically configured
to run as a daemon which creates a new process to ser-
vice each new mail transfer connection. This process ex-
ecutes a simple command language that allows the re-
mote agent to transfer email messages to the Sendmail
server, which may deliver the messages to local users or
(if necessary) forward some or all of the messages on
to other Sendmail servers. Versions of Sendmail ear-
lier than 8.11.7 and 8.12.9 (8.11 and 8.12 are separate
development threads) have a memory error vulnerability
which is triggered when a remote attacker sends a care-
fully crafted email message through the Sendmail dae-
mon [14]. We worked with Sendmail version 8.11.6.

4.4.1 The Memory Error

The memory error occurs when Sendmail parses a mail
address. A prescan procedure processes the address one
character at a time to transfer characters from the ad-
dress into a fixed-size stack-allocated buffer. This trans-
fer is coded to use a lookahead character and to treat the
\ character specially. It is possible for there to be no
lookahead character, in which case the integer variable
that holds the lookahead character is set to -1. If this
variable is set to -1 or contains a\ character that appears
in an odd position (first, third, fifth, ...) in a sequence of
contiguous\ characters in the address, the prescan skips
the block of code that writes the lookahead character into
the buffer (also skipping a check to see if the buffer has
enough space to hold the lookahead character). It later
writes a\ character into the buffer without a check if the
lookahead character was\ and not -1. If the execution
platform performs sign extension on character to integer
assignments, an attack message containing an appropri-
ately placed alternating sequence of -1 and\ characters
in the address can therefore cause the prescan to write ar-
bitrarily many\ characters beyond the end of the buffer.

4.4.2 Security and Resilience

The Standard version of Sendmail performs the out of
bounds writes and corrupts its call stack. It is apparently
possible for an attacker to exploit the memory error to
cause the Sendmail server to execute arbitrary injected
code [14]. The Bounds Check version exits with a mem-
ory error during initialization and fails to operate at all.
The Failure Oblivious version is not vulnerable to the at-
tack — when sent the attack message, it discards the out
of bounds writes (preserving the integrity of the stack)
and returns back out of the prescan to continue to parse
the email address. The next step is to check if the in-
put mail address is too long. This check fails, throwing
Sendmail into an anticipated error case. The standard er-
ror processing logic in Sendmail then rejects the address,
enabling Sendmail to continue on to successfully process
subsequent commands.

4.4.3 Performance

Figure 4 presents the means and standard deviations of
the request processing times for the Standard and Failure
Oblivious versions of Sendmail. All times are given in
milliseconds. The Receive Small request receives a mes-
sage whose body is 4 bytes long; the Send Small request
sends the same message. The Receive Large request re-
ceives a message whose body is 4Kbytes long; the Send
Large request sends the same message. We performed
each test at least twenty times to obtain the numbers in
Figure 4.

Request Standard Failure Slowdown
Oblivious

Recv Small 15.6± 2.9% 60.4± 1.5% 3.9
Recv Large 16.8± 4.3% 65.1± 2.3% 3.9
Send Small 20.3± 3.2% 75.0± 3.4% 3.7
Send Large 21.5± 5.7% 76.9± 3.8% 3.6

Figure 4: Request Processing Times for Sendmail
(milliseconds)

4.4.4 Stability

We installed the Failure Oblivious version of Sendmail
on one of our machines and, over the course of several
days, used it to send and receive hundreds of thousands
of email messages. During this time we repeatedly sent
the attack message through the Sendmail daemon, which
continued through the attack to correctly process all sub-
sequent Sendmail commands. All of the messages were
correctly delivered with no problems. Our memory error
logs indicate that Sendmail generates a steady stream of
memory errors during its normal execution. In particular,
every time the Sendmail daemon wakes up to check for
incoming messages, it generates a memory error. This
memory error apparently completely disables the Bounds
Check version.

4.5 Midnight Commander
Midnight Commander is an open source file manage-
ment tool that allows users to browse files and archives,
copy files from one folder to another, and delete files [6].
Midnight Commander is vulnerable to a memory-error
attack associated with accessing an uninitialized buffer
when processing symbolic links intgz archives [5]. We
used Midnight Commander version 4.5.55 for our exper-
iments.

4.5.1 The Memory Error

Midnight Commander converts absolute symbolic links
in tgz files into links relative to the start of thetgz
file. It uses thestrcat procedure to build up the name
of the relative link in a stack-allocated buffer. Unfortu-
nately, the buffer is never initialized. If there are multi-
ple symbolic links in the directory, the component names
from all of the links simply accumulate sequentially in
the buffer as Midnight Commander processes the set of
links. If the combined length of all of the component
names exceeds the length of the buffer,strcat writes
the component names beyond the end of the buffer.

4.5.2 Security and Resilience

The Standard version performs the writes, corrupts its
stack, and terminates with a segmentation violation. The
Bounds Check version detects the out of bounds access
and terminates. The Failure Oblivious version discards
the out of bounds writes, enabling Midnight Commander
to continue and attempt to look up the data for the ref-
erenced file. This lookup always fails (apparently even
for the first symbolic link, when the name in the buffer
is correct). This is an anticipated case in the Midnight
Commander code, which treats the symbolic link as a
dangling link and displays it as such to the user. Mid-
night Commander then continues on to successfully pro-
cess any subsequent user commands.

4.5.3 Performance

Figure 5 presents the request processing times for the
Standard and Failure Oblivious versions of Midnight
Commander. The Copy request copies a 31Mbyte di-
rectory structure, the Move request moves a directory of
the same size, the MkDir request makes a new directory,
and the Delete request deletes a 3.2 Mbyte file. We per-
formed each request at least twenty times and report the
means and standard deviations of the request processing
times. All times are given in milliseconds.

As these numbers indicate, the Failure Oblivious ver-
sion is not dramatically slower than the Standard ver-
sion. Moreover, because Midnight Commander is an
interactive program, its performance is acceptable as
long as it feels responsive to its users, and these perfor-
mance results make it clear that the application of failure-

Request Standard Failure Slowdown
Oblivious

Copy 377± 0.7% 535± 2.0% 1.4
Move 0.30± 2.4% 0.406± 1.8% 1.4
MkDir 0.69± 7.0% 1.27± 6.6% 1.8
Delete 2.54± 11.3% 2.72± 11.1% 1.1

Figure 5: Request Processing Times for Midnight Com-
mander (milliseconds)

oblivious computing to this program should not degrade
its interactive feel. Our subjective experience confirms
this expectation: all pause times are imperceptible for
both the Standard and Failure Oblivious versions.

4.5.4 Stability

One of the authors uses Midnight Commander on a daily
basis as his standard file manipulation tool. During the
stability testing period, he used the Failure Oblivious
version of Midnight Commander to manage his files.
Periodically during the sessions he attempted to open
the problematic archive (causing the program to execute
through the resulting memory error), then went back to
using the Midnight Commander to accomplish his work.
Midnight Commander performed without a problem dur-
ing this time.

The error log shows that Midnight Commander has a
memory error that is triggered whenever a blank line oc-
curs in its configuration file. We verified that this er-
ror completely disabled the Bounds Check version until
we removed the blank lines. The Failure Oblivious ver-
sion, on the other hand, executed successfully through all
memory errors to perform flawlessly for all requests.

4.6 Mutt
Mutt is a customizable, text-based mail user agent that is
widely used in the Unix system administration commu-
nity [8]. It is descended from ELM [4] and supports a
variety of features including email threading and correct
NFS mail spool locking. We used Mutt version 1.4. As
described at [7] and discussed in Section 2, this version
is vulnerable to an attack that exploits a memory error in
the conversion from UTF-8 to UTF-7 string formats.

4.6.1 The Memory Error

When Mutt opens a mailbox with an IMAP address, it
converts the mail folder name from UTF-8 to UTF-7
character encoding. Mutt allocates (in the heap) a tem-
porary character buffer to hold the UTF-7 encoded name.
Because UTF-8 to UTF-7 conversion can increase the
length of the name, Mutt allocates a buffer twice as long
as the UTF-8 name to hold the converted UTF-7 name.
However, this buffer is not, in general, long enough —
the conversion can increase the length of the UTF-8
name by as much as a factor of 7/3 and not just a factor

of 2. When presented with an appropriately constructed
UTF-8 folder name, Mutt writes the converted name be-
yond the end of the UTF-7 buffer.

4.6.2 Security and Resilience

The Standard version performs the writes, corrupts its
heap, and terminates with a segmentation violation. The
Bounds Check version detects the memory error and ter-
minates before the user interface comes up. The Failure
Oblivious version discards the out of bounds writes, ef-
fectively truncating the converted name. Note that even
though the UTF-7 buffer may contain no null characters,
the folder name is effectively null-terminated: reads be-
yond the end of the buffer will eventually return null.
Once Mutt has obtained the converted folder name, the
next step is to place a quoted and escaped version of the
name into yet another buffer, then pass this name on as
part of a command to the IMAP server. The IMAP server
returns an error code indicating that the folder does not
exist, Mutt’s standard error-handling logic handles the
returned error code, and Mutt continues on to success-
fully process any subsequent user commands.

4.6.3 Performance

Figure 6 presents the request processing times for the
Standard and Failure Oblivious versions of Mutt. The
Read request reads a selected empty message and the
Move request moves an empty message from one folder
to another. We performed each request at least twenty
times and report the means and standard deviations of
the request processing times. All times are given in mil-
liseconds.

Request Standard Failure Slowdown
Oblivious

Read .655± 4.3% 2.31± 4.8% 3.6
Move 6.94± 6.2% 9.78± 6.2% 1.4

Figure 6: Request Processing Times for Mutt
(milliseconds)

Because Mutt is an interactive program, its perfor-
mance is acceptable as long as it feels responsive to its
users. These performance results make it clear that the
application of failure-oblivious computing to this pro-
gram should not degrade its interactive feel. Our sub-
jective experience confirms this expectation: all pause
times are imperceptible for both the Standard and Fail-
ure Oblivious versions.

4.6.4 Stability

During the stability testing period we used the Failure
Oblivious version of Mutt to process email messages.
We configured Mutt to trigger the security vulnerability
described above when it loaded. Mutt successfully ex-
ecuted through the resulting memory errors to correctly

execute all of his requests. We were able to read, for-
ward, and compose mail with no problems even after ex-
ecuting through the memory error. We also used Mutt to
process (with no problems) a large mail folder containing
over 100,000 messages.

4.7 Discussion
Despite the fact that the dynamic bounds checks have,
in theory, the potential to substantially degrade the per-
formance, for several of our servers the overhead is rel-
atively small — the execution times of many of the
tasks we measured are apparently dominated by activi-
ties (such I/O or operating system functionality) outside
the program. Because failure-oblivious computing does
not affect the efficiency of these activities, the amortized
overhead is relatively small. Moreover, several of our
servers are interactive, and interactive tasks can tolerate
substantial execution time increases as long as the sys-
tem maintains its interactive feel. Our results show that
failure-oblivious computing maintained acceptable inter-
active response times for all of our interactive tasks, even
for tasks with substantial execution time increases.

For servers, a monitor that detects memory errors
and reboots the server when it commits such an error
might seem to provide an obvious potential alternative to
failure-oblivious computing. Apache, for example, im-
plements a regenerating pool of child processes. The
net effect is that the Bounds Check version of Apache
can terminate child processes at the first memory error
without impairing its ability to continue to service new
requests. In comparison with the Failure Oblivious ver-
sion, the only downside is the performance degradation
associated with the resulting increase in process manage-
ment overhead.

The situation is somewhat different for Pine, Mutt, and
Midnight Commander. All of these programs initialize
with no memory errors on standard workloads. But once
the mailbox contains a message that elicits a memory er-
ror (Pine), the system is configured to use a mail folder
whose name elicits a memory error (Mutt), or the con-
figuration file contains a blank line (Midnight Comman-
der), the Bounds Check versions exit during initializa-
tion. In this situation, restarting is of no use because the
restarted computations would, once again, simply exit
during initialization. Because these errors are triggered
only by carefully crafted or unusual inputs, they could
easily make it through a fairly rigorous testing process
without being detected. These servers illustrate how ag-
gressively terminating computations at the first memory
error can leave deployed systems vulnerable to unantic-
ipated inputs that trigger memory errors and persist or
recurr in the environment.

Because Sendmail has a memory error whenever it
wakes up to check for work, the Bounds Check version

is simply unusable with or without restarting. But note
that because the memory errors occur on every execution,
it should be possible to use the Bounds Check version
to find and eliminate them (as well as any other repro-
ducible memory errors that occur during testing). Even
with this change, however, terminating and restarting
Sendmail might prove to be problematic — the Sendmail
monitor would somehow have to avoid repeatedly pre-
senting Sendmail with messages that triggered a mem-
ory error. In contrast, the Failure Oblivious version of
Sendmail correctly executed through memory errors to
correctly process subsequent messages and the Failure
Oblivious version of Pine correctly processed mail mes-
sages with headers that elicited memory errors.

5 Related Work
We first note that failure-oblivious computing is
an instance of acceptability-oriented computing [47].
Acceptability-oriented computing replaces the concept
of program correctness with a set ofacceptability prop-
ertiesthat must hold for the execution of the program to
remain acceptable. The programmer then builds and de-
ploys acceptability enforcement mechanismswhose ac-
tions ensure that these acceptability properties do, in fact,
hold. In the case of failure-oblivious computing, the ac-
ceptability properties are the absence of memory errors
and continued execution; the acceptability enforcement
mechanism discards invalid writes and returns manufac-
tured values for invalid reads.

Memory errors, failures, and failure recovery have
been core concerns in the field of computer systems since
its inception. We discuss related work in these areas.

5.1 Variants and Extensions
We have implemented with several variants and exten-
sions of our basic failure-oblivious compiler. These
include a compiler that implementsboundless memory
blocks— instead of discarding invalid writes, the gener-
ated code stores the values in a hash table indexed under
the data unit identifier and offset [48]. Corresponding
invalid reads return the appropriate stored values. This
variant eliminates size calculation errors — if the pro-
gram logic is otherwise acceptable, the program will ex-
ecute acceptably. Another variant redirects out of bounds
accesses back into the accessed data unit at an appropri-
ate offset. This strategy may help related sets of out of
bounds reads return consistent values from properly ini-
tialized data units. Our experience indicates that our set
of servers works acceptably with both of these variants.

5.2 Transactional Function Termination
Researchers have also developed a technique to protect
servers against buffer-overflow attacks by dynamically
detecting buffer overflows, then immediately terminating

the enclosing function and continuing on to execute the
code immediately following the corresponding function
call [52]. The results indicate that, in many cases, the
program can continue on to execute acceptably after the
premature function termination. This experience is con-
sistent with our experience that servers can continue to
execute successfully through memory errors if they sim-
ply discard out of bounds writes and manufacture values
for out of bounds reads.

5.3 Safe-C Compilers
Our work builds directly on previous research into
memory-safe C implementations [17, 58, 45, 36, 50, 37].
Building on Ruwase and Lam’s implementation enabled
us to apply failure-oblivious computing directly to legacy
programs without modification (some implementations
also have this property [58]); some other implementa-
tions may require source code changes [22, 38].

It is also feasible to apply failure-oblivious computing
to safe languages such as Java or ML by simply replacing
the generated code that throws an exception in response
to a memory error. As for safe-C implementations, the
new code would simply discard illegal writes and return
manufactured values for illegal reads.

5.4 Static Analysis
It is also possible to attack the memory error problem
directly at its source: a combination of static analysis
and program annotations should, in principle, enable pro-
grammers to deliver programs that are completely free
of memory errors [28, 27, 57, 49]. All of these tech-
niques share the same advantage (a static guarantee that
the program will not exhibit a specific kind of memory
error) and drawbacks (the need for programmer annota-
tions or the possibility of conservatively rejecting safe
programs). Even if the analysis is not able to verify that
the entire program is free of memory errors, it may be
able to statically recognize some accesses that will never
cause a memory error, remove the dynamic checks for
those accesses, and thereby reduce any dynamic check-
ing overhead [32, 18, 49].

Researchers have also developed unsound, incom-
plete analyses that heuristically identify potential er-
rors [54, 19]. The advantage is that such approaches typ-
ically require no annotations and scale better to larger
programs; the disadvantage is that (because they are un-
sound) they may miss some genuine memory errors.

5.5 Buffer-Overrun Detection Tools
Researchers have developed techniques that are designed
to detect buffer-overrun attacks after they have occurred,
then halt the execution of the program before the attack
can take effect. StackGuard [23] and StackShield [16]
modify the compiler to generate code to detect attacks

that overwrite the return address on the stack; Stack-
Shield also performs range checks to detect overwrit-
ten function pointers. It is also possible to apply buffer-
overrun detection directly to binaries. Purify instruments
the binary to detect a range of memory errors, including
buffer overruns [34]. Program shepherding uses an effi-
cient binary interpreter to prevent an attacker from exe-
cuting injected code [39]. A key difference is that failure-
oblivious computing prevents the attack from performing
the writes that corrupt the address space, which enables
the program to continue to execute successfully.

5.6 Rebooting
A traditional and widely used error recovery mechanism
is to reboot the system, with repair applied during the re-
boot if necessary to bring the system back up success-
fully [30]. Mechanisms such as fast reboots [51] and
checkpointing [41, 42] can improve the performance of
the basic reboot process.

It is also possible to subdivide (potentially recursively)
a system into isolated components, then apply a partial
reboot strategy at the granularity of the components. By
promoting the construction of the operating system as
a collection of small components, microkernel architec-
tures [46, 33, 29] support the application of this approach
to operating systems. It is also possible to use mecha-
nisms such as software-based fault isolation [55] or fine-
grained hardware memory protection [56] to apply this
strategy to selected parts of monolithic operating sys-
tems such as kernel extensions. The experimental results
show that this approach can eliminate the vast majority of
system crashes caused by such extensions [53]. Helper
agents are often useful to facilitate the clean termination
and reintegration of the restarted component back into
the running system (this approach generalizes to support
arbitrary recovery actions) [53]. It may also be worth-
while to recursively restart larger and larger subsystems
until the system successfully recovers [20].

Failure-oblivious computing differs in that it is de-
signed to keep the system operating through errors in-
stead of restarting. The potential advantages include bet-
ter availability because of the elimination of down time
and the elimination of vulnerabilities to persistent errors.
Rebooting, on the other hand, may help ensure that the
system stays more closely within the anticipated operat-
ing envelope.

5.7 Manual Error Detection and Recovery
Motivated in part by the need to avoid rebooting, re-
searchers have developed more fine-grain error recov-
ery mechanisms. The Lucent 5ESS switch and the IBM
MVS operating system, for example, both contain soft-
ware components that detect and attempt to repair in-
consistent data structures [35, 44, 31]. Other techniques

include failure recovery blocks and exception handlers,
both of which may contain hand-coded recovery algo-
rithms [43].

To apply these techniques, the programmer must an-
ticipate some aspects of the error and, based on this un-
derstanding, develop an appropriate recovery strategy.
Failure-oblivious computing, on the other hand, can be
applied without programmer intervention to any system
and may therefore make the system oblivious to even
completely unanticipated errors. Of course, this general-
ity cuts both ways — in particular, failure-oblivious com-
puting may produce less appropriate responses to antic-
ipated errors. We therefore view failure-oblivious com-
puting as largely orthogonal to more application-tailored
recovery mechanisms (although failure-oblivious com-
puting may eliminate some of the errors that these mech-
anisms would otherwise have handled).

Data structure repair [26] occupies a middle ground.
Like more traditional error detection and recovery tech-
niques, it requires the programmer to provide some
application-specific information (in the case of data
structure repair, a data structure consistency specifica-
tion). But because there is no explicit recovery procedure
and because the consistency specification is not tied to
specific blocks of code, data structure repair may enable
systems to more effectively recover from unanticipated
data structure corruption errors.

6 Conclusion
The seemingly inherent brittleness, complexity, and vul-
nerability (to both errors and attacks) of computer pro-
grams can make them frustrating or even dangerous
to use. While existing memory-safe languages and
memory-safe implementations of unsafe languages may
eliminate memory-error vulnerabilities, they can also de-
crease availability by aggressively throwing exceptions
or even terminating the program at the first sign of an
error.

Our results show that failure-oblivious computation
enhances availability, resilience, and security by continu-
ing to execute through memory errors while ensuring that
such errors do not corrupt the address space or data struc-
tures of the computation. In many cases failure-oblivious
computing can automatically convert unanticipated and
dangerous inputs or data into anticipated error cases that
the program is designed to handle correctly. The result
is that the program survives the unanticipated situation,
returns back into its normal operating envelope, and con-
tinues to satisfy the needs of its users.

One of the major long-term goals of computer science
has been understanding how to build more robust, re-
silient programs that can flexibly and successfully cope
with unanticipated situations. Our research suggests that,
remarkably, current systems may already have a substan-

tial capacity for exhibiting this kind of desirable behavior
if we only provide a way for them to ignore their errors,
protect their data structures from damage, and continue
to execute.

Acknowledgements

The authors would like to thank our shepherd David
Wagner and the anonymous reviewers for their thought-
ful and helpful comments. This research was supported
in part by the Singapore-MIT Alliance and NSF grants
CCR00-86154, CCR00-63513, CCR00-73513, CCR-
0209075, CCR-0341620, and CCR-0325283.

References
[1] Apache HTTP Server exploit.

www.securityfocus.com/bid/8911/discussion/.
[2] CERT/CC. Advisories 2002.www.cert.org/advisories.
[3] CNN Report on Code Red.

www.cnn.com/2001/TECH/internet/08/08/code.red.II/.
[4] ELM. www.instinct.org/elm/.
[5] Midnight Commander exploit.

www.securityfocus.com/bid/8658/discussion/.
[6] Midnight Commander website.www.ibiblio.org/mc/.
[7] Mutt exploit. www.securiteam.com/unixfocus/5FP0T0U9FU.html.
[8] Mutt website.www.mutt.org.
[9] Netcraft website.

http://news.netcraft.com/archives/web server survey.html.
[10] Pine exploit.www.securityfocus.com/bid/6120/discussion.
[11] Pine website.www.washington.edu/pine/.
[12] SecuriTeam website.www.securiteam.com.
[13] Security Focus website.www.securityfocus.com.
[14] Sendmail exploit.www.securityfocus.com/bid/7230/discussion/.
[15] Sendmail website.www.sendmail.org.
[16] Stackshield.www.angelfire.com/sk/stackshield.
[17] T. Austin, S. Breach, and G. Sohi. Efficient detection of all

pointer and array access errors. InProceedings of the ACM
SIGPLAN ’94 Conference on Programming Language Design
and Implementation, June 2004.

[18] R. Bodik, R. Gupta, and V. Sarkar. Eliminating array bounds
checks on demand. InACM SIGPLAN Conference on
Programming Language Design and Implementation, June 2002.

[19] W. Bush, J. Pincus, and D. Sielaff. A static analyzer for finding
dynamic, programming errors.Software - Practice and
Experience, 2000.

[20] G. Candea and A. Fox. Recursive restartability: Turning the
reboot sledgehammer into a scalpel. InProceedings of the 8th
Workshop on Hot Topics in Operating Systems (HotOS-VIII),
pages 110–115, Schloss Elmau, Germany, May 2001.

[21] S. Card, T. Moran, and A. Newell.The Psychology of
Human-Computer Interaction. Lawrence Erlbaum Associates,
1983.

[22] J. Condit, M. Harren, S. McPeak, G. C. Necula, and W. Weimer.
CCured in the real world. InProceedings of the ACM SIGPLAN
2003 Conference on Programming Language Design and
Implementation, June 2003.

[23] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, Q. Zhang, and H. Hinton. StackGuard:
Automatic Adaptive Detection and Prevention of
Buffer-Overflow Attacks. InProceedings of the 7th USENIX
Security Conference, January 1998.

[24] J. Darley and B. Latane. Bystander intervention in emergencies:
Diffusion of responsibility.Journal of Personality and Social
Psychology, pages 377–383, Aug. 1968.

[25] W. E. Deming.Out of the Crisis. MIT Press, 2000.
[26] B. Demsky and M. Rinard. Automatic Detection and Repair of

Errors in Data Structures. InProceedings of the 18th Annual
ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, October 2003.

[27] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner. Memory
safety without runtime checks or garbage collection. In
Proceedings of the 2003 Workshop on Languages, Compilers,
and Tools for Embedded Systems (LCTES’03), June 2003.

[28] N. Dor, M. Rodeh, and M. Sagiv. CSSV: Towards a realistic tool
for statically detecting all buffer overflows in C. InProceedings
of the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation, 2003.

[29] D. Engler, M. F. Kaashoek, and J. James O’Toole. Exokernel:
An Operating System Architecture for Application-Level
Resource Management. InProceedings of the Fifteenth ACM
Symposium on Operating System Principles, Dec. 1995.

[30] J. Gray and A. Reuter.Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993.

[31] N. Gupta, L. Jagadeesan, E. Koutsofios, and D. Weiss.
Auditdraw: Generating audits the FAST way. InProceedings of
the 3rd IEEE International Symposium on Requirements
Engineering, 1997.

[32] R. Gupta. Optimizing array bounds checks using flow analysis.
In ACM Letters on Programming Languages and Systems,
2(1-4):135-150, March 1993.

[33] G. Hamilton and P. Kougiouris. The Spring Nucleus: A
Microkernel for Objects. InProceedings of the 1993 Summer
Usenix Conference, June 1993.

[34] R. Hastings and B. Joyce. Purify: Fast detection of memory
leaks and access errors. InProceedings of the Winter USENIX
Conference, 1992.

[35] G. Haugk, F. Lax, R. Royer, and J. Williams. The 5ESS(TM)
switching system: Maintenance capabilities.AT&T Technical
Journal, 64(6 part 2):1385–1416, July-August 1985.

[36] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and
Y. Wang. Cyclone: A safe dialect of C. InUSENIX Annual
Technical Conference, June 2002.

[37] R. Jones and P. Kelly. Backwards-compatible bounds checking
for arrays and pointers in C programs. InProceedings of Third
International Workshop On Automatic Debugging, May 1997.

[38] S. C. Kendall. Bcc: run-time checking for C programs. In
USENIX Summer Conference Proceedings, 1983.

[39] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure
Execution Via Program Shepherding. InProceedings of 11th
USENIX Security Symposium, August 2002.

[40] B. Latane and J. Darley. Group inhibition of bystander
intervention in emergencies.Journal of Personality and Social
Psychology, pages 215–221, Oct. 1968.

[41] M. Litzkow, M. Livny, and M. Mutka. Condor - A Hunter of Idle
Workstations. InProceedings of the 8th International
Conference of Distributed Computing Systems, 1988.

[42] M. Litzkow and M. Solomon. The Evolution of Condor
Checkpointing.

[43] M. R. Lyu. Software Fault Tolerance. John Wiley & Sons, 1995.
[44] S. Mourad and D. Andrews. On the reliability of the IBM

MVS/XA operating system.IEEE Transactions on Software
Engineering, September 1987.

[45] G. C. Necula, S. McPeak, and W. Weimer. CCured: type-safe
retrofitting of legacy code. InSymposium on Principles of
Programming Languages, 2002.

[46] R. Rashid, D. Julin, D. Orr, R. Sanzi, R. Baron, A. Forin,
D. Golub, and M. Jones. Mach: A New Kernel Foundation For

UNIX Development. InProceedings of the 1986 Summer
USENIX Conference, July 1986.

[47] M. Rinard. Acceptability-oriented computing. In2003 ACM
SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications Companion (OOPSLA
’03 Companion) Onwards! Session, Oct. 2003.

[48] M. Rinard, C. Cadar, D. Roy, D. Dumitran, and T. Leu. A
dynamic technique for eliminating buffer overflow
vulnerabilities (and other memory errors). InProceedings of the
20th Annual Computer Security Applications Conference, Dec.
2004.

[49] R. Rugina and M. Rinard. Symbolic bounds analysis of pointers,
array indices, and accessed memory regions. InProceedings of
the ACM SIGPLAN ’00 Conference on Programming Language
Design and Implementation, June 2000.

[50] O. Ruwase and M. S. Lam. A Practical Dynamic Buffer
Overflow Detector. InProceedings of the 11th Annual Network
and Distributed System Security Symposium, February 2004.

[51] M. I. Seltzer and C. Small. Self-monitoring and self-adapting
operating systems. InProceedings of the Sixth workshop on Hot
Topics in Operating Systems, 1997.

[52] S. Sidiroglou, G. Giovanidis, and A. Keromytis. Using
execution transactions to recover from buffer overflow attacks.
Technical Report CUCS-031-04, Columbia University
Computer Science Department, September 2004.

[53] M. Swift, B. Bershad, and H. Levy. Improving the reliability of
commodity operating systems. InProceedings of the Nineteenth
ACM Symposium on Operating System Principles, Dec. 2003.

[54] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A First
Step towards Automated Detection of Buffer Overrun
Vulnerabilities. InProceedings of the Year 2000 Network and
Distributed System Security Symposium, 2000.

[55] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient
software-based fault isolation. InProceedings of the Fourteenth
ACM Symposium on Operating System Principles, Dec. 1994.

[56] E. Witchel, J. Cates, and K. Asanovic. Mondriaan memory
protection. InProceedings of the 10th International Conference
on Architectural Support for Programming Languages and
Operating Systems, Oct. 2002.

[57] H. Xi and F. Pfenning. Eliminating Array Bound Checking
Through Dependent Types. InProceedings of ACM SIGPLAN
Conference on Programming Language Design and
Implementation, June 1998.

[58] S. H. Yong and S. Horwitz. Protecting C Programs from Attacks
via Invalid Pointer Dereferences. InProceedings of the 9th
European software engineering conference held jointly with 10th
ACM SIGSOFT international symposium on Foundations of
software engineering, 2003.

[59] Y. Zhang, J. Yang, and R. Gupta. Frequent value locality and
value-centric data cache design. InProceedings of the Ninth
International Conference on Architectural Support for
Programming Languages and Operating Systems, Nov. 2000.

