Exploring the Acceptability Envelope *

Martin Rinard
MIT CSAIL
Singapore-MIT Alliance
Massachusetts Institute of
Technology
Cambridge, MA 02139

rinard@Ilcs.mit.edu

ABSTRACT

An acceptability envelopés a region of imperfect but acceptable
software systems surrounding a given perfect system. &ttpli
targeting the acceptability envelope during developmethér than
attempting to minimize the number of errors, as is the ctipearc-
tice) has several potential benefits. Specifically, leagicceptable
errors in the system eliminates the risks and costs assdoiéth
attempting to repair the errors; investing fewer resouineless
critical regions of the program and more resources in matiear
regions may increase acceptability and reduce the overadkt-
ment of development resources.

To realize these benefits, the acceptability envelope nausbth
sizable and accessible. We present several case studiesphare
the acceptability envelopes of the Pine email client andtiee-
Player MPEG decoder. These studies show that both Pine aae Su
Player can tolerate the addition of many off-by-one erroithout
producing unacceptable behavior. This result suggeststingent
systems may be overengineered in the sense that they ceaaidole
many more errors than they currently contain.

Our SurePlayer case study also shows that SurePlayenifas
giving regionsof code that must be close to perfect for the system
to function at all. To effectively exploit the acceptalyilgnvelope,
developers must be able to distinguish forgiving and urivarg
regions so that they can appropriately prioritize theiradepment
effort. In SurePlayer, the unforgiving regions occur in edtat
uses metadata to parse the input stream; the forgivingnegéend
to access the data within each image. This result suggestdeh
velopers may be able to use relatively simple indicatorsffiece
tively prioritize their development effort.

Categories and Subject Descriptors: D.2.5 [Software/Testing
and Debugging]: Error Handling and Recovery, D.2.4 [Soft-
ware/Program Verification]: Reliability

*This research was supported in part by the Singapore-MIT Al-
liance, DARPA Cooperative Agreement FA 8750-04-2-0254FNS
Grant CCR-0086154, NSF Grant CCR-0341620, NSF Grant CCF-
0209075, and NSF Grant CCR-0325283.

Copyright is held by the author/owner.
OOPSLA'050ct. 16-20, 2005, San Diego, CA, USA.
ACM 1-59593-193-7/05/0010.

Cristian Cadar
Computer Systems Laboratory
Stanford University
Stanford, CA 94305

cristic@stanford.edu

Huu Hai Nguyen
MIT CSAIL
Singapore-MIT Alliance
Massachusetts Institute of
Technology
Cambridge, MA 02139

nguyenh2@cag.csail.mit.edu

General Terms: Experimentation, Reliability

Keywords: Failure-oblivious computing, acceptability-orientedreo
puting

1. INTRODUCTION

Given a specification, there may be multiple perfect sofewar
systems that implement that specification. The goal of meeh r
search in software engineering, program verification, aodnam
analysis is to find ways of bringing the implemented softwayre
tem as close to perfection as possible. The results of thareh
include program specification and verification systems p47,11,

5, 20, 19], program analysis systems [7, 4, 26, 3, 21], sofwa
development processes [25, 16, 12] and, more recently, hdg fi
ing systems [10, 28, 15]. In spite of this effort, it appednattin
practice, effectivelyall large software systems contain significant
numbers of programming errors [14].

This fact is often taken as an indictment of current softvebee
velopment practices. But when one examines the evidendée,
hard to miss a clear indication that aspiring to perfectiosaft-
ware systems is of limited utility and may even be activelyrder-
productive. Consider that, despite their many errors, megloyed
systems do a perfectly acceptable job of satisfying theseEttheir
users. Consider also that attempting to develop a perfetersy
places extreme demands on the developer, and that developgr
be able to be more productive and efficient if their goal isetean
acceptable, rather than perfect, system. Finally, considd one
common way of attempting to move the system closer to péofect
(removing programming errors) can involve significant spsbm-
plications, and risks. Botched repairs can be a substartodlem
in practice [8]; the system may even reach a point in whictuvir
ally anychange causes more problems than it solves [18]. In effect,
each system may have a finite modification budget, and spgndin
this budget repairing errors that are not crucial to theesy& ac-
ceptable execution may crowd out the ability to make othatiem-
tially more worthwhile, modifications.

1.1 The Acceptability Envelope

We propose an alternate conceptual framework. Insteadabf ev
uating a software system by considering how much it deviates
perfection, we propose to instead consider whether themsyde-
livers acceptable (even if flawed) service to its users. Boada-
tion of this approach is the concept of acceptability envelope

Every perfect software system is surrounded by a constallat
of similar but imperfect software systems. It is concepyuébut
not practically) possible to construct this constellatipnstarting
with the perfect system, then injecting errors. Some of tife s
ware systems in this constellation will acceptably satibyneeds

it

of the users. We call the collection of all such systemsateept-

(which the program must handle explicitly if it is to contajuor

ability envelopeof the perfect software system. Note that almost all simply halts and awaits external intervention.

successful deployed software systems are contained irctiepa
ability envelope of the perfect system that the developatily
set out to build.

1.2 Exploring the Acceptability Envelope

In principle, the acceptability envelope should presentuehn
larger development target than the perfect system at threeafdhe
acceptability envelope. Whether the developer is ablepoéxthe
flexibility and additional options that this larger devehtopnt target
provides depends on the size and accessibility of the aalo#ipt
envelope target. The larger and more accessible the ervedlop
more opportunities are likely to arise to exploit the adutitil flexi-
bility to make the development process more efficient aretéffe.

We discuss two case studies designed to explore acceptainii
velopes. These case studies inject off-by-one errorsietpopular
Pine mail client [1] and the SurePlayer MPEG video decodgr [2
Each program contains a certain nhumber of places where dsis p
sible to insert such errors (in our case studies, loop teatiun
conditions). Our results show that it is possible to insébg-one

But our results show thags long as we apply techniques that
disable safety checks and enable the program to executaghro
violations and failures without disturbing the normal extion, the
acceptability envelopes of our two systems include maniaxts
that violate basic safety checks. Disabling these checkstan-
tially increased the ability of our two programs to delivecept-
able results in the face of programming errors. This in@das-
silience translated directly into a significant increasthsizes of
their acceptability envelopes.

Our results therefore highlight one important drawbackhaf t
aspiration to perfection in software systems — namely,dbfsra-
tion misleads systems and language builders to inappaigtyiand
systematically scatter self-sabotaging checks perdgsikieough-
out the system. Our results show that these checks can ssaece
ily and artificially increase the brittleness of the systemd deny
the system the inherent resilience that it would have otiseran-
joyed. We suspect that a significant part of the frustratisersi
occasionally experience when they try to use today’s ejdbrit-
tle software systems can ultimately be traced to the presefhc

errors inalmost allof these places without causing the program to inappropriate checks in the system.

behave unacceptably.

For SurePlayer, some of the injected off-by-one errorsextise
program to behave unacceptably. Upon investigation we algle
to identify a property that tended to separate unaccepotes
(which disabled the program) from acceptable errors (whih
program could tolerate) — the unacceptable errors accesslata
that allows SurePlayer to parse the input data stream wigled¢-
ceptable errors tended to process the data in each image.

1.3 Exploiting the Acceptability Envelope

These results suggest two characteristics of the reldtiprize-
tween current systems and their acceptability envelopest, Eur-

The techniques that we applied to eliminate these checkaria v
ant of failure-oblivious computing [23] and source codensfar-
mations to discard exceptions and programmer-providegkshe
are relatively simple both in concept and implementatidmeyido,
however, conflict with the prevailing philosophy that it issafe to
let a computer system continue to execute in the face of peae
that it has experienced an error. A developer focused orirediing
as many errors as possible would never develop, apply, orave
sider these techniques — they are designed to improve tiensys
but offer no prospect of ever making it perfect.

One intriguing aspect of our results is how clearly they demo
strate that acceptability envelopes can contain many narignat

rent systems may be overengineered in the sense that they hay Violate basic programmer expectations. One potentialegtion

many fewer errors than they can acceptably tolerate and Inesig-t
fore be much farther inside the acceptability envelope tieges-
sary. One obvious way to exploit the acceptability envelsp®
simply leave acceptable errors in place and avoid the risédpa-
tential complications of attempting to repair such errgksother
is to adopt, when appropriate, development methodolog&s in
return for other advantages, produce systems with moreserro
Second, acceptability envelopes may contain unforgivagipns
— areas of the program that must be close to perfect for thersys
to operate acceptably. To successfully exploit the acudidlex-
ibility that the acceptability envelope may provide, it iisgortant
to be able to distinguish unforgiving regions from more fairy
regions that can tolerate more errors. Instead of an unéacds-
velopment effort that directed resources equally to altgaf the
program, developers could then focus their efforts morevihea
on the unforgiving regions and less heavily on forgivingioeg.
This prioritized development effort may yield a better easiult —
a more acceptable system (characterized by a minimal nuafber
errors in the unforgiving regions and more errors in the ifong
regions) obtained with reduced development effort anduress.

1.4 Increasing the Acceptability Envelope

Basic safety condition violations (such as null pointer mag
bounds check violations) or assertion failures providarckvi-
dence that the system is not executing perfectly. If the l[dpmeent
goal is to produce a perfect systefail-stop behavioiis a rational
response to such a violation or failure — instead of contigwiith
the normal execution path, the program either throws anptixge

for this phenomenon is that developers may try to reduce togk-
nitive burden by keeping the system withinamticipated envelope
of executions that is 1) narrower than required to deliveeptable
behavior but 2) has properties that make the program easieat
son about than other acceptable programs outside the gattdi
envelope. This explanation suggests that to realize th@dtén-
tial of exploiting the acceptability envelope, it may be esgary to
relax the extent to which we expect developers to understaad
systems that they build. In particular, we may need to bengilio
allow systems to continue to execute through unanticipgtedrly
understood conditions in the expectation that they willamtheless
deliver acceptable behavior.

1.5 Maintaining the Acceptability Envelope

Software development has traditionally been seen as albafnc
engineering. But for maintaining acceptability, the fieldn@dicine
might provide a more productive comparison point. A primaog-
cern in both disciplines is to how deal with an existing larcem-
plex, and often poorly understood system that may be operati
suboptimally but is far from completely disabled. Therefieio no
expectation that any theraputic activity will deliver a feet sys-
tem, and a large part of the focus is simply to preserve tretingi
desired behavior or function of the system in the face of ghran
goals or environments.

Seen from this perspective, it is clear that bug-findinggain
be counterproductive. In the same way that finding out about a
medical condition may lead to a course of treatment that svind
up producing a worse result than simply leaving the conwlitio-

treated (treatment errors account for tens of thousandsathd
every year [6]), so too may the discovery of errors lead toqme
tative maintenance that leaves the software system wofs$baof
it would have been had the errors simply been left in placé. [18
Successfully maintaining a software system in the face ofim
errors may therefore require both a way to distinguish uoesie
able errors from acceptable errors and the discipline tadate
temptation to attempt to fix errors that are better off lefplace.
A common problem with medicine is the tendency of specilist
lose the big picture as they focus on a problem within thedaanf
speciality. So too may specialists in different parts ofshéware
system lose the big picture as they maintain their part ofstrse
tem. In both cases a larger, more holistic perspective magume
a better overall result.

1.6 Obtainable Perfection

One may wonder if it is ever possible or worthwhile to aspire t
perfection. In some parts of the system, paradoxically guably
the most complex parts of the system, perfection is not jotsio-
able but also desirable. The key difficulty in developinghsafe
systems is almost always scale, not inherent complexitystio
rors occur because of the difficulty of performing a huge nemb
of straightforward tasks perfectly, because of misundedings
between different developers operating on interactingspafrthe
system, or because of changes elsewhere in the system that ma
previously correct behavior inappropriate.

It is possible, and even desirable, to obtain perfectiomialk
complex, well-understood components of the system. Exasnpi
such components include data structure implementationsape
sulated algorithms, and many standard libraries. Thesgskaf
components typically have clear, precise specificatiotadle in-
terfaces, and are small enough for a single talented dexetop
build. Moreover, it is often easy to use such components éd-bu
ing blocks in multiple systems, which may justify the deyetent
effort required to make them perfect.

2. PINE

Pine is a widely used mail user agent (MUA) that is distridute
with the Linux operating system. Pine allows users to read, ma
fetch mail from an IMAP server, compose and forward mail mes-
sages, and perform other email-related tasks.

2.1 Methodology

In this case study, we worked with Pine version 4.44. We used
the source files in thei ne directory of the Pine source distribution
package. This directory constitutes the core of the Pinesyslt is
composed of 30 C source files which together contain ovel0080,
lines of code.

We started by identifying thor loops in Pine which contain an
integer counteq and a termination condition of the forgxexpr ,
g>expr,q<=expr,orqg>=expr, whereexpr is an arbitrary in-
teger expression. Our error injection mechanism transaomdi-
tions of the formg<expr into g<=expr ; conditions of the form
g>expr into g>=expr ; conditions of the formg<=expr into
g<expr , and conditions of the formq>=expr into g>expr . We
divide the possible transformations into two main categgrirans-
formations that increase the scope of the loop, namelyfens-
tions that modify loops of the form<expr andqg>expr; and
transformations that decrease the scope of the loop, nanagly-
formations that modify loops of the forqr=expr andq>=expr .

We identified 330 suclior loops, among which 226 increase,
and 104 decrease the scope of the loop after error injedtigare
1 presents the number of loops that we identified in each categ

All
330
Increase Decrease]
226 104
g < expr q > expr g <= expr q >= expr
210 16 87 17

Figure 1: For loops in Pine

We constructed a variant of Pine that contained all these 330

off-by-one errors and compiled this variant with two ditfat com-
pilers: the standard gcc compiler to obtaistaandar d version,
and a compiler that generates failure oblivious code toiokda
failure-oblivious version [23].

Ouir failure oblivious compiler performs array bounds cleedk
tracks the allocated memory block to which each pointer khi@
fer. If the program creates a pointer that points beyond thamds
of its memory block, then uses the pointer to attempt a readios
access, the generated code instead redirects the accéssfiist
element of the allocated block. This mechanism enables anug
to continue to execute through memory errors without mernory
ruption. Moreover, it tends to ensure that out of bounds sead
cess properly initialized data that satisfy the key coesisy con-
straints of the data structure. We would have preferred siorer
that discarded out of bounds writes, but implementatioitéitions
inherited from the base compiler made this technique imjmaic

In addition, we also disabled all assertion checks, by simpl
commenting out the body of any procedures which terminage th
program, such as theani ¢ andf at al procedures.

To evaluate the acceptability of the Pine variants that wated,
we designed aacceptability testwhich tests the behavior of Pine
on a set of standard mail management tasks:

1. Main Menu: We start Pine and test whether the main menu

shows up and is functional.

2. Compose We compose a message by selecting@hepose
option from the main menu of Pine. We compose a self-
addressed message, with the subjeest x (wherex is a
short string) and bodyest .

3. Browse Inbox We open the Inbox using the optiéwol der
Li st and then optio NBOX, and we browse through the
Inbox to check if this feature is functional.

4. Information bar : We check to see whether the information
bar is displayed correctly.

5. Read first message We read the first message by pressing
Ent er on its summary.

6. Read middle messageWe read a middle message by press-
ing Ent er on its summary.

7. Forward: We forward to ourselves the middle message that
we just read.

8. Reply: We reply to a self-addressed message with the text

“I’ep|y".

. /** fromsend.c **/
9. Read last messageWe read the last message by pressing i = fixed_cnt * sizeof (PINEFI ELD):

Ent er on its summary. pfields = (PINEFIELD *)fs_get((size_t) i);
. . menset (pfields, 0, (size_t) i);
10. Back to main menu We return to the main menu by press- o
ing < a couple of times. /| off-by-one error. "<=" instead of "<"
(*) for(i=0; i <= fixed_cnt; i++ pf++) {
11. Quit: We exit Pine by pressing in the main menu.

'pl.‘;>name = ...
2.2 Results .
L - . pf->type =
Pine is unusable when all 330 errors are injected into itecod L
The standard version terminates with a segmentation feeit be- pf->next = pf + 1;

fore the user interface shows up, while the failure-obligioersion
allows the user to browse through the main menu, but doeslnot a
low the user to perform standard tasks such as sending a geessa Figure 2: The unacceptable error in send.c
or accessing the mail folders.

We next performed a sequence of experiments designed to sepa
rate the injected errors into acceptable and unacceptelles eWe 2.3 Unacceptable Errors
identified four unacceptable errors, each responsibleifatiing

- ! We investigated the reason for which the four unacceptable e
one particular feature of Pine:

rors that we identified cause Pine to become unusable. We aumm
e One errorini ni t . ¢ that causes the mail folders to become rize two of these errors here.
inaccessible. One of the unacceptable errors is that the user is unablentb se
messages. The user can open the compose window and type the
message header and body, but when the user pr€ssds X to
send the message, Pine complains that no recipients have bee
specified. The behavior is caused by a single off-by-oner énro
e One error inmai | cnd. ¢ that disables most key bindings, the filesend. ¢, in the code which constructs a list of the possible
such asR for replying to messages ardfor going back to fields in the email message that is being composed (such as,Fro
the previous screen. To: etc.). Although the list is implemented as a linked litst,size
])] is known in advance, and so the application preallocatesanem
e One errorirsend. ¢ which makes Pine unable to send mes- for gl jts elements in one call to the memory allocation paare.

e One error infil ter. c that causes Pine to display mes-
sages one letter per line, and many times to display only the
beginning of the message.

sages. Figure 2 shows the lines of code that perform the allocation.

After we removed these four errors, the failure-obliviows-v The code next traverses the linked list to initialize eacht®f
sion of Pine passed our acceptability test, despite thetffmttit elements. In particular, theext field of each element is set to
contained 326 different errors, 63 of which were exercigddast point to the next element in the list. The off-by-one erroiris
once during the acceptability test. In total, the errorserexercised ~ serted in line (*), and extends the scope of the loop by oneth®n
thousands of times during this test. Note that this versioRine last iteration, the pointepf points past the end of thef i el ds
does not execute flawlessly — it contains several visiblersdies. linked list. Thus, whenever the program deferences thet@oithe
However, these anomalies do not prevent the user from mngr failure-oblivious code accesses the first element of thﬂyar'l’hls
standard mail management tasks. These anomalies incledelth means that thaext field of the first element is overwritten and the
lowing: entire contents of the list are lost. We believe that discardut of

bounds writes would transform this error into an acceptahier.

A second unacceptable error is that some keys suéhfasre-
plying to a messagé&)for exiting Pine, anc for going back to the
previous screen are disabled. We consider this problem tmae-
ceptable because it completely disables some importahinmaai-
e First and Last Message:Users are not able to go from the ~agement tasks. This problem is generated by a single offrigy-

e Missing Date: The date associated with each message is dis-
played incorrectly when the email message is displayed in a
separate window. The date is displayed correctly when the
message is displayed as part of a folder.

second to the first message by pressingmé(ey’ or to go error in themai | cnd. ¢ file. Unlike the error discussed above,
from the second to last to the last message by pressing thewhich increases the scope of the loop by one, this erroradste
Down key. However, users can use thege Up andPage decreases the scope of the loop by one. Figure 3 shows the prob
Down keys to accomplish these tasks. lematic code fronmai | cnd. ¢, with the off-by-one error on line

.) (**). The code contains a second off-by-one error on line Pfis

e Garbage Characters: Most messages are displayed with ~ode executes whenever the user presses a key to find outevheth
extra garbage characters on blank lines or at the end of someiere is a command associated with that key. To accomplish th
WOde.' While these garbage characters do not. interfere with task, the code traverses all the commands in the currenbfkts
the ability of the user to read the messages in our accept- nenys, and then traverses all the keys which are bound to each
ability test, for longer messages they may make the messagecommand. Because the code contains an error in line (**) whic
difficult enough to read that there may be a reasonable argu- gecreases the scope of that loop by one, Pine ignores sonoe-imp
ment to classify the error as unacceptable. tant key-command bindings. These ignored bindings gemd¢hat

e Distorted Information Bar: The information bar is dis- uUnacceptable behavior described above.
played incorrectly. Some items are missing, and some others
are out of place. However, the keys work correctly and new 2.4 Acceptable Errors
users can easily discover the key bindings by trial and error e next discuss the behavior associated with four of thepece
Experienced users, of course, will have memorized the bind- aple errors. We discuss two errors that decrease the scape of
ings and no longer need the information bar. loop and two errors that increase the scope of the loop.

/* Scan the list for any keystroke/ conmand bi nding */
// off-by-one error. ">=" instead of ">"
(*) for(i = (menu->how many * 12) - 1; i >=0; i--)

if(bitnset(i, menu->bitnap))
/| off-by-one error. ">" instead of ">="
(**) for(n = nenu->keys[i].bind.nch - 1; n > 0; n--)
i f(keystroke == nmenu->keys[i].bind.ch[n])
return(menu->keys[i].bind. cnd);

Figure 3: The unacceptable error in mailcmd.c

[* aeeee-- Extracted frompine.c -------- */
voi d pine_nuil _close(stream

MAI LSTREAM *st r eam
{

instead of "<="
n++)

/1 off-by-one error. "<"
(*) for(n = 1L; n < stream >nnsgs;
if(*(partp = (PARTEX_S **)
&mai |l _elt(stream n)->sparep))
msgno_free_exceptions(partp);

Figure 4: The pine.mail_close function in Pine

2.4.1 Errors that decrease the scope of the loop

Figure 4 presents a function whose job is to free resources as
ciated with a given mail stream. The function contains arbgff
one error on line (*), which causes Pine to leak memory, buitkvh
doesn't affect its functionality.

[* e Extracted frommailindx.c -------- */
int msgno_i n_sel ect(nsgs, n)
MBGNO_S *nsgs;

I ong n;
{ .

long i;

i f(msgs)

/Il off-by-one error. "<=" instead of "<"
(*) for (i = O0L; i <= (nsBgs->sel_cnt); i++)

if(nmsgs->select[i] == n)
return(1);
return(0);

Figure 6: The msgnain_select function in Pine

2.4.2 Errors that increase the scope of the loop

Figure 6 presents a function from Pine which tests to seeeif th
given message number is in the selected message list. Tiisdn
contains an injected error on line (*) which extends the saafithe
loop by one. The function traverses all the elements of theetsl
list and returns 1 if the given message number is found inigte |
If the loop terminates without finding the given message renmb
the function returns 0. Compiled with a standard compileis t
function terminates with a segmentation fault on most ettens.
When using our failure-oblivious compiler, the functiomtioues
to execute correctly despite the invalid memory accessdutie
last iteration of the for loop. When the function attemptsead
the element past the end of thegs array, the compiler returns
instead the first element of the array. The function simpheegs

Figure 5 presents a function from Pine which increments the the computation on the first element of the array and is gieean
current message number to allow the user to advance to the nexto return the right answer.

message in the current folder. The function uses a loop tatée
through the messages following the current message, gxitia
loop after it finds the first visible message. Pine then sétsles-
sage to be the current message. The function contains anddje
error on line (*) which decreases the scope of the loop by Goe-
sequently, when the user tries to advance from the secordtttol
the last message in the current foldesgno_i nc simply does
nothing. However, this error does not reduce Pine’s funetity:
the user can still access the last message by usiriggithe Down
key, by re-sorting the messages using a different rule, celoyg-
ing himself or herself another message (so that the lastagess
becomes the next to last message, which is then accessible).

[* aeeee-- Extracted fromnumilindx.c -------- */
voi d msgno_i nc(stream nsgs)

MAI LSTREAM * st r eam

MBGNO_S *nBgs;

long i;

if(!msgs ||
return;

mm_get _total (nmsgs) < 1L)

for (i = nsgs->sel ect[nsgs->sel _cur] + 1;
// off-by-one error. "<" instead of "<="
(*) i < (m_get_total (nsgs)); i++) {
if('get_|flag(stream nmsgs, i, MNHDE)){
(msgs) - >sel ect[((msgs)->sel _cur)] =i;
br eak;
}
}

Figure 5: The msgnainc function in Pine

Figure 7 presents a function that computes the width of each
element of a row in the key menu. We present here a very simgblifi
version of the function, because the original function hasathan
200 lines of code.

Figure 8 shows the first row of the key menu in tRel der
Li st view in Pine. Given the elemenitsnof such a key menu and
the widthwi dt h of the screen, the functiohor mat _keynmenu
calculates the width of each element of the key menu. Thdifumc
contains an injected error on line (*) which extends the scop
the loop by one. The function starts by assigning to eacheoéith
elements in the key menu a trial widthf i] , which is initialized
tow dt h/ 6 columns. During this initial step, the function also
calculates the exact width{ i] required by each element, which
is the length of its label plus 1, and the minimum widthn_w{ i]
of each element, which 8. The function also computes the extra
spaceextrali] for each element, which is defined as the ac-
tual widtht W i] minus the exact width i] of the element. If
extra[i] is negative for an element, than that item doesn't fit
into the assigned space.

Because the loop on line (*) contains an off-by-one errorchhi
extends its scope by Wi], mnwi],twi],extra[i],
andspaci ng[i +1] overflow during the last iteration. Using a
standard compiler, these overflows may terminate the pnogrith
a segmentation fault. Using failure-oblivious computitige com-
piler returns the base pointer of the block where the invatidess
occurred. Thuext r a[0] is reassigned a negative value as the re-
sult of the computation. Consequently, the test on line @hich
checks whether the menu fits on the screen fails and the fumcti
tries to shrink the menu as much as possible. Then, the tdsteon
(***) fails too, and the function resets the actual width{ i] of
each element to be at least the minimum widtm_w{ i] . Thus

? Help < Main Menu P PrevFl dr

- PrevPage A Add R Renane

Figure 8: Key Menu in the Folder List View

t w 0] is assignedr n.w 0] , namely6, and now everything fits
on the screen. The net effect of the off-by-one error is thafirst
element of the key menu is incorrectly set to have the minimum
width possible, although a bigger width would have workee fin
for most screens. This means that the key menu is distortedt, b
has no other effect on Pine’s functionality.

It is also interesting to note that the existence of an ofbhg
error that extends the scope of the loop on lines (1), (2),3br (
would not affect the computation fror mat _keynenu.

2.5 Discussion

In general, there is an intuitive reason why failure-olglus code
tends to work well with off-by-one errors. Conceptuallycoease
errors cause the program to do less. The end result is thatdhe
gram often fails to perform the final piece of a collection afriu It
turns out that Pine can often perform acceptably withowt piece
— Pine often provides multiple ways to accomplish the sarsk, ta
and it is often the case that one of these ways remains enabled
the face of the off-by-one error.

Conceptually, increase errors cause the program to do Métie.
standard compilation, this more typically involves arrayibds vi-
olations with the attendant memory corruption, which oftanses
the program to fail. But failure-oblivous computing tramshs
these out of bounds accesses into accesses to the corriegpond
memory block, enabling the program to continue without mgmo
corruption. Because reads access appropriately indihliiata, the
program tends not to experience any inconsistent datasaltee
largest remaining issue with Pine is the generation of chdedis-
cards out of bounds writes (instead of writing the first eletraf
each array as is the case with the current generated codeheWe
lieve this change would convert some of the unacceptabtaserr
into acceptable errors.

We note that for Pine, as for SurePlayer (see Sedidh 3for a
more thorough discussion of this issue) transforming thogam
to execute through errors and user-provided checks witimbert-
fering with the default flow of control was crucial to enalgiiRine
to behave resiliently in the face of off-by-one errors. Thist sug-
gests that many safety checks may in fact have a countergiieelu
effect on the reslience of the program.

3. SUREPLAYER

3.2 Exception Elimination Strategy

We next created a version of SurePlayer with injected off-by
one errors in all available injection sites. When we ran eision
on our sample input, it immediately threw an array out of katsun
exception and exited.

We then transformed this version of the program to executeitfh
array bounds exceptions as follows (although it is posgiblien-
plement this transformation automatically in the JVM, foistcase
study we implemented it manually). This transformed verslis-
cards out of bounds write accesses and returns the first etexhe
the accessed array for out of bounds read accesses. It thén-co
ues to execute along the normal, non-exceptional contnolgkth.
When we ran this version on our sample input, it entered aniigfi
loop without displaying any video images.

3.3 Acceptable and Unacceptable Errors

We then performed a sequence of experiments designed to sepa
rate the off-by-one errors into acceptable and unacceptiobrs.
Of the 54 off-by-one errors, we identified 5 as unacceptalle.
ter removing these 5 errors (leaving 49 off-by-one errorshim
program), SurePlayer successfully displays the video. iftage
quality is poor, with numerous display artifacts and jittBlever-
theless, the three tethered robots and their coordinate® ment
are clearly visible, as is the text in the introductory péthe video.

We instrumented the program to record the number of timds eac
off-by-one error executed. Specifically, we recorded thalper of
times each condition was true in the version with the 49 gff-b
one errors when it would have been false in the original versi
Together, the off-by-one errors caused 27,564,537 mone iteo-
ations to execute than in the original version. None of thected
off-by-one errors cause conditions to be false in the varsigh
the 49 off-by-one errors when the condition would have beaa t
in the original version (SurePlayer contains no less thagoal to
or greater than or equal to comparisons in loop exit cormiio

3.4 Effect of Fewer Acceptable Errors

To explore the effect of applying fewer off-by-one errorse w
produced versions of SurePlayer with 10, 20, 30, 40, and 489eof
acceptable errors. We selected the errors to include in each
sion psuedo-randomly, with each successive version congpall
of the errors in the previous version. We then ran all of these

SurePlayer is an MPEG video decoder written in Java. It takes Sions on our sample input. The version with 10 errors hadanlsvi
as input an MPEG-encoded file and produces as output the videodisplay artifacts and jitter, but it was visibly clearerithe version

in the file. We worked with SurePlayer version 1.0, which has 4
Java source code files containing 9912 lines of Java soud® co
Our test input for SurePlayer is a video of three tethereatob
interacting.

3.1 Off-By-One Errors

We profiled SurePlayer running on our test input and found 54
conditional expressions in the executed code that weréadaior
the injection of off-by-one errors. We targeted the samecasuof
off-by-one errors as for Pine (loop exit conditions withddhan,
less than or equal, greater than, or greater than or equpie®ex
sions). Of these patterns, SurePlayer contains only gréade
and less than expressions.

with 20 errors. The versions with 30, 40, and 49 errors ayguktr
be substantially the same as the version with 20 errors.

3.5 Analysis of Unacceptable Errors

We investigated the reason that each of the unacceptablg/-off
one errors caused the program to fail. Here is the breakdown:

e Infinite Input Loops: Two of the errors cause the program
to enter an infinite input loop. Both errors occur in input
loops that iterate until the number of bytes read in matches
the number of characters expected to be read in. The injected
off-by-one errors cause the loop exit condition to never be-
come true — once the loop reads in the expected number of
bytes, it does not read in any more bytes, and the off-by-one
error in the exit condition causes this condition to never be

[* ceeeeeee-- Extracted fromscreen.c ------------ */
voi d format_keynenu(km width)
struct key_menu *km /1 the key menu to format
int wi dth; // the screen width
{
int spacing[7]; // ideal spacing
int Wf6], mn_w6], tw6], extra[6], i;

/* set up "ideal" colums to start in */
for(i =0; i <7; i++)
spacing[i] = (i * width) / 6;

(*)for (i =0; i <=86; i++) {
key = getkey(km i);

/* The width of a box is the max width plus 1 */
wWi] = strlen(key->nane+l);

/* The smallest we'll squeeze a colum.*/
mn_wi] = 6;

/* init trial width */

twi] = spacing[i+1] - spacing[i];

extra[i] = twi] - wi]; /* <O if it doesn't fit */
}

/* See if we can fit everything on the screen. */
done = 0;
whi | e(! done) {
/* Find snallest extra */
int smallest_extra = -1;
int howsmall = 100;
(1) for (i =0; i <6; i++) {
if(extra[i] < how_ small){
smal | est _extra = i;

how_smal | = extralil];
}
}
(**) if(how snall >= 0) /* everything fits */
done++;
el se{

int take_from how_ cl ose;
/* Find the one that is closest to the ideal width
* that has some extra to spare. */
take_from= -1;
how_cl ose = 100;
(2) for (i =0; i <6; i++) {
if(extrali] >0 &&
((spacing[i+1]-spacing[i]) - twi]) < how_ close){
take_from=1i;
how_cl ose = (spacing[i+1]-spacing[i]) - twWi];
}
}

(***) if(take_from>= 0){
/* Found one. Take one fromtake_fromand add it
* to the smallest_extra. */
tw snal | est _extra] ++;
extral smal | est _extra] ++;
twtake_fron--;
extra[take_froni--;
} el se{
int used_width;
/* Oops. Not enough space to fit everything in.
* W& make sure that each field is at least its
* mnimumsize, and then we cut back those over
the mninum */
(3) for(i =0; i < 6; i++)
twii] = max(twfi], nmin_wi]);
used_wi dth = 0;
for (i =0; i < 6; i++)
used_width += twi];

whi |l e(used_wi dth > width && !done){
. /* not reached */ }

Figure 7: The format_keymenu function in Pine

come true — the count of read in bytes never exceeds the
limit required to exit the loop.

e Input Stream Desynchronization: The MPEG input file is
a linearized stream with a hierarchical structure comgjstif
packages of frames of macro blocks of blocks (each block
contains part of an image), with metadata interleaved into
the stream. This metadata allows the program to identify the
starting and ending points of each element of the stream.

Two of the errors cause low-level input procedures to read
one more byte than they should. This extra read has the
effect of desynchronizing the input stream (i.e., making th
program unable to recognize where the different elements in
the stream begin and end). After removing checks that cause
the program to exit if it notices a synchronization problem,
the program infinite loops looking for metadata that it canno
find because of the desynchronization of the input stream.

e Data Structure Desynchronization: As part of the decod-
ing process, SurePlayer splits the input stream up into-pack
ages and stores sequences of packages in an intermediate
data structure. Each element of the data structure stores in
formation about each package; this information includes th
number of bytes in the package that SurePlayer has left to
process.

SurePlayer repeatedly scans this data structure to partial
decode the contents into another intermediate data steuctu
which also contains counts of the number of bytes in the
package left to process (the reason for the repeated scans is
that the blocks may appear out of order in the input stream
and in the resulting intermediate data structures). The ef-
fect of the last unacceptable off-by-one error is to create a
alias in the data structure — the first and last package in the
sequence of packages are the same. As a result, the counts
of bytes left to process in the two intermediate data struc-
tures become inconsistent. One result is that the posifian o
piece of metadata called the “start sequence code” becomes
incorrect. After commenting out a check that causes the pro-
gram to exit if it fails to find this start sequence code where

it expects it, SurePlayer infinite loops without producimy a
video image — its inability to locate the start sequence code
makes it unable to interpret the stored image data to find the
images to display.

3.6 Discussion

We discuss how to distinguish acceptable and unacceptable e
rors in SurePlayer, issues surrounding infinite loops, Ardihde-
sirable impact of safety checks in general and exceptiopsuitic-
ular on the resilience of SurePlayer.

3.6.1 Acceptable and Unacceptable Errors

All of the unacceptable errors in SurePlayer disrupt itéitgtio
locate and process basic metadata structuring elemerits ingut
stream. Most of the acceptable errors, in contrast, affetiptita-
tions that process and display image data once the basieetem
of the input stream have been identified. We have identifiem tw
potential underlying reasons for this distinction. Fitkg metadata
processing code tends to have a more complex relationstigbe
the logical structure of the data that it processes and th&ao
flow than does the image processing code. The metadata proces
ing code is, in effect, a hand-coded parser and much of itsifom
ality involves looking for certain elements in the inputestm. It is
therefore vulnerable to infinite loops if an error causes firocess

part of the input stream incorrectly. Most of the image pesoeg
code, on the other hand, simply iterates over the relatisihple
data structures that store the image data. It is therefochrass
vulnerable to control flow anomalies.

Second, the metadata computations determine and strubtire
data that all subsequent computations access. Any errdrein t
metadata computations will affect the execution of theremést of
the program. Even though four of the five metadata errordtezku
in infinite loops (so subsequent computations never evecutse
it appears that the errors cause SurePlayer to lose enoutte of
structure so that it would no longer be able to retrieve thagen
data from the input stream.

3.6.2 Infinite Loops

In general, SurePlayer has critical parts that must be diose
perfect for the program to execute acceptably (the metadata
putation) and less critical parts that can tolerate morergrfthe
computations that process image data). However, it is watimg
that an unintended infinite loop is an unnacceptable eegardless
of where it appears in the progranthe program counter is a single
resource, and less critical parts of the program can digaftleal
parts either by monopolizing this resource (in an infinitegpor
discarding it (as typically happens when the program erteosra
safety check).

A crucial aspect of all of our techniques that increase the sf
the acceptability envelope is the fact that they presereentdrmal
flow of control so that subsequent critical parts of the cotaton
can execute. Other techniques that prevent infinite loapa frap-
turing the program counter resource may also further irserehae
size of acceptability envelopes. Potential ideas incledainating
loops that deviate substantially from previously obsemethbers
of iterations, heuristics that inspect updated variatde®tognize
and terminate likely infinite loops, demand-driven compiataus-
ing a lazy evaluation strategy (which executes only thoses
the computation that are necessary to produce the resudt)ag:
gressive multithreading (which provides more program ¢ensfor
critical parts of the code).

3.6.3 Safety Checks
SurePlayer provides further evidence of the destabilizgifigct

4. ACCEPTABILITY IN PRACTICE

Itis our understanding that, in practice, most large saftveys-
tems contain many known errors. Systems therefore tyica
dergo a process, usually late in the release cycle, of ainglyzhich
of the known errors are serious enough to justify the risk exd
pense of attempting to repair before the release. The ctbger
project gets to a deadline (such as a release date), the tiore s
gent the requirements may become for attempting to reparran
rather than simply leaving it in the system. The developnpeot
cess therefore targets a perfect system, produces a systierarw
rors, then uses a prioritized error repair process to olstaimper-
fect system that is within the acceptability envelope ofdhginal
target system.

We know of no systematic attempt to control the location and
severity of the produced errors during the developmentga®e—
the developers simply deal with whatever errors happendw sip
as they appear. Any a priori activities that affect the setrobrs
take place very early in the development process as theidmAct
ality and schedule is set (there is a general recognitionntuae
functionality and a tighter schedule often produce a sysiétin
more errors), but there is a very loose, indirect connedietween
these activities and the errors that actually appear inytbiesn.

We are proposing, in part, a perspective shift that morerlglea
distinguishes acceptable and unacceptable errors, witiedsed
priority placed on (ideally) avoiding or (if necessary) agng un-
acceptable errors and a decreased priority placed on agoati
repairing acceptable errors. Unlike current developmeojepts,
which simply deal after the fact with whatever errors happen
show up during development, this perspective might allovetigp-
ers to purposefully influence the location and severity of piro-
duced errors. In the long run, one potential result mightHa t
developers would come to consider acceptable errors todman
lies or eccentricities rather than errors.

Of course, we are also proposing the adoption of techniques
(such as failure-oblivious computing) that increase tlze sif the
acceptability envelope. Our results suggest that thedmimgees
may convert many program actions that are currently consiti®
be errors (out of bounds memory accesses, null pointer seses
etc.) into simple anomalies that the program can easilydtde
Our results also indicate that programmer-supplied chéslsh

that safety checks such as array bounds checks can have on th&S assertions) may substantially degrade the ability obyiseem

inherent resilience of the computation. Our results shat ém-
abling SurePlayer to execute through array bounds viglatzan
substantially increase its acceptability envelope.

In principle, itis possible to structure the program to bateown
exceptions, recover from whatever caused the error, thetince.
If exceptions did in fact adequately support this kind ofgreon
structure, they might promote the development of more rotmes
grams. In practice, however, developers apparently finidficalt
or counterproductive to use exceptions in this way. Becdluse
programmer does not expect the program to throw a null derefe
ence or array bounds check exception (if the developer thidhe
program would throw such an exception, he or she would haite wr
ten the code differently), it is difficult for the developerimagine
what kind of situation would cause the program to throw the ex
ception. Because of their inability to imagine such a siamafand
because of the tedium of littering the program with handtbaet
catch exceptions close to where they are thrown), devedopmss-
ally rely on the default handler or insert a few handlers iraply
catch the exception, print an error message, then exit. Tide e
result is that exceptions, in practice, substantially ease the re-
silience of the program in comparison with other mechanifons
handling safety check violations.

to provide acceptable service to its users. It is our undedshg
that the community recognizes the potentially destabijjzffect
of assertions; many organizations disable assertionsishtpped
versions of their systems.

5. RELATED WORK

Acceptability-oriented computing augments systems witlals
acceptability component®2]. These components enforce basic
acceptability propertieshat the system must satisfy to remain ac-
ceptable to their users. The overall goal is to increaseitieso$ the
acceptability envelope as the acceptability componempisice un-
acceptable behavior on the part of the core software wite@table
behavior. Because the acceptability components are simajican
be made to be perfect or close to perfect. Failure-oblivammput-
ing [23] is an acceptability-oriented technique desigremcrease
the size of the acceptability envelope.

Research into the costs of incorrect repairs in softwartesys
indicates that incorrect repairs can be a significant proliteprac-
tice [8] and that incorrect repairs can substantially inseedevel-
opment costs [9]. The data and models buttress the caseafande
acceptable errors in place.

Fault injection is a standard technique that was originddlyel-
oped in the context of software testing to help evaluate therage
of testing processes [27]. It has also been used by othearzsas
for the purposes of evaluating standard failure recoverfyrtigjues
such as duplication, checkpointing, and fast reboot [13].

We are aware of no research that explores the possibility-of i
creasing errors in return for other benefits such as reduseslap-
ment time or costs, although activities that have this efetefbut
not this explicit goal) are most likely practiced routinalsoftware
development projects. For example, it is our understanttiagthe
functionality requirements of many projects are complegugyh
to preclude any possibility of error-free implementatibleverthe-
less, organizations routinely adopt such requirementsdaadl as
best as they can with the resulting errors that inevitablynshp
during development.

6. CONCLUSION

The prevailing philosophy in most software developmerresf
is to produce a software system that is as close to perfeasss-p
ble. The results in this paper suggest that there is a sutadtan-
velope of acceptable programs surrounding the (appariernplac-
tice unattainable) target perfect program. Our results siggest
that the application of simple techniques that allow thegpam to
execute through errors without disrupting its normal execucan
substantially increase the size of the acceptability empesl

While the acceptability envelope may offer some intriguamy
portunities to make the development process both moretiefiec
and efficient, it appears that some programs have unfogyiren
gions that must be close to perfect for the program to exemtte
ceptably. Developing effective ways of distinguishing angiving
regions from more forgiving regions may be a prerequisitedal-
izing the full potential of the acceptability envelope ir ttlevelop-
ment process. Such a distinction would provide a firm foundat
for the development of techniques that exploit the accélitabn-
velope to produce more acceptable software systems wihnes
vestment of development resources.

7. REFERENCES

[1] Pine website. http://www.washington.edu/pine/.

[2] SurePlayer website. http://sureplayer.sourceforgf.

[3] A. Aiken, J. S. Foster, J. Kodumal, and T. Terauchi. Cliegk
and inferring local non-aliasing. IALDI 2003 2003.

[4] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani.
Automatic predicate abstraction of C programsPhoc.

ACM PLDI, 2001.

[5] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec#
programming system: An overview. LASSIS 2004:
International Workshop on Construction and Analysis of
Safe, Secure and Interoperable Smart devibéarch 2004.

[6] Chassin MR, Galvin RW. The urgent need to improve health
care quality. Institute of Medicine National Roundtable on
Health Care QualityJAMA 280(11):1000-5, September
1998.

[7] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive
program verification in polynomial time. IRroc. ACM
PLDI, 2002.

[8] E. N. Adams. Optimizing preventing service of software
productsIBM Journal of Research and Developme2@(1),
January 1984.

[9] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and
A. Mockus. Does code decay? assessing the evidence from
change management dal&sE 27(1):1-12, Jan. 2001.

[10] D. Engler and M. Musuvathi. Static analysis versuswsafe
model checking for bug finding. MMCAI, 2004.
[11] C. Flanagan, K. R. M. Leino, M. Lilibridge, G. Nelson,B.
Saxe, and R. Stata. Extended Static Checking for Java. In
Proc. ACM PLDI| 2002.
E. Gamma, R. Helm, R. Johnson, and J. Vlissidessign
Patterns. Elements of Reusable Object-Oriented Software
Addison-Wesley, Reading, Mass., 1994.
George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg
Friedman, Armando Fox. Microreboot — a technique for
cheap recovery. IRroceedings of the 6th Symposium on
Operating Systems Design and Implementation (OSEdin
Francisco, CA, USA, December 2004.
C. Ghezzi, M. Jazayeri, and D. Mandridiundamentals of
Software EngineeringPrentice-Hall, 1991.
D. Hovemeyer and W. Pugh. Finding bugs is easy. In
OOPSLA '04: Companion to the 19th annual ACM
SIGPLAN conference on Object-oriented programming
systems, languages, and applicatiopages 132-136, New
York, NY, USA, 2004. ACM Press.
D. Jackson. Alloy: A lightweight object modelling ndi@n.
ACM TOSEM11(2):256-290, 2002.
[17] J. C. King.A Program Verifier PhD thesis, CMU, 1970.
[18] L. A. Belady, M. M. Lehman. A model of large program
developmentlBM Systems Journall5(3):225-252, 1976.
[19] P. Lam, V. Kuncak, and M. Rinard. On our experience with
modular pluggable analyses. Technical Report 965, MIT
CSAIL, September 2004.
P. Lam, V. Kuncak, and M. Rinard. Generalized typestate
checking for data structure consistency6th International
Conference on Verification, Model Checking and Abstract
Interpretation 2005.
T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Putting
static analysis to work for verification: A case study. In
International Symposium on Software Testing and Analysis
2000.
Martin Rinard. Acceptability-oriented computing. In
OOPSLA '03: Companion of the 18th annual ACM
SIGPLAN conference on Object-oriented programming,
systems, languages, and applicatiopages 221-239, New
York, NY, USA, 2003. ACM Press.
Martin Rinard, Cristian Cadar, Daniel Dumitran, Ddrivé
Roy, Tudor Leu, and William S. Beebee, Jr. Enhancing
server availability and security through failure-oblivug
computing. InProceedings of the 6th Symposium on
Operating Systems Design and Implementation (OSEAh
Francisco, CA, USA, December 2004.
G. Nelson. Techniques for program verification. Techhi
report, XEROX Palo Alto Research Center, 1981.
J. Rumbaugh, I. Jacobson, and G. Boothe Unified
Modelling Language Reference ManuAtdison-Wesley,
Reading, Mass., 1999.
F. Vivien and M. Rinard. Incrementalized pointer andagse
analysis. InProc. ACM PLDI| June 2001.
J. M. Voas and G. McGravBoftware Fault InjectionWiley,
1998.
Y. Xie and A. Aiken. Scalable error detection using ks
satisfiability.POPL’05 2005.

[12]

[13]

[14]

[15]

[16]

[20]

[21]

[22]

(23]

[24]

[25]

[26]
[27]

(28]

