
Exploring the Acceptability Envelope ∗

Martin Rinard
MIT CSAIL

Singapore-MIT Alliance
Massachusetts Institute of

Technology
Cambridge, MA 02139

rinard@lcs.mit.edu

Cristian Cadar
Computer Systems Laboratory

Stanford University
Stanford, CA 94305

cristic@stanford.edu

Huu Hai Nguyen
MIT CSAIL

Singapore-MIT Alliance
Massachusetts Institute of

Technology
Cambridge, MA 02139

nguyenh2@cag.csail.mit.edu

ABSTRACT
An acceptability envelopeis a region of imperfect but acceptable
software systems surrounding a given perfect system. Explicitly
targeting the acceptability envelope during development (rather than
attempting to minimize the number of errors, as is the current prac-
tice) has several potential benefits. Specifically, leavingacceptable
errors in the system eliminates the risks and costs associated with
attempting to repair the errors; investing fewer resourcesin less
critical regions of the program and more resources in more critical
regions may increase acceptability and reduce the overall invest-
ment of development resources.

To realize these benefits, the acceptability envelope must be both
sizable and accessible. We present several case studies that explore
the acceptability envelopes of the Pine email client and theSure-
Player MPEG decoder. These studies show that both Pine and Sure-
Player can tolerate the addition of many off-by-one errors without
producing unacceptable behavior. This result suggests that current
systems may be overengineered in the sense that they can tolerate
many more errors than they currently contain.

Our SurePlayer case study also shows that SurePlayer hasunfor-
giving regionsof code that must be close to perfect for the system
to function at all. To effectively exploit the acceptability envelope,
developers must be able to distinguish forgiving and unforgiving
regions so that they can appropriately prioritize their development
effort. In SurePlayer, the unforgiving regions occur in code that
uses metadata to parse the input stream; the forgiving regions tend
to access the data within each image. This result suggests that de-
velopers may be able to use relatively simple indicators to effec-
tively prioritize their development effort.

Categories and Subject Descriptors: D.2.5 [Software/Testing
and Debugging]: Error Handling and Recovery, D.2.4 [Soft-
ware/Program Verification]: Reliability

∗This research was supported in part by the Singapore-MIT Al-
liance, DARPA Cooperative Agreement FA 8750-04-2-0254, NSF
Grant CCR-0086154, NSF Grant CCR-0341620, NSF Grant CCF-
0209075, and NSF Grant CCR-0325283.

Copyright is held by the author/owner.
OOPSLA’05,Oct. 16–20, 2005, San Diego, CA, USA.
ACM 1-59593-193-7/05/0010.

General Terms: Experimentation, Reliability

Keywords: Failure-oblivious computing, acceptability-oriented com-
puting

1. INTRODUCTION
Given a specification, there may be multiple perfect software

systems that implement that specification. The goal of much re-
search in software engineering, program verification, and program
analysis is to find ways of bringing the implemented softwaresys-
tem as close to perfection as possible. The results of this research
include program specification and verification systems [17,24, 11,
5, 20, 19], program analysis systems [7, 4, 26, 3, 21], software
development processes [25, 16, 12] and, more recently, bug find-
ing systems [10, 28, 15]. In spite of this effort, it appears that, in
practice, effectivelyall large software systems contain significant
numbers of programming errors [14].

This fact is often taken as an indictment of current softwarede-
velopment practices. But when one examines the evidence, itis
hard to miss a clear indication that aspiring to perfection in soft-
ware systems is of limited utility and may even be actively counter-
productive. Consider that, despite their many errors, mostdeployed
systems do a perfectly acceptable job of satisfying the needs of their
users. Consider also that attempting to develop a perfect system
places extreme demands on the developer, and that developers may
be able to be more productive and efficient if their goal is merely an
acceptable, rather than perfect, system. Finally, consider that one
common way of attempting to move the system closer to perfection
(removing programming errors) can involve significant costs, com-
plications, and risks. Botched repairs can be a substantialproblem
in practice [8]; the system may even reach a point in which virtu-
ally anychange causes more problems than it solves [18]. In effect,
each system may have a finite modification budget, and spending
this budget repairing errors that are not crucial to the system’s ac-
ceptable execution may crowd out the ability to make other, poten-
tially more worthwhile, modifications.

1.1 The Acceptability Envelope
We propose an alternate conceptual framework. Instead of eval-

uating a software system by considering how much it deviatesfrom
perfection, we propose to instead consider whether the system de-
livers acceptable (even if flawed) service to its users. The founda-
tion of this approach is the concept of anacceptability envelope.

Every perfect software system is surrounded by a constellation
of similar but imperfect software systems. It is conceptually (but
not practically) possible to construct this constellationby starting
with the perfect system, then injecting errors. Some of the soft-
ware systems in this constellation will acceptably satisfythe needs

of the users. We call the collection of all such systems theaccept-
ability envelopeof the perfect software system. Note that almost all
successful deployed software systems are contained in the accept-
ability envelope of the perfect system that the developers initially
set out to build.

1.2 Exploring the Acceptability Envelope
In principle, the acceptability envelope should present a much

larger development target than the perfect system at the core of the
acceptability envelope. Whether the developer is able to exploit the
flexibility and additional options that this larger development target
provides depends on the size and accessibility of the acceptability
envelope target. The larger and more accessible the envelope, the
more opportunities are likely to arise to exploit the additional flexi-
bility to make the development process more efficient and effective.

We discuss two case studies designed to explore acceptability en-
velopes. These case studies inject off-by-one errors into the popular
Pine mail client [1] and the SurePlayer MPEG video decoder [2].
Each program contains a certain number of places where it is pos-
sible to insert such errors (in our case studies, loop termination
conditions). Our results show that it is possible to insert off-by-one
errors inalmost allof these places without causing the program to
behave unacceptably.

For SurePlayer, some of the injected off-by-one errors caused the
program to behave unacceptably. Upon investigation we wereable
to identify a property that tended to separate unacceptableerrors
(which disabled the program) from acceptable errors (whichthe
program could tolerate) — the unacceptable errors access metadata
that allows SurePlayer to parse the input data stream while the ac-
ceptable errors tended to process the data in each image.

1.3 Exploiting the Acceptability Envelope
These results suggest two characteristics of the relationship be-

tween current systems and their acceptability envelopes. First, cur-
rent systems may be overengineered in the sense that they have
many fewer errors than they can acceptably tolerate and may there-
fore be much farther inside the acceptability envelope thanneces-
sary. One obvious way to exploit the acceptability envelopeis to
simply leave acceptable errors in place and avoid the risks and po-
tential complications of attempting to repair such errors.Another
is to adopt, when appropriate, development methodologies that, in
return for other advantages, produce systems with more errors.

Second, acceptability envelopes may contain unforgiving regions
— areas of the program that must be close to perfect for the system
to operate acceptably. To successfully exploit the additional flex-
ibility that the acceptability envelope may provide, it is important
to be able to distinguish unforgiving regions from more forgiving
regions that can tolerate more errors. Instead of an unfocused de-
velopment effort that directed resources equally to all parts of the
program, developers could then focus their efforts more heavily
on the unforgiving regions and less heavily on forgiving regions.
This prioritized development effort may yield a better end result —
a more acceptable system (characterized by a minimal numberof
errors in the unforgiving regions and more errors in the forgiving
regions) obtained with reduced development effort and resources.

1.4 Increasing the Acceptability Envelope
Basic safety condition violations (such as null pointer or array

bounds check violations) or assertion failures provide clear evi-
dence that the system is not executing perfectly. If the development
goal is to produce a perfect system,fail-stop behavioris a rational
response to such a violation or failure — instead of continuing with
the normal execution path, the program either throws an exception

(which the program must handle explicitly if it is to continue) or
simply halts and awaits external intervention.

But our results show that,as long as we apply techniques that
disable safety checks and enable the program to execute through
violations and failures without disturbing the normal execution, the
acceptability envelopes of our two systems include many variants
that violate basic safety checks. Disabling these checks substan-
tially increased the ability of our two programs to deliver accept-
able results in the face of programming errors. This increased re-
silience translated directly into a significant increase inthe sizes of
their acceptability envelopes.

Our results therefore highlight one important drawback of the
aspiration to perfection in software systems — namely, thisaspira-
tion misleads systems and language builders to inappriopriately and
systematically scatter self-sabotaging checks pervasively through-
out the system. Our results show that these checks can unnecessar-
ily and artificially increase the brittleness of the system and deny
the system the inherent resilience that it would have otherwise en-
joyed. We suspect that a significant part of the frustration users
occasionally experience when they try to use today’s existing brit-
tle software systems can ultimately be traced to the presence of
inappropriate checks in the system.

The techniques that we applied to eliminate these checks (a vari-
ant of failure-oblivious computing [23] and source code transfor-
mations to discard exceptions and programmer-provided checks)
are relatively simple both in concept and implementation. They do,
however, conflict with the prevailing philosophy that it is unsafe to
let a computer system continue to execute in the face of evidence
that it has experienced an error. A developer focused on eliminating
as many errors as possible would never develop, apply, or even con-
sider these techniques — they are designed to improve the system,
but offer no prospect of ever making it perfect.

One intriguing aspect of our results is how clearly they demon-
strate that acceptability envelopes can contain many variants that
violate basic programmer expectations. One potential explanation
for this phenomenon is that developers may try to reduce their cog-
nitive burden by keeping the system within ananticipated envelope
of executions that is 1) narrower than required to deliver acceptable
behavior but 2) has properties that make the program easier to rea-
son about than other acceptable programs outside the anticipated
envelope. This explanation suggests that to realize the full poten-
tial of exploiting the acceptability envelope, it may be necessary to
relax the extent to which we expect developers to understandthe
systems that they build. In particular, we may need to be willing to
allow systems to continue to execute through unanticipated, poorly
understood conditions in the expectation that they will nevertheless
deliver acceptable behavior.

1.5 Maintaining the Acceptability Envelope
Software development has traditionally been seen as a branch of

engineering. But for maintaining acceptability, the field of medicine
might provide a more productive comparison point. A primarycon-
cern in both disciplines is to how deal with an existing large, com-
plex, and often poorly understood system that may be operating
suboptimally but is far from completely disabled. There is often no
expectation that any theraputic activity will deliver a perfect sys-
tem, and a large part of the focus is simply to preserve the existing
desired behavior or function of the system in the face of changing
goals or environments.

Seen from this perspective, it is clear that bug-finding tools can
be counterproductive. In the same way that finding out about a
medical condition may lead to a course of treatment that winds
up producing a worse result than simply leaving the condition un-

treated (treatment errors account for tens of thousands of deaths
every year [6]), so too may the discovery of errors lead to preven-
tative maintenance that leaves the software system worse off than
it would have been had the errors simply been left in place [18].
Successfully maintaining a software system in the face of known
errors may therefore require both a way to distinguish unnaccept-
able errors from acceptable errors and the discipline to avoid the
temptation to attempt to fix errors that are better off left inplace.
A common problem with medicine is the tendency of specialists to
lose the big picture as they focus on a problem within their area of
speciality. So too may specialists in different parts of thesoftware
system lose the big picture as they maintain their part of thesys-
tem. In both cases a larger, more holistic perspective may produce
a better overall result.

1.6 Obtainable Perfection
One may wonder if it is ever possible or worthwhile to aspire to

perfection. In some parts of the system, paradoxically in arguably
the most complex parts of the system, perfection is not just obtain-
able but also desirable. The key difficulty in developing software
systems is almost always scale, not inherent complexity. Most er-
rors occur because of the difficulty of performing a huge number
of straightforward tasks perfectly, because of misunderstandings
between different developers operating on interacting parts of the
system, or because of changes elsewhere in the system that make
previously correct behavior inappropriate.

It is possible, and even desirable, to obtain perfection in small,
complex, well-understood components of the system. Examples of
such components include data structure implementations, encap-
sulated algorithms, and many standard libraries. These kinds of
components typically have clear, precise specifications, stable in-
terfaces, and are small enough for a single talented developer to
build. Moreover, it is often easy to use such components as build-
ing blocks in multiple systems, which may justify the development
effort required to make them perfect.

2. PINE
Pine is a widely used mail user agent (MUA) that is distributed

with the Linux operating system. Pine allows users to read mail,
fetch mail from an IMAP server, compose and forward mail mes-
sages, and perform other email-related tasks.

2.1 Methodology
In this case study, we worked with Pine version 4.44. We used

the source files in thepine directory of the Pine source distribution
package. This directory constitutes the core of the Pine system. It is
composed of 30 C source files which together contain over 150,000
lines of code.

We started by identifying thefor loops in Pine which contain an
integer counterq and a termination condition of the formq<expr,
q>expr, q<=expr, orq>=expr, whereexpr is an arbitrary in-
teger expression. Our error injection mechanism transforms condi-
tions of the formq<expr into q<=expr; conditions of the form
q>expr into q>=expr; conditions of the formq<=expr into
q<expr, and conditions of the formq>=expr intoq>expr. We
divide the possible transformations into two main categories: trans-
formations that increase the scope of the loop, namely transforma-
tions that modify loops of the formq<expr andq>expr; and
transformations that decrease the scope of the loop, namelytrans-
formations that modify loops of the formq<=expr andq>=expr.

We identified 330 suchfor loops, among which 226 increase,
and 104 decrease the scope of the loop after error injection.Figure
1 presents the number of loops that we identified in each category.

All

330

Increase

226

Decrease

104

q < expr

210

q > expr

16

q <= expr

87

q >= expr

17

Figure 1: For loops in Pine

We constructed a variant of Pine that contained all these 330
off-by-one errors and compiled this variant with two different com-
pilers: the standard gcc compiler to obtain astandard version,
and a compiler that generates failure oblivious code to obtain a
failure-oblivious version [23].

Our failure oblivious compiler performs array bounds checks. It
tracks the allocated memory block to which each pointer should re-
fer. If the program creates a pointer that points beyond the bounds
of its memory block, then uses the pointer to attempt a read orwrite
access, the generated code instead redirects the access to the first
element of the allocated block. This mechanism enables programs
to continue to execute through memory errors without memorycor-
ruption. Moreover, it tends to ensure that out of bounds reads ac-
cess properly initialized data that satisfy the key consistency con-
straints of the data structure. We would have preferred a version
that discarded out of bounds writes, but implementation limitations
inherited from the base compiler made this technique impractical.

In addition, we also disabled all assertion checks, by simply
commenting out the body of any procedures which terminate the
program, such as thepanic andfatal procedures.

To evaluate the acceptability of the Pine variants that we created,
we designed anacceptability test, which tests the behavior of Pine
on a set of standard mail management tasks:

1. Main Menu : We start Pine and test whether the main menu
shows up and is functional.

2. Compose: We compose a message by selecting theCompose
option from the main menu of Pine. We compose a self-
addressed message, with the subjectTest x (wherex is a
short string) and bodytest.

3. Browse Inbox: We open the Inbox using the optionFolder
List and then optionINBOX, and we browse through the
Inbox to check if this feature is functional.

4. Information bar : We check to see whether the information
bar is displayed correctly.

5. Read first message: We read the first message by pressing
Enter on its summary.

6. Read middle message: We read a middle message by press-
ing Enter on its summary.

7. Forward : We forward to ourselves the middle message that
we just read.

8. Reply: We reply to a self-addressed message with the text
“reply”.

9. Read last message: We read the last message by pressing
Enter on its summary.

10. Back to main menu: We return to the main menu by press-
ing < a couple of times.

11. Quit : We exit Pine by pressingq in the main menu.

2.2 Results
Pine is unusable when all 330 errors are injected into its code.

The standard version terminates with a segmentation fault even be-
fore the user interface shows up, while the failure-oblivious version
allows the user to browse through the main menu, but does not al-
low the user to perform standard tasks such as sending a message
or accessing the mail folders.

We next performed a sequence of experiments designed to sepa-
rate the injected errors into acceptable and unacceptable errors. We
identified four unacceptable errors, each responsible for disabling
one particular feature of Pine:

• One error ininit.c that causes the mail folders to become
inaccessible.

• One error infilter.c that causes Pine to display mes-
sages one letter per line, and many times to display only the
beginning of the message.

• One error inmailcmd.c that disables most key bindings,
such asR for replying to messages and< for going back to
the previous screen.

• One error insend.cwhich makes Pine unable to send mes-
sages.

After we removed these four errors, the failure-oblivious ver-
sion of Pine passed our acceptability test, despite the factthat it
contained 326 different errors, 63 of which were exercised at least
once during the acceptability test. In total, the errors were exercised
thousands of times during this test. Note that this version of Pine
does not execute flawlessly — it contains several visible anomalies.
However, these anomalies do not prevent the user from performing
standard mail management tasks. These anomalies include the fol-
lowing:

• Missing Date: The date associated with each message is dis-
played incorrectly when the email message is displayed in a
separate window. The date is displayed correctly when the
message is displayed as part of a folder.

• First and Last Message:Users are not able to go from the
second to the first message by pressing theUp key, or to go
from the second to last to the last message by pressing the
Down key. However, users can use thePage Up andPage
Down keys to accomplish these tasks.

• Garbage Characters: Most messages are displayed with
extra garbage characters on blank lines or at the end of some
words. While these garbage characters do not interfere with
the ability of the user to read the messages in our accept-
ability test, for longer messages they may make the message
difficult enough to read that there may be a reasonable argu-
ment to classify the error as unacceptable.

• Distorted Information Bar: The information bar is dis-
played incorrectly. Some items are missing, and some others
are out of place. However, the keys work correctly and new
users can easily discover the key bindings by trial and error.
Experienced users, of course, will have memorized the bind-
ings and no longer need the information bar.

/** from send.c **/
i = fixed_cnt * sizeof(PINEFIELD);
pfields = (PINEFIELD *)fs_get((size_t) i);
memset(pfields, 0, (size_t) i);
...
// off-by-one error. "<=" instead of "<"

(*) for(i=0; i <= fixed_cnt; i++, pf++) {
...
pf->name = ...
...
pf->type = ...
...
pf->next = pf + 1;
...

}

Figure 2: The unacceptable error in send.c

2.3 Unacceptable Errors
We investigated the reason for which the four unacceptable er-

rors that we identified cause Pine to become unusable. We summa-
rize two of these errors here.

One of the unacceptable errors is that the user is unable to send
messages. The user can open the compose window and type the
message header and body, but when the user pressesCtrl-X to
send the message, Pine complains that no recipients have been
specified. The behavior is caused by a single off-by-one error in
the filesend.c, in the code which constructs a list of the possible
fields in the email message that is being composed (such as From:,
To: etc.). Although the list is implemented as a linked list,its size
is known in advance, and so the application preallocates memory
for all its elements in one call to the memory allocation procedure.
Figure 2 shows the lines of code that perform the allocation.

The code next traverses the linked list to initialize each ofits
elements. In particular, thenext field of each element is set to
point to the next element in the list. The off-by-one error isin-
serted in line (*), and extends the scope of the loop by one. Onthe
last iteration, the pointerpf points past the end of thepfields
linked list. Thus, whenever the program deferences the pointer, the
failure-oblivious code accesses the first element of the array. This
means that thenext field of the first element is overwritten and the
entire contents of the list are lost. We believe that discarding out of
bounds writes would transform this error into an acceptableerror.

A second unacceptable error is that some keys such asR for re-
plying to a message,Q for exiting Pine, and< for going back to the
previous screen are disabled. We consider this problem to beunac-
ceptable because it completely disables some important mail man-
agement tasks. This problem is generated by a single off-by-one
error in themailcmd.c file. Unlike the error discussed above,
which increases the scope of the loop by one, this error instead
decreases the scope of the loop by one. Figure 3 shows the prob-
lematic code frommailcmd.c, with the off-by-one error on line
(**). The code contains a second off-by-one error on line (*). This
code executes whenever the user presses a key to find out whether
there is a command associated with that key. To accomplish this
task, the code traverses all the commands in the current setsof key
menus, and then traverses all the keys which are bound to each
command. Because the code contains an error in line (**) which
decreases the scope of that loop by one, Pine ignores some impor-
tant key-command bindings. These ignored bindings generate the
unacceptable behavior described above.

2.4 Acceptable Errors
We next discuss the behavior associated with four of the accept-

able errors. We discuss two errors that decrease the scope ofthe
loop and two errors that increase the scope of the loop.

/* Scan the list for any keystroke/command binding */
// off-by-one error. ">=" instead of ">"

(*) for(i = (menu->how_many * 12) - 1; i >= 0; i--)
if(bitnset(i, menu->bitmap))

// off-by-one error. ">" instead of ">="
(**) for(n = menu->keys[i].bind.nch - 1; n > 0; n--)

if(keystroke == menu->keys[i].bind.ch[n])
return(menu->keys[i].bind.cmd);

Figure 3: The unacceptable error in mailcmd.c

/* ------- Extracted from pine.c -------- */
void pine_mail_close(stream)

MAILSTREAM *stream;
{

...

// off-by-one error. "<" instead of "<="
(*) for(n = 1L; n < stream->nmsgs; n++)

if(*(partp = (PARTEX_S **)
&mail_elt(stream, n)->sparep))

msgno_free_exceptions(partp);

...
}

Figure 4: The pine mail close function in Pine

2.4.1 Errors that decrease the scope of the loop
Figure 4 presents a function whose job is to free resources asso-

ciated with a given mail stream. The function contains an off-by-
one error on line (*), which causes Pine to leak memory, but which
doesn’t affect its functionality.

Figure 5 presents a function from Pine which increments the
current message number to allow the user to advance to the next
message in the current folder. The function uses a loop to iterate
through the messages following the current message, exiting the
loop after it finds the first visible message. Pine then sets this mes-
sage to be the current message. The function contains an injected
error on line (*) which decreases the scope of the loop by one.Con-
sequently, when the user tries to advance from the second to last to
the last message in the current folder,msgno inc simply does
nothing. However, this error does not reduce Pine’s functionality:
the user can still access the last message by using thePage Down
key, by re-sorting the messages using a different rule, or bysend-
ing himself or herself another message (so that the last message
becomes the next to last message, which is then accessible).

/* ------- Extracted from mailindx.c -------- */
void msgno_inc(stream, msgs)

MAILSTREAM *stream;
MSGNO_S *msgs;

{
long i;

if(!msgs || mn_get_total(msgs) < 1L)
return;

for (i = msgs->select[msgs->sel_cur] + 1;
// off-by-one error. "<" instead of "<="

(*) i < (mn_get_total(msgs)); i++) {
if(!get_lflag(stream, msgs, i, MN_HIDE)){
(msgs)->select[((msgs)->sel_cur)] = i;
break;

}
}

}

Figure 5: The msgnoinc function in Pine

/* ------- Extracted from mailindx.c -------- */
int msgno_in_select(msgs, n)

MSGNO_S *msgs;
long n;

{
long i;

if(msgs)
// off-by-one error. "<=" instead of "<"

(*) for (i = 0L; i <= (msgs->sel_cnt); i++)
if(msgs->select[i] == n)

return(1);

return(0);
}

Figure 6: The msgnoin select function in Pine

2.4.2 Errors that increase the scope of the loop
Figure 6 presents a function from Pine which tests to see if the

given message number is in the selected message list. This function
contains an injected error on line (*) which extends the scope of the
loop by one. The function traverses all the elements of the selected
list and returns 1 if the given message number is found in the list.
If the loop terminates without finding the given message number,
the function returns 0. Compiled with a standard compiler, this
function terminates with a segmentation fault on most executions.
When using our failure-oblivious compiler, the function continues
to execute correctly despite the invalid memory access during the
last iteration of the for loop. When the function attempts toread
the element past the end of themsgs array, the compiler returns
instead the first element of the array. The function simply repeats
the computation on the first element of the array and is guaranteed
to return the right answer.

Figure 7 presents a function that computes the width of each
element of a row in the key menu. We present here a very simplified
version of the function, because the original function has more than
200 lines of code.

Figure 8 shows the first row of the key menu in theFolder
List view in Pine. Given the elementskm of such a key menu and
the widthwidth of the screen, the functionformat keymenu
calculates the width of each element of the key menu. The function
contains an injected error on line (*) which extends the scope of
the loop by one. The function starts by assigning to each of the six
elements in the key menu a trial widthtw[i], which is initialized
to width/6 columns. During this initial step, the function also
calculates the exact widthw[i] required by each element, which
is the length of its label plus 1, and the minimum widthmin w[i]
of each element, which is6. The function also computes the extra
spaceextra[i] for each element, which is defined as the ac-
tual widthtw[i] minus the exact widthw[i] of the element. If
extra[i] is negative for an element, than that item doesn’t fit
into the assigned space.

Because the loop on line (*) contains an off-by-one error which
extends its scope by 1,w[i], min w[i], tw[i], extra[i],
andspacing[i+1] overflow during the last iteration. Using a
standard compiler, these overflows may terminate the program with
a segmentation fault. Using failure-oblivious computing,the com-
piler returns the base pointer of the block where the invalidaccess
occurred. Thusextra[0] is reassigned a negative value as the re-
sult of the computation. Consequently, the test on line (**)which
checks whether the menu fits on the screen fails and the function
tries to shrink the menu as much as possible. Then, the test online
(***) fails too, and the function resets the actual widthtw[i] of
each element to be at least the minimum widthmin w[i]. Thus

? Help < Main Menu P PrevFldr - PrevPage A Add R Rename

Figure 8: Key Menu in the Folder List View

tw[0] is assignedmin w[0], namely6, and now everything fits
on the screen. The net effect of the off-by-one error is that the first
element of the key menu is incorrectly set to have the minimum
width possible, although a bigger width would have worked fine
for most screens. This means that the key menu is distorted, but it
has no other effect on Pine’s functionality.

It is also interesting to note that the existence of an off-by-one
error that extends the scope of the loop on lines (1), (2), or (3)
would not affect the computation informat keymenu.

2.5 Discussion
In general, there is an intuitive reason why failure-oblivious code

tends to work well with off-by-one errors. Conceptually, decrease
errors cause the program to do less. The end result is that thepro-
gram often fails to perform the final piece of a collection of work. It
turns out that Pine can often perform acceptably without this piece
— Pine often provides multiple ways to accomplish the same task,
and it is often the case that one of these ways remains enabledin
the face of the off-by-one error.

Conceptually, increase errors cause the program to do more.With
standard compilation, this more typically involves array bounds vi-
olations with the attendant memory corruption, which oftencauses
the program to fail. But failure-oblivous computing transforms
these out of bounds accesses into accesses to the corresponding
memory block, enabling the program to continue without memory
corruption. Because reads access appropriately initialized data, the
program tends not to experience any inconsistent data values. The
largest remaining issue with Pine is the generation of code that dis-
cards out of bounds writes (instead of writing the first element of
each array as is the case with the current generated code). Webe-
lieve this change would convert some of the unacceptable errors
into acceptable errors.

We note that for Pine, as for SurePlayer (see Section3.6.3for a
more thorough discussion of this issue) transforming the program
to execute through errors and user-provided checks withoutinter-
fering with the default flow of control was crucial to enabling Pine
to behave resiliently in the face of off-by-one errors. Thisfact sug-
gests that many safety checks may in fact have a counterproductive
effect on the reslience of the program.

3. SUREPLAYER
SurePlayer is an MPEG video decoder written in Java. It takes

as input an MPEG-encoded file and produces as output the video
in the file. We worked with SurePlayer version 1.0, which has 41
Java source code files containing 9912 lines of Java source code.
Our test input for SurePlayer is a video of three tethered robots
interacting.

3.1 Off-By-One Errors
We profiled SurePlayer running on our test input and found 54

conditional expressions in the executed code that were available for
the injection of off-by-one errors. We targeted the same sources of
off-by-one errors as for Pine (loop exit conditions with less than,
less than or equal, greater than, or greater than or equals expres-
sions). Of these patterns, SurePlayer contains only greater than
and less than expressions.

3.2 Exception Elimination Strategy
We next created a version of SurePlayer with injected off-by-

one errors in all available injection sites. When we ran thisversion
on our sample input, it immediately threw an array out of bounds
exception and exited.

We then transformed this version of the program to execute through
array bounds exceptions as follows (although it is possibleto im-
plement this transformation automatically in the JVM, for this case
study we implemented it manually). This transformed version dis-
cards out of bounds write accesses and returns the first element of
the accessed array for out of bounds read accesses. It then contin-
ues to execute along the normal, non-exceptional control flow path.
When we ran this version on our sample input, it entered an infinite
loop without displaying any video images.

3.3 Acceptable and Unacceptable Errors
We then performed a sequence of experiments designed to sepa-

rate the off-by-one errors into acceptable and unacceptable errors.
Of the 54 off-by-one errors, we identified 5 as unacceptable.Af-
ter removing these 5 errors (leaving 49 off-by-one errors inthe
program), SurePlayer successfully displays the video. Theimage
quality is poor, with numerous display artifacts and jitter. Never-
theless, the three tethered robots and their coordinated movement
are clearly visible, as is the text in the introductory part of the video.

We instrumented the program to record the number of times each
off-by-one error executed. Specifically, we recorded the number of
times each condition was true in the version with the 49 off-by-
one errors when it would have been false in the original version.
Together, the off-by-one errors caused 27,564,537 more loop iter-
ations to execute than in the original version. None of the injected
off-by-one errors cause conditions to be false in the version with
the 49 off-by-one errors when the condition would have been true
in the original version (SurePlayer contains no less than orequal to
or greater than or equal to comparisons in loop exit conditions).

3.4 Effect of Fewer Acceptable Errors
To explore the effect of applying fewer off-by-one errors, we

produced versions of SurePlayer with 10, 20, 30, 40, and 49 ofthe
acceptable errors. We selected the errors to include in eachver-
sion psuedo-randomly, with each successive version containing all
of the errors in the previous version. We then ran all of thesever-
sions on our sample input. The version with 10 errors had obvious
display artifacts and jitter, but it was visibly clearer than the version
with 20 errors. The versions with 30, 40, and 49 errors appeared to
be substantially the same as the version with 20 errors.

3.5 Analysis of Unacceptable Errors
We investigated the reason that each of the unacceptable off-by-

one errors caused the program to fail. Here is the breakdown:

• Infinite Input Loops: Two of the errors cause the program
to enter an infinite input loop. Both errors occur in input
loops that iterate until the number of bytes read in matches
the number of characters expected to be read in. The injected
off-by-one errors cause the loop exit condition to never be-
come true — once the loop reads in the expected number of
bytes, it does not read in any more bytes, and the off-by-one
error in the exit condition causes this condition to never be-

/* ----------- Extracted from screen.c ------------ */
void format_keymenu(km, width)

struct key_menu *km; // the key menu to format
int width; // the screen width

{
int spacing[7]; // ideal spacing
int w[6], min_w[6], tw[6], extra[6], i;

/* set up "ideal" columns to start in */
for(i = 0; i < 7; i++)

spacing[i] = (i * width) / 6;

(*)for (i = 0; i <= 6; i++) {
key = getkey(km, i);

/* The width of a box is the max width plus 1 */
w[i] = strlen(key->name+1);

/* The smallest we’ll squeeze a column.*/
min_w[i] = 6;

/* init trial width */
tw[i] = spacing[i+1] - spacing[i];
extra[i] = tw[i] - w[i]; /* <0 if it doesn’t fit */

}

/* See if we can fit everything on the screen. */
done = 0;
while(!done){

/* Find smallest extra */
int smallest_extra = -1;
int how_small = 100;

(1) for (i = 0; i < 6; i++) {
if(extra[i] < how_small){

smallest_extra = i;
how_small = extra[i];

}
}

(**) if(how_small >= 0) /* everything fits */
done++;

else{
int take_from, how_close;
/* Find the one that is closest to the ideal width
* that has some extra to spare. */

take_from = -1;
how_close = 100;

(2) for (i = 0; i < 6; i++) {
if(extra[i] > 0 &&

((spacing[i+1]-spacing[i]) - tw[i]) < how_close){
take_from = i;
how_close = (spacing[i+1]-spacing[i]) - tw[i];

}
}

(***) if(take_from >= 0){
/* Found one. Take one from take_from and add it
* to the smallest_extra. */

tw[smallest_extra]++;
extra[smallest_extra]++;
tw[take_from]--;
extra[take_from]--;

} else{
int used_width;
/* Oops. Not enough space to fit everything in.
* We make sure that each field is at least its
* minimum size, and then we cut back those over
the minimum. */

(3) for(i = 0; i < 6; i++)
tw[i] = max(tw[i], min_w[i]);

used_width = 0;
for (i = 0; i < 6; i++)

used_width += tw[i];

while(used_width > width && !done){
... /* not reached */ }

}
}

}
}

Figure 7: The format keymenu function in Pine

come true — the count of read in bytes never exceeds the
limit required to exit the loop.

• Input Stream Desynchronization: The MPEG input file is
a linearized stream with a hierarchical structure consisting of
packages of frames of macro blocks of blocks (each block
contains part of an image), with metadata interleaved into
the stream. This metadata allows the program to identify the
starting and ending points of each element of the stream.

Two of the errors cause low-level input procedures to read
one more byte than they should. This extra read has the
effect of desynchronizing the input stream (i.e., making the
program unable to recognize where the different elements in
the stream begin and end). After removing checks that cause
the program to exit if it notices a synchronization problem,
the program infinite loops looking for metadata that it cannot
find because of the desynchronization of the input stream.

• Data Structure Desynchronization: As part of the decod-
ing process, SurePlayer splits the input stream up into pack-
ages and stores sequences of packages in an intermediate
data structure. Each element of the data structure stores in-
formation about each package; this information includes the
number of bytes in the package that SurePlayer has left to
process.

SurePlayer repeatedly scans this data structure to partially
decode the contents into another intermediate data structure
which also contains counts of the number of bytes in the
package left to process (the reason for the repeated scans is
that the blocks may appear out of order in the input stream
and in the resulting intermediate data structures). The ef-
fect of the last unacceptable off-by-one error is to create an
alias in the data structure — the first and last package in the
sequence of packages are the same. As a result, the counts
of bytes left to process in the two intermediate data struc-
tures become inconsistent. One result is that the position of a
piece of metadata called the “start sequence code” becomes
incorrect. After commenting out a check that causes the pro-
gram to exit if it fails to find this start sequence code where
it expects it, SurePlayer infinite loops without producing any
video image — its inability to locate the start sequence code
makes it unable to interpret the stored image data to find the
images to display.

3.6 Discussion
We discuss how to distinguish acceptable and unacceptable er-

rors in SurePlayer, issues surrounding infinite loops, and the unde-
sirable impact of safety checks in general and exceptions inpartic-
ular on the resilience of SurePlayer.

3.6.1 Acceptable and Unacceptable Errors
All of the unacceptable errors in SurePlayer disrupt its ability to

locate and process basic metadata structuring elements in the input
stream. Most of the acceptable errors, in contrast, affect computa-
tions that process and display image data once the basic elements
of the input stream have been identified. We have identified two
potential underlying reasons for this distinction. First,the metadata
processing code tends to have a more complex relationship between
the logical structure of the data that it processes and the control
flow than does the image processing code. The metadata process-
ing code is, in effect, a hand-coded parser and much of its function-
ality involves looking for certain elements in the input stream. It is
therefore vulnerable to infinite loops if an error causes it to process

part of the input stream incorrectly. Most of the image processing
code, on the other hand, simply iterates over the relativelysimple
data structures that store the image data. It is therefore much less
vulnerable to control flow anomalies.

Second, the metadata computations determine and structurethe
data that all subsequent computations access. Any error in the
metadata computations will affect the execution of the entire rest of
the program. Even though four of the five metadata errors resulted
in infinite loops (so subsequent computations never even execute),
it appears that the errors cause SurePlayer to lose enough ofthe
structure so that it would no longer be able to retrieve the image
data from the input stream.

3.6.2 Infinite Loops
In general, SurePlayer has critical parts that must be closeto

perfect for the program to execute acceptably (the metadatacom-
putation) and less critical parts that can tolerate more errors (the
computations that process image data). However, it is worthnoting
that an unintended infinite loop is an unnacceptable errorregardless
of where it appears in the program. The program counter is a single
resource, and less critical parts of the program can disablecritical
parts either by monopolizing this resource (in an infinite loop) or
discarding it (as typically happens when the program encounters a
safety check).

A crucial aspect of all of our techniques that increase the size of
the acceptability envelope is the fact that they preserve the normal
flow of control so that subsequent critical parts of the computation
can execute. Other techniques that prevent infinite loops from cap-
turing the program counter resource may also further increase the
size of acceptability envelopes. Potential ideas include terminating
loops that deviate substantially from previously observednumbers
of iterations, heuristics that inspect updated variables to recognize
and terminate likely infinite loops, demand-driven computation us-
ing a lazy evaluation strategy (which executes only those parts of
the computation that are necessary to produce the result), and ag-
gressive multithreading (which provides more program counters for
critical parts of the code).

3.6.3 Safety Checks
SurePlayer provides further evidence of the destabilizingeffect

that safety checks such as array bounds checks can have on the
inherent resilience of the computation. Our results show that en-
abling SurePlayer to execute through array bounds violations can
substantially increase its acceptability envelope.

In principle, it is possible to structure the program to catch thrown
exceptions, recover from whatever caused the error, then continue.
If exceptions did in fact adequately support this kind of program
structure, they might promote the development of more robust pro-
grams. In practice, however, developers apparently find it difficult
or counterproductive to use exceptions in this way. Becausethe
programmer does not expect the program to throw a null derefer-
ence or array bounds check exception (if the developer thought the
program would throw such an exception, he or she would have writ-
ten the code differently), it is difficult for the developer to imagine
what kind of situation would cause the program to throw the ex-
ception. Because of their inability to imagine such a situation (and
because of the tedium of littering the program with handlersthat
catch exceptions close to where they are thrown), developers usu-
ally rely on the default handler or insert a few handlers thatsimply
catch the exception, print an error message, then exit. The end
result is that exceptions, in practice, substantially decrease the re-
silience of the program in comparison with other mechanismsfor
handling safety check violations.

4. ACCEPTABILITY IN PRACTICE
It is our understanding that, in practice, most large software sys-

tems contain many known errors. Systems therefore typically un-
dergo a process, usually late in the release cycle, of analyzing which
of the known errors are serious enough to justify the risk andex-
pense of attempting to repair before the release. The closerthe
project gets to a deadline (such as a release date), the more strin-
gent the requirements may become for attempting to repair anerror
rather than simply leaving it in the system. The developmentpro-
cess therefore targets a perfect system, produces a system with er-
rors, then uses a prioritized error repair process to obtainan imper-
fect system that is within the acceptability envelope of theoriginal
target system.

We know of no systematic attempt to control the location and
severity of the produced errors during the development process —
the developers simply deal with whatever errors happen to show up
as they appear. Any a priori activities that affect the set oferrors
take place very early in the development process as the function-
ality and schedule is set (there is a general recognition that more
functionality and a tighter schedule often produce a systemwith
more errors), but there is a very loose, indirect connectionbetween
these activities and the errors that actually appear in the system.

We are proposing, in part, a perspective shift that more clearly
distinguishes acceptable and unacceptable errors, with increased
priority placed on (ideally) avoiding or (if necessary) repairing un-
acceptable errors and a decreased priority placed on avoiding or
repairing acceptable errors. Unlike current development projects,
which simply deal after the fact with whatever errors happento
show up during development, this perspective might allow develop-
ers to purposefully influence the location and severity of any pro-
duced errors. In the long run, one potential result might be that
developers would come to consider acceptable errors to be anoma-
lies or eccentricities rather than errors.

Of course, we are also proposing the adoption of techniques
(such as failure-oblivious computing) that increase the size of the
acceptability envelope. Our results suggest that these techniques
may convert many program actions that are currently considered to
be errors (out of bounds memory accesses, null pointer accesses,
etc.) into simple anomalies that the program can easily tolerate.
Our results also indicate that programmer-supplied checks(such
as assertions) may substantially degrade the ability of thesystem
to provide acceptable service to its users. It is our understanding
that the community recognizes the potentially destabilizing effect
of assertions; many organizations disable assertions in the shipped
versions of their systems.

5. RELATED WORK
Acceptability-oriented computing augments systems with small

acceptability components[22]. These components enforce basic
acceptability propertiesthat the system must satisfy to remain ac-
ceptable to their users. The overall goal is to increase the size of the
acceptability envelope as the acceptability components replace un-
acceptable behavior on the part of the core software with acceptable
behavior. Because the acceptability components are small,they can
be made to be perfect or close to perfect. Failure-obliviouscomput-
ing [23] is an acceptability-oriented technique designed to increase
the size of the acceptability envelope.

Research into the costs of incorrect repairs in software systems
indicates that incorrect repairs can be a significant problem in prac-
tice [8] and that incorrect repairs can substantially increase devel-
opment costs [9]. The data and models buttress the case for leaving
acceptable errors in place.

Fault injection is a standard technique that was originallydevel-
oped in the context of software testing to help evaluate the coverage
of testing processes [27]. It has also been used by other researchers
for the purposes of evaluating standard failure recovery techniques
such as duplication, checkpointing, and fast reboot [13].

We are aware of no research that explores the possibility of in-
creasing errors in return for other benefits such as reduced develop-
ment time or costs, although activities that have this end effect (but
not this explicit goal) are most likely practiced routinelyin software
development projects. For example, it is our understandingthat the
functionality requirements of many projects are complex enough
to preclude any possibility of error-free implementation.Neverthe-
less, organizations routinely adopt such requirements anddeal as
best as they can with the resulting errors that inevitably show up
during development.

6. CONCLUSION
The prevailing philosophy in most software development efforts

is to produce a software system that is as close to perfect as possi-
ble. The results in this paper suggest that there is a substantial en-
velope of acceptable programs surrounding the (apparentlyin prac-
tice unattainable) target perfect program. Our results also suggest
that the application of simple techniques that allow the program to
execute through errors without disrupting its normal execution can
substantially increase the size of the acceptability envelope.

While the acceptability envelope may offer some intriguingop-
portunities to make the development process both more effective
and efficient, it appears that some programs have unforgiving re-
gions that must be close to perfect for the program to executeac-
ceptably. Developing effective ways of distinguishing unforgiving
regions from more forgiving regions may be a prerequisite for real-
izing the full potential of the acceptability envelope in the develop-
ment process. Such a distinction would provide a firm foundation
for the development of techniques that exploit the acceptability en-
velope to produce more acceptable software systems with less in-
vestment of development resources.

7. REFERENCES
[1] Pine website. http://www.washington.edu/pine/.
[2] SurePlayer website. http://sureplayer.sourceforge.net/.
[3] A. Aiken, J. S. Foster, J. Kodumal, and T. Terauchi. Checking

and inferring local non-aliasing. InPLDI 2003, 2003.
[4] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani.

Automatic predicate abstraction of C programs. InProc.
ACM PLDI, 2001.

[5] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec#
programming system: An overview. InCASSIS 2004:
International Workshop on Construction and Analysis of
Safe, Secure and Interoperable Smart devices, March 2004.

[6] Chassin MR, Galvin RW. The urgent need to improve health
care quality. Institute of Medicine National Roundtable on
Health Care Quality.JAMA, 280(11):1000–5, September
1998.

[7] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive
program verification in polynomial time. InProc. ACM
PLDI, 2002.

[8] E. N. Adams. Optimizing preventing service of software
products.IBM Journal of Research and Development, 28(1),
January 1984.

[9] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and
A. Mockus. Does code decay? assessing the evidence from
change management data.TSE, 27(1):1–12, Jan. 2001.

[10] D. Engler and M. Musuvathi. Static analysis versus software
model checking for bug finding. InVMCAI, 2004.

[11] C. Flanagan, K. R. M. Leino, M. Lilibridge, G. Nelson, J.B.
Saxe, and R. Stata. Extended Static Checking for Java. In
Proc. ACM PLDI, 2002.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns. Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, Mass., 1994.

[13] George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg
Friedman, Armando Fox. Microreboot – a technique for
cheap recovery. InProceedings of the 6th Symposium on
Operating Systems Design and Implementation (OSDI), San
Francisco, CA, USA, December 2004.

[14] C. Ghezzi, M. Jazayeri, and D. Mandrioli.Fundamentals of
Software Engineering. Prentice-Hall, 1991.

[15] D. Hovemeyer and W. Pugh. Finding bugs is easy. In
OOPSLA ’04: Companion to the 19th annual ACM
SIGPLAN conference on Object-oriented programming
systems, languages, and applications, pages 132–136, New
York, NY, USA, 2004. ACM Press.

[16] D. Jackson. Alloy: A lightweight object modelling notation.
ACM TOSEM, 11(2):256–290, 2002.

[17] J. C. King.A Program Verifier. PhD thesis, CMU, 1970.
[18] L. A. Belady, M. M. Lehman. A model of large program

development.IBM Systems Journal, 15(3):225–252, 1976.
[19] P. Lam, V. Kuncak, and M. Rinard. On our experience with

modular pluggable analyses. Technical Report 965, MIT
CSAIL, September 2004.

[20] P. Lam, V. Kuncak, and M. Rinard. Generalized typestate
checking for data structure consistency. In6th International
Conference on Verification, Model Checking and Abstract
Interpretation, 2005.

[21] T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Putting
static analysis to work for verification: A case study. In
International Symposium on Software Testing and Analysis,
2000.

[22] Martin Rinard. Acceptability-oriented computing. In
OOPSLA ’03: Companion of the 18th annual ACM
SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 221–239, New
York, NY, USA, 2003. ACM Press.

[23] Martin Rinard, Cristian Cadar, Daniel Dumitran, Daniel M.
Roy, Tudor Leu, and William S. Beebee, Jr. Enhancing
server availability and security through failure-oblivious
computing. InProceedings of the 6th Symposium on
Operating Systems Design and Implementation (OSDI), San
Francisco, CA, USA, December 2004.

[24] G. Nelson. Techniques for program verification. Technical
report, XEROX Palo Alto Research Center, 1981.

[25] J. Rumbaugh, I. Jacobson, and G. Booch.The Unified
Modelling Language Reference Manual. Addison-Wesley,
Reading, Mass., 1999.

[26] F. Vivien and M. Rinard. Incrementalized pointer and escape
analysis. InProc. ACM PLDI, June 2001.

[27] J. M. Voas and G. McGraw.Software Fault Injection. Wiley,
1998.

[28] Y. Xie and A. Aiken. Scalable error detection using boolean
satisfiability.POPL’05, 2005.

