Data Randomization

Cristian Cadar Periklis Akritidis Manuel Costa
Microsoft Research Microsoft Research Microsoft Research
Cambridge, UK Cambridge, UK Cambridge, UK
cristic@stanford.edu pa280@cl.cam.ac.uk manuel c@microsoft.com
Jean-Phillipe Martin Miguel Castro
Microsoft Research Microsoft Research
Cambridge, UK Cambridge, UK
jpmartin@microsoft.com mcastro@microsoft.com
Abstract writes and reads have unpredictable results when they ac-

Attacks that exploit memory errors are still a seriouscess objects that they were not intended to (according
problem. We preserdata randomization, a new tech- to the analysis). Data randomization can be applied to
nigue that provides probabilistic protection against¢hes C and C++ programs without modifications, it has high
attacks by xoring data with random masks. Data ran-coverage with no false positives, and it has low space and
domization uses static analysis to partition instructiontime overhead.

operands into equivalence classes: it places two operandsWe implemented data randomization by modifying a
in the same class if they may refer to the same object irC compiler to run the static analysis and to generate in-
an execution that does not violate memory safety. Thestrumented code. To compute the equivalence classes,
it assigns a random mask to each class and it generatéise compiler runs a points-to analysis [29] to determine
code instrumented to xor data read from or written tothe set of objects that each instruction operand may refer
memory with the mask of the memory operand’s classto in executions that do not violate memory safety. Then
Therefore, attacks that violate the results of the statidt places operands that may refer to the same object, ac-
analysis have unpredictable results. We implementedording to the points-to analysis, in the same class. Each
a data randomization prototype that compiles programslass is assigned a random mask that is used at runtime
without modifications and can prevent many attacks withto xor all objects that are accessed through operands in
low overhead. Our prototype prevents all the attacks inthe class.

our benchmarks while introducing an average runtime The data randomization compiler adds instrumenta-
overhead of 11% (0% to 27%) and an average space OVefion to encrypt values written to memory: it inserts an

head below 1%. instruction before a write that xors the value being writ-
ten with the mask of the destination operand. It also adds
1 Introduction instrumentation talecrypt values read from memory: it

inserts an instruction after a read that xors the value read

Programs written in unsafe languages like C and C++ ar&ith the mask of the source operand. This ensures that
vulnerable to attacks that exploit memory errors, for ex-data is stored “encrypted” in memory where it is vul-
ample buffer overflows and underflows [6, 43], danglingnerable to attacks, and that registers store a “plaintext”
pointers [8], and double frees [33]. Attackers routinely version of the data to enable processing with unmodified
exploit these errors to gain control over the execution ofCPUS.
vulnerable programs or to force vulnerable programs to We generate new random masks at load time and patch
disclose confidential information. the loaded binary to use the new masks. The compiler

We presentlata randomization, a new technique that outputs a file with the locations of the masks in the binary
provides probabilistic protection against these attagks bto enable efficient patching.
xoring data with random masks. Data randomization Data randomization provides probabilistic read and
uses static analysis to partition instruction operands int write integrity. Attackers that exploit memory errors to
equivalence classes according to the objects they may ravrite to objects in the wrong class cannot predict the val-
fer to. It then assigns a random mask to each class, anges written because they are xored with a random un-
instruments code to xor data read from and written toknown mask. Similarly, attackers cannot obtain confi-
memory with the operand’s mask. This provides a prob-dential information by reading data from objects in the
abilistic version ofwrite integrity [9] and read integrity: wrong class because the data is xored with a random un-



known mask. and its effectiveness at blocking attacks. Section 7 dis-
It is interesting to compare data randomization with cusses related work, and we conclude in Section 8.

previously proposed randomization techniques. For ex-

ample_, l|nst_ruct|on set rando.mlzat|on [34, 12] preventsz Overview

code injection attacks by xoring the program text of the

vulnerable program with a key unknown to the attacker.paa randomization involves four components:  static
It requires hardware support to achieve low overhead, s, compile-time instrumentation, load-time instr
Data randomization can provide similar protection With ,,antation. and run-time randomization. We will use the
low overhead. It ensures that code injected into a bUﬁe%xample in Figure 1 to illustrate how all the components
cannot be decoded correctly by the processor because thg, * The example is a simplified remote shell server
instructions are xored with a key unknown to the attackeryyi, 5 hyffer overflow vulnerability that can be exploited
PointGuard [24] is superficially similar to data ran- wiin non-control-data attacks [18]. The example is in-

domization but it only xors pointers and uses the sam&pired by a real attack on an SSH server [4].
mask to xor all pointers. Therefore, it cannot prevent at-
tacks that exploit memory errors to access non-pointet: void ProcessConnection(connection *c) {
data and leaking any pointer value compromises the eré CLed—t user, )
tire system. It may also fail to work on programs where ;. icmair Lneos:sage[1024],
pointers may be aliased with non-pointer data. 5:
Another technique, which is widely used, is address®: auth_user(&user, c);
space layout randomization (ASLR) [3, 13, 30, 38, 54].gf Wh"?né!sesr;cé—e%f]—z]e;f‘gneég) C{har(c),
ASLR randomizes the memory locations of data andig. e . '
code. ASLR is vulnerable to attacks that exploit rela-11:
tive offsets to overwrite memory locations and to attacksl2: ~ seteuid(user.user_id);

that place many copies of data chosen by the attackelrjf ExecuteRequest(message);

in the address space of the vulnerable program. For e>15_ 1 E | de: simplified te shell
ample, heap spraying [46] places many copies of shel 'gure 1. Examp'e code. simpified remote Shell server
()jﬁnth a buffer overflow vulnerability.

code in the heap of the target program. This ensures th
when the attacker overwrites a code pointer there is a The function in Figure 1 is called when the server re-
high probability of executing the shell code. Data ran-ceives a new connection request. The function starts by
domization can reduce the probability of success of thesegalling auth _user to authenticate the user and to store
attacks. the user credentials imser . Next, the function enters
We evaluated the coverage of data randomization usa loop that receives characters from the connection and
ing a suite of attacks to test buffer overflow preventionstores them in thenessage buffer. After receiving the
techniques [53] and four real attacks on SQL servermessage, the program cadlsteuid to impersonate the
ghttpd, nullhttpd, and stunnel. Data randomization wasemote user and it callExecuteRequest to execute
able to prevent all these attacks. We also evaluated ththe command with the user’s privileges. This function
overhead introduced by data randomization using SPE®as a buffer overflow vulnerability in lines 8 — 10: by
CPU and Olden benchmarks. Data randomization hasupplying a long message, an attacker can overflow the
low runtime overhead and very low space overhead: itnessage buffer and overwrite thaser variable. The
had an average runtime overhead of 11% (0% to 27%#ttacker can thus supply an arbitrary user id (e.g., root)
and an average space overhead below 1% in our benclnd the server will execute commands with the corre-
marks. On the nullhttpd web server instrumented withsponding user’s privileges. This is a non-control-data at-
data randomization, peak throughput while serving staticack [18], since it does not force any unintended control-
content from the SPECweb benchmark decreased bffow transfer in the program.
only 6%. Data randomization uses static analysis to partition
The rest of the paper is organized as follows. Sec-objects into equivalence classes such that objects that
tion 2 presents an overview of data randomization. Secean be accessed through the same pointer are placed in
tion 3 discusses the static analysis that we use to computbe same class. For example, in Figure 1 the variables
equivalence classes and a safety analysis to avoid unnemessage anduser are placed in separate classes. After
essary instrumentation. Section 4 describes how the dathe analysis, we assign a random mask to each equiva-
randomization compiler instruments code. Section 5 disience class. Section 3 describes the static analysis and
cusses the runtime environment used by data randomizaandom mask assignment.
tion. Section 6 presents our experimental evaluation of The compile-time component instruments instructions
data randomization, including its performance overheadhat write to or read from an object in memory to xor the



; ; ; : ; _i = ASSIGN 0
object with the corresponding mask. If the instruction CALL & auth user, & user, ¢

is a wr_ite, the extra xpr_instruction_effectiveeylcrypts $L6: 1274 = CALL & end_of message, ¢
the written value. If it is a read, itecrypts the read t275 = COMPARE(NE) 1274, 0
value. The compiler also records the offsets of masks CONDITIONALBRANCH(True) t275, $L7, $L.8

. . . . o $L8: t278 = CALL &_get next_char, _c
in the code. We describe this component in detail in Sec- 277 = ADD & message, |

tion 4. [t277] = ASSIGN t278
The load-time component generates a new random  _i = ADD _i, 1
mask for each equivalence class every time the prograry . ci(ffo& $sLtheuid, user+4
is loaded. Then it patches the loaded binary to use the CALL & ExecuteRequest, & message
new masks. This component S|mply reads the c)ﬁset?—'igure 2: Example vulnerable code in medium level in-
recorded by the compiler and overwrites old mask Va"termediate representation (MIR).
ues with the new ones.

In the example of Figure 1, accesses to the vario-1 Computing equivalence classes

ablesmessage anduser are xored with distinct random . . .
We use an inter-procedural points-to analysis due to An-

masks. The instruction at line 9 encrypts the character idersen [10] that is flow and context insensitive but scales
stores inmessage with the corresponding mask, and the I Tlow xtinsensitive bu
to large programs. It computes a points-to set for each

instruction at line 12 decrypts theser.user _id value . S . .
it reads with a different random mask. This does not pre-pOInter operand, which is the set of logical objects the

vent attackers from overflowing tmeessage buffer and pointer may y efer to. The an_alysis is conservative: it_in-
overwritinguser.user _id but attackers can no longer cludes all objects that the pointer may refer to at runtime

write a value of their choice taser.user id . Doing but it may include additional objects. Our implementa-

so would require attackers to know the xor of the ran_t|on is similar to the one described in [29] but it is field-

dom masks used by the program to write tortfessage insensitive rather than field-based (i.e., it does notmisti
buffer and to read from theser.user _id object g guish between the different fields in a structure, union, or

. ) . class). WIT [9] uses the same points-to analysis.
This example illustrates the power of data randomiza- : .
The points-to analysis makes a global pass over all

tion relative to other randomization techniques. Since ) :
: L . source files to collecsubset constraints. For example,
there is no code injection, this attack would not be pre- : . ]
. : o : each assignment = y results in a subset constraint

vented by instruction set randomization techniques [12,

X : ) . ») i i
34]. PointGuard [24], which xors pointers with a ran- ioﬁtayi,n\g?r:zhsr:te(?fnSotggtbrztf/;litec’f pﬂ?\‘fﬂz \I?r:gziiif
dom mask, would also fail to prevent this attack becaus P 20

. : . . %o compile each source file to MIR and write all subset
no pointer is overwritten. The ASLR techniques thatconstraints in the MIR to a file. After this global pass,

are widely deployed [3, 30] only randomize the base ad- . : .
dresses of heap, stack, static data, and text areas. The}(ra]—e analysis reads the constraints file and computes the

fore, they would not prevent this attack either EVenpoints-to sets by iterating over all the constraints uitil i

. o . . (r]eaches a fixed point. Then, it stores the points-to sets
the comprehensive randomization technique descrlbeIn afile. In the examole in Figure 2. there is onlv one
in [14] would likely fail to prevent this attack. This tech- ' P 9 X y

nigue uses two stacks to segregate buffers from othequ'mer operandi277] . The points-to analysis deter-

variables butmessage anduser are both buffers that mines that it points to thmessage array. We usp]  to
. denote a dereference of

would be placed in the same stack frame. Data random- ) . )

ization can prevent attacks like this and it can be used e Use the points-to sets to partition instruction

in production systems because it has low space and tim@Perands into equivalence classes. ~We place two
overhead operands in the same equivalence class if they can refer

to the same object at runtime according to the points-to
analysis. This constraint ensures that our instrumemtatio
does not change program behavior in executions that do
3 Static analysis not violate memory safety because all reads and writes to
an object are xored with the same mask. Under this con-
We used the Phoenix compiler framework [39] to im- Straint, we maximize the number of equivalence classes
plement the static analysis that computes equivalenct® increase the number of attacks that we can prevent.
classes for data randomization. The analysis operates We compute equivalence classes using an iterative
on Phoenix’s medium level intermediate representatiorprocess. Initially, there is a separate equivalence class
(MIR), which is still independent of the target proces- for each points-to set: the initial equivalence class for a
sor. Figure 2 shows the MIR for the vulnerable C codepoints-to sep — {o1,...,0,} is {[p],01,...,0n}. Then
in Figure 1. we merge equivalence classes that intersect until we



reach a fixed point. We use an union-find data strucbounds. If they are, the corresponding pointer operand
ture [20] to compute the classes efficiently. After pro-is marked safe. We used a similar safety analysis to im-
cessing the points-to sets, we iterate over all objects thatrove the performance of WIT [9].
are not referenced by any pointer. These are variables We do not instrument reads and writes to objects in an
that are never accessed indirectly, for examplén Fig-  equivalence class when all the instruction operands in the
ure 2. We place each of these objects in a separate clasdass are safe. We say that the objects referred to by these
For example{_i } and{[t277], message } aretwo of operands are safe. These objects are stored in “plaintext”
the equivalent classes computed for the code in Figure 2n memory. But we still ensure that accesses that violate
This analysis assumes that correct programs do not usead or write integrity have unpredictable results because
pointer arithmetic to navigate between independent obaccesses to safe operands cannot violate memory safety
jects in memory. For example in Figure 2, the analysisand accesses to unsafe operands are instrumented using
assumes that correct programs will not t&8& , which  random masks. In the example in Figure 2, all objects are
is a pointer into themessage array, to write touser . safe except fomessage anduser (because of an unsafe
Existing compilers already make this assumption wheraccess insideauth _user not shown in the figure).
implementing several standard optimizations. Therefore,
this assumption applies to the vast majority of programs —
However, itpis pregipsely this assumptién tr){at ig viglated?"3 Assigning masks to classes

by most attacks that exploit memory errors. Data ranyye need to select masks for classes carefully to ensure
domization can prevent attacks that violate this assumpthat every byte in an object is consistently xored with
tion without false positives. same byte mask. The issue is that there may be operands
of different sizes in the same equivalence class and the
3.2 Avoiding instrumentation with safety  accesses to objects in the class may have different align-
: ments at runtime. For example, an integer array may be
analysis . .
accessed usingchar * variable.
We also run a safety analysis at compile time to identify We assign random masks of different sizes to equiva-
equivalence classes that we do not need to instrumenience classes. The size of the mask for a cl@ss the
This is an important performance optimization. minimum size of an operand i@'. For example, ifC
The safety analysis classifies instruction operands abas two elementfp] and[q] with size two and four
safe or unsafe: an operand is safe if runtime accesses fiytes, the mask size for claésis two bytes. We use a
the operand can never violate memory safety. The analmaximum mask size of four bytes for masks. In order
ysis marks safe all temporary, local variables, or globalto compute the mask size of each class, we record the
operands in the MIR. These operands are safe becauséze of operands during the pass that collects points-to
they always refer to registers or to a constant number ofonstraints. In our example, in Figure 2, the mask size
bytes starting at a constant offset from the frame pointefor the[t277] s class is one byte and the mask size for
or the data segment. In the example in Figure 2, alluser+4 is four bytes.
operands are safe excgpr7] . After computing the mask sizes, we generate arandom
In addition, the safety analysis runs a simple intra-mask with the right size for each class. Reads and writes
procedural pointer-range analysis to compute writes ando objects in the class are xored with this mask. If the size
reads through pointers that are always in bounds. Thesef an operand is greater than the mask size of its class,
pointer operands are marked safe. Our pointer-rangthe mask is extended by replicating it up to operand size.
analysis is a simplified version of the one describedGoing back to our previous example[df has size four
in [57]. It collects sizes of aggregate objects (e.g.,bytes and the mask for its classdg3210 of size two
structs) and arrays that are known statically. Then it usebytes, the extended mask@g32103210 . This ensures
symbolic execution to compute the minimum size of thethat the bytes in an object that can be accessed through
objects each pointer can refer to and the maximum off{q] or[p] are consistently encrypted and decrypted.
set of the pointer into these objects. When the analy- Provided memory accesses are aligned, this assign-
sis cannot compute this information or the offset can bement of masks to classes ensures that we can determine
negative, it conservatively assumes a minimum size ofhe masks to use for instrumentation statically. Portable
zero. Our current implementation can track constant offprograms satisfy this assumption because many architec-
sets and offsets that can be bound using Phoenix’s builttures raise exceptions when unaligned accesses are is-
in value range information for numeric variables. Givensued or incur significant performance penalties for un-
information about the minimum sizes, the maximum off- aligned accesses.
sets, and the size of the intended accesses, the analy-We also experimented with a version of data random-
sis checks if accesses through the pointer are always iization that assigns four byte masks to each class. In this



case, we can still determine statically the masks to usevhereol,02, ando3 are unsafe operands, ,t2 , andt3

for access sizes of four or more bytes. However, the inare new temporaries, andlm2 andm3 are constants
strumentation for access sizes of one and two bytes mu#¥ith the mask values for the operands. The machine
use the alignment of the target address to determine dynodel for the Phoenix MIR provides an infinite num-
namically the mask to use. For example, a one byte ader of temporaries that are assigned to registers in a later
cess would be xored with theth least significant byte in fggg&:ﬁ'ﬁgtfjﬁ]geeﬁtgt%?]yfg]; ttt;]ztoggg?ggg ISFSoarf; \;Vrigf(‘an
the mask, whereis the_ value of the two least significant i{ o1 ando? are safe the instrumented code is:
bits of the address being accessed. To make the example

more concrete, if the mask for a clas0iDDCCBBAA t3

a one byte access to addre®€0200000 would be ol
xored with byteOxAA and a one byte access to address.l.his instrumentation ensures that operations are per-

0x0020002 would be xored V.Vlth byt@xCc. _Th|s ver- f?rmed on plaintext copies of the objects and that mem-
sion is more secure because it ensures a minimum size 9?

. ry copies of unsafe objects are encryted.
32-bits for the masks the attacker must guess. In most o y cop ) y

o _ : Some of the temporaries that we insert during the in-
our applications, the overhead of the two versions is thestrumentation may be spilled to memory by the compiler.

same but in some appllca'uons the version that alway his is not a problem for data randomization because the
uses four byte m?Sks mtrodL_Jces a significant overhea emory accesses generated by the compiler are safe and
We focus on the first version in the rest of the paper. values written by an unsafe access to a spilled temporary
are encrypted with a mask unknown to the attacker. This
was a problem for PointGuard [24].

Usually Phoenix can generate efficient code for the

. . . transformed MIR but we developed a number of opti-
After computing the equivalence classes and their masksyizeq transformations for common cases. These trans-

the data randomization compiler generates code with informations achieve significant speedups by reducing the

strumentation to encrypt and decrypt memory accessegumber of extra temporaries or instructions. For exam-

We implemented a Phoenix [39] plug-in to insert the ple, we avoid adding an extra temporary in the com-

instrumentation.  Since the static analysis works onmon case of loads from memory. We transforim=

MIR, we instrument the code by transforming MIR. This ASSIGN [t2]  into:

avoids the complexity of mapping instruction operands ASSIGN [t2]

between different code representations. Transforming ; BITXOR t1, m2

a lower level intermediate representation would provide

more control over the generated code, but the current veth some cases, we do not need extra temporaries or in-

sion of the static analysis does not work on lower levelstructions because we can modify the value of a constant

intermediate representations. operand. For example, we instruméni = ASSIGN

We start by presenting the code transformation that we by replacing the constarwt by the result of xoring:

use in the general case. Then we describe the transfowith [t1] ’s mask. We can use the same transformation

mation for function calls. We end by describing the in- for instructions that compare whether an unsafe object is

strumentation for the version of data randomization thaqual to a constant.

assigns four byte masks to all equivalence classes. We cannot use the general transformation directly
to instrument floating point operands and structure
operands larger than eight bytes because Phoenix’s

4.1 General case BITXOR operation does not support these operand types.

Th iler adds inst tation to d tval (X\/e allocate new local variables to hold copies of source
€ comprieradds Instrumentation to decryptvalues rea perands of these types instead of temporaries. Then we
from memory and to encrypt values written to memory.

It inserts instructions that xor a value that was read fromCall a function to xor the memory copies of these vari-

memory with the mask of its source operand and instrucables or the destination operand. This function is inlined
tions that xor a value that is about to be written to mem-for speed and we can avoid copying operands to local
ory with the mask of the destination operand. For examVariables in some cases.

ple, it transforms an MIR instructios. = OPERATION

BITXOR 03, m3
OPERATION 02, t3

4 Instrumentation

02,03  Into: 4.2 Function calls
t2 = BITXOR 02, m2 Instrumentation of a function call has several steps.
t3 = BITXOR 03, m3 First, we insert instructions to decrypt unsafe ac-
t1 = OPERATION t2, t3 tual arguments before we call the function and
ol = BITXOR t1, ml to encrypt the return value if it is stored in



an unsafe object. For example, the instructionrotating a mask at each iteration rather than computing

ol = CALL &_function, 02, 03 is trans-  the alignment for each runtime access.
formed into:
2 = BITXOR 02, m2 4.4 Load-time instrumentation
t3 = BITXOR 03, m3

t1 CALL & function, 12, 13 We generate new ran_d_om masks_ when a program is
ol = BITXOR t1, ml loaded. To enable efficient re-assignment of masks to
classes, the compiler emits a file with the byte offset,
whereol,02, ando3 are unsafe operandsd, ,t2, and  size of each immediate operand containing a mask, and
t3 are new temporaries, amad,m2, andm3are constants the mask used. The loader uses this information to patch
with the mask values for the operands. We also inserthe loaded binary: it reads the old immediate value of a
instructions to encrypt unsafe formal arguments at themask, looks up the corresponding new value, and over-
beginning of each function and to decrypt return valueswrites the old value with the new one in the binary.
at function exit.
This transformation allows us to decouple the instru-4 5 Example
mentation at the caller and the callee. It enables in-
strumentation of indirect calls without constraining the Figure 3 shows our example vulnerable code with instru-
masks assigned to argument operands. Another impofentation. The out-of-bounds writes to tihessage ar-
tant advantage is that it simplifies interaction with unin-ray are xored with the random masxF3 and the value
strumented code because arguments and return valugaad from the user identifier field of theser structure
are passed unencrypted. We can invoke uninstrumentdd Xored with the random mastxACFB4711. There-
functions that do not take pointer arguments or returrfore, to write a chosen 32-bit user identifier, attackers
pointer values. must guess 32 random bits. They must guess the xor of
the random maskexACFB4711 and OxF3F3F3F3 . If

. ith fi . K user identifiers are small positive integers, attackers may
4.3 Instrumentation with fixed size masks choose to overwrite only the least significant bytes of the

As discussed in Section 33’ we can improve the Securitylser identifier field to reduce the number of random bits

of data randomization by assigning four byte masks to althey must guess. In the worst case, the attacker must still
classes. The instrumentation for this version is identicauess eight random bits.

for operands with size greater than or equal to four bytes.
But it requires complex instrumentation for accesses of
one and two bytes. For examplg, = BITXOR 02,

_i = ASSIGN 0
CALL & auth_user, & user, ¢
$L6: t274 = CALL &_end_of message, _c

m2becomes: 275 = COMPARE(NE) t274, 0
CONDITIONALBRANCH(True) t275, $L7, $L8
t21 = ASSIGN &o02 $L8: 1278 = CALL & get_next char, ¢
t21 = BITAND t21, 0x3 t277 = ADD &_message, _i
t21 = SHIFTLEFT 21, 0x3 t300 = BITXOR 1278, OxF3
122 = ASSIGN m2 [t277] = ASSIGN t300
22 = SHIFTRIGHT t22, t21 alO_TC,)L\I?BEG_L 1
2 = CONVERT t22 $L7: t301 = BITXOR _user+4, OXACFB4711
t2 = BITXOR 12, o2 CALL &_seteuid, t301

) ) ) ) ) CALL &_ExecuteRequest, & message
where the first five instructions compute which byte of

the mask to use based on the alignment of the byte being

read. This complex instrumentation does not directly addigure 3: Example vulnerable code in medium level in-

extra memory accesses to data or branches but it requirégrmediate representation (MIR) with instrumentation.

two extra registers. The increased register pressure can ) )

indirectly cause poor performance due to extra memory 1hiS instrumentation also makes debugging hard but

accesses. we believe that it would be possible to modify a debugger
In applications without many byte accesses, the mord® Use the appropriate masks when vieweing or changing

secure version of data randomization has good perforthe values of variables.

mance. However, it can have high overhead in applica-

tions with many byte accesses. We expect the overhead Runtime

to decrease in architectures with more registers like the

new 64-bit extensions of Intel processors. Additionally, The runtime environment for data randomization pro-

it should be possible to instrument loops efficiently by vides an initialization function and wrappers for library



functions and operating system calls. Our compiler in-improves the precision of our analysis. A context-
serts a call to the initialization function at the beginninginsensitive treatment of library functions would put all
of main . This function xors global variables and the ar- string arguments tetrchr  in the same class. Second,
guments tanain with the approriate masks. the wrapper uses the address of the character being read
Many attacks make use of libraries when exploitingto select the mask byte used to decrypt it. All our wrap-
vulnerabilities. For example, string manipulation func- pers do this. This allows us to disregard access sizes
tions are notorious for their use in exploits of buffer over-inside the libraries when computing the mask sizes for
flow vulnerabilities. To increase data randomization’sequivalence classes (as described in Section 3.3). Addi-
coverage, we provide wrappers for C library functionstionally, we can use a mask size of 4-bytes for strings that
and operating system calls that receive or return pointare exclusively manipulated through library functions.
ers. We have written wrappers for all the library func- Since many strings are exclusively manipulated through
tions used in our test cases to ensure that all accessesltbrary functions, this improves security by increasing
unsafe objects are instrumented. the number of bits attackers must guess to launch a suc-
To implement a wrapper for a library function, one cessful attack.
must write a wrapper function and describe the subset Providing wrappers for all library and system calls is
constraints that calling the function adds to the pointsimportant to improve coverage but it is not strictly neces-
to analysis (if there are any). We instrument the code tesary. When a program calls a library function for which
call the wrapper instead of the original function and towe have no source code and no wrapper, we do not in-
supply the wrapper with the masks for the objects thatstrument accesses to objects that are reachable from a
the function reads and writes. In most cases, the wrappeagointer that is passed to or received from this library
simply xors the objects before they are read by the libranfunction. We determine these objects by running a reach-
function, calls the function, and then xors objects writtenability analysis on the output of our points-to analysis
by the function before returning. For efficiency, we pro- and we assign mask zero to the equivalence class that
vide our own implementation for some library functions. contains these objects.
Wrappers for functions in the standard libraries can be
|mplleme.>nted.0nce and then can bg reused by any ney¥ Evaluation
application without further modifications.

Figure 4 shows a wrapper fatrchr  that decrypts  \ye ran experiments to evaluate the overhead of our im-
the string buffer on the fly. This wrapper takes three ar-, e mentation of data randomization and its effectiveness
guments; amaskask, a strings, and a ch_aracter. T_he at preventing a range of real and synthetic attacks. This
wrapper iterates over the contents of strmgiecryptl_ng section presents our results. Data randomization prevents
each character with the given mask, and comparing thg; e attacks in our tests and its CPU and memory over-
decrypted value with the character head are low for all the applications tested.

char * strchr_DataRand(uint mask, uchar * S, uint ¢)
{ 6.1 Performance overhead
uchar cmask =
(uchar)((mask >>((((uint)s)%4) *8)) & Oxff); In our first experiment, we measured the overhead added

by data randomization to seven programs from the SPEC
CPU 2000 benchmark suite [50] (gzip, vpr, mcf, crafty,

while ((  *s"cmask) && ( *s"cmask) != (char)c)

s+t ) parser, bzip2 and twolf), and to nine programs from the
cmask = i i
(uchar)((mask >>((((uint)s)2%4) +8)) & Oxf) Olden [15] benchmark suite (bh, bisort, em3d, health,

mst, perimeter, power, treeadd, and tsp). We chose
these programs to facilitate comparison with other tech-

if (( *s ~ cmask) == (char)c) niques that have been evaluated using the same bench-
return (char  *)s; mark suites.
return NULL: We compared the running time and peak physi-
} cal memory usage of the programs compiled using

compiled the programs with options -O2 (maximize
There are two interesting things to note about thisspeed), -fp:fast (fast floating point model), and -GS- (no
wrappper. First, we add context-sensitive subset constack guards). When building binaries with data random-
straints for calls to wrapped library functions. For ex- ization, we linked with our runtime (see Section 5). We
ample, a call of the form = strchr(s, c) is treated ran the experiments on Windows Vista Enterprise, on an
as the assignment = s by the points-to analysis. This idle Dell Optilex 745 Workstation with a 2.46GHz Intel
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Figure 7: Memory overhead of data randomization for

Figure 5: Execution time overhead added by data rar spgc applications (relative to the memory used without
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Figure 8: Memory overhead of data randomization for
Olden applications (relative to the memory used without
instrumentation).

Figure 6: Execution time overhead added by data rand
ization for Olden (relative to the execution time witho
instrumentation).

Core 2 processor and 2GB of memory. For each exper by data randomization on SPEC and Olden applications.
ment, we present the median of 3 runs. The variance iff he overhead is very low for all applications. For SPEC,
the results was negligible. the average memory overhead is 1% and the maximum

Figures 5 and 6 show the CPU overhead on SPEC ant$ 3.5%. For Olden, the average overhead is 1% and the
Olden applications with data randomization. For SPEC maximum is 6.3%. This was expected because data ran-
the average overhead is 14% and the maximum is 2695lomization does not introduce additional data structures
For Olden, the average overhead is 8% and the maximur@l padding. In contrast, WIT has an average space over-
is 20%. To put this overhead in perspective, WIT [9] head of 14% in SPEC and 12% in Olden.
achieves a similar overhead: an average overhead of 10% We observed an interesting anomaly in this experi-
and a maximum of 23% in SPEC, and an average overment. In our initial measurements, mcf had a memory
head of 5% and a maximum of 17% in Olden. WIT overhead of 23%. We found that this was because of a
provides deterministic write and control flow integrity large memory allocation usingalloc . Data random-
but does not provide read integrity. The bounds checkization was touching all the memory to xor it with the
ing technique described in [26], which is the fastest weappropriate mask. Whereas the version without the in-
know, has an average overhead of 15% and a maximurstrumentation did not access all the memory. We ex-
overhead of 69% in the Olden benchmatkdhe com- pected the C runtime to zero the allocated memory but
prehensive ASLR in [14] reports an overhead of 17% forit relies on the operating system to zero allocated pages
gzip whereas data randomization has a similar overhea@hen they are first accessed. This is easy to fix by xoring
of 16%. pages when they are first accessed.

We also ran this experiment with the more secure ver- We also measured the increase in the size of SPEC
sion of data randomization that assigns four byte maskand Olden binaries compiled with data randomization.
to every class (as discussed in Sections 3.3 and 4.3). THegures 9 and 10 show the results. Instrumented SPEC
average runtime overhead across all the benchmarks imbinaries are 16% larger on average, while Olden binaries
creased from 11% to 18%. The runtime overhead did noare 28% larger on average. This is a small increase in
change for the 11 benchmarks that do not have many oneode size and it is similar to the increase in code size
and two byte accesses but it increased for the other fiveintroduced by WIT.

Figures 7 and 8 show the memory overhead introduced \We also measured the peak throughput of the null-

1These results are computed relative to the optimized eseli httpd web server compiled Wlth.data random|zz_;1t|on. The
in [26]. We believe this is more appropriate than reporting 129  S€fver ran on the same machine as the previous exper-
overhead relative to the unoptimized baseline. iments and we loaded it with static requests for a 1KB
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Figure 11: Peak throughput of the nullhttpd web server
when serving a 1KB file from SPECweb.
file from the SPECweb [50] benchmark. We used aTabIe 1: Synthetic attacks prevented by data randomiza-
small static file request to avoid masking our overhead'on-

with the effects of disk access or process creation on the

server. The load was generated from simulated clients o

on a HPxw4600 workstation with a 2.66GHz Intel Core2 6-2-2  Real vulnerabilities

Duo CPU and 4GB of memory, running Windows Vista | our final experiment, we tested data randomization’s
Enterprise, over a DLink 100Mbps Ethernet switch. Theability to prevent attacks with a set of real vulner-
results in Figure 11 show that peak throughput decreasegyilities in real applications:SQL server , Ghttpd ,

only by 6%. Nullhttpd , andStunnel
SQL server is a relational database from Microsoft
6.2 Effectiveness against attacks that was infected by the infamous Slammer [40] worm.

The vulnerability exploited by Slammer causesntf
To evaluate the effectiveness of data randomization ato overflow a stack buffer. Data randomization prevents
preventing attacks, we used a benchmark with synthetithe attack because the wrapperdprintt  randomizes
exploits [53] and several exploits of real vulnerabiliies  the data that overwrites the current stack frame, including
existing programs. This section describes the programthe return address. This causes the server to exit when
and the vulnerabilities. Then it presents an analysis ofreeing a local variable that was overwritten. Should the
the security afforded by data randomization. return instruction be reached, the server would jump to
an invalid program location and crash.

Ghttpd is an HTTP server with several vulnerabil-
ities [1]. The vulnerability that we chose is a stack
We ran the benchmark described in [53] that has 1&uffer overflow when loggin@ETrequests inside a call
control-data attacks that exploit buffer overflow vulnera-to vsprintf . Data randomization prevents the attack

6.2.1 Synthetic exploits



because the wrapper fegprintf  randomizesthe value This unpredictability depends on two factors.
written by the attacker into the return address, causing First, if the the read and write accesses used by the at-
the server to crash when the return address is used.  tacker to access the target location are in the same equiv-
Nullhttpd  is another HTTP server. This server hasalence class, the attack succeeds. Figures 12 and 13
a heap overflow vulnerability that can be exploited by show the number of distinct equivalence classes with un-
sending HTTPPOSTrequests with a negative content safe accesses for SPEC and Olden applications, respec-
length field [2]. These requests cause the server to allaively. All SPEC applications have a reasonably high
cate a heap buffer that is too small to hold the data in theaumber of distinct classes, except mcf. Olden applica-
request. While callingecv to read thePOSTdata into  tions have a small number of classes because they are
the buffer, the server overwrites the heap managemergmall benchmarks. We could increase the number of
data structures maintained by the C library. This vulner<lasses by using more precise points-to analysis [37].
ability can be exploited to overwrite arbitrary words in But our current analysis was sufficiently precise to thwart
memory. We attacketlullHttpd  using the technique all the attacks we tested, i.e., the read and write accesses
described in [18]. The attack works by corrupting the in an attack were in different classes.
CGI-BIN configuration string. This string identifies a It is important to note that objects that should never be
directory holding programs that may be executed whileaccessed by unsafe instructions (according to the anal-
processing HTTP requests. Therefore, by corrupting itysis) are always in a separate class. Therefore they
the attacker can forclullHttpd ~ to run arbitrary pro-  are protected regardless of the precision of the points-to
grams. This is a non-control-data attack because the atnalysis. This includes important attack targets like re-
tacker does not subvert the intended control-flow in theturn addresses, exception handler pointers, and dynamic
server. Data randomization prevents the attack becaudiking data structures, as well as most local variables.
the wrapper forecv randomizes the values written over  Second, the unpredictability of an access to a target
the heap management data structures. This causes thfation depends on the size of the random masks used
server to crash when the values are used. to access the location. If the attack must write a cho-
Stunnel is a generic tunnelling service that encrypts sen value to the target location or read the value stored at
TCP connections using SSL. We studied a format stringhe chosen target location, the attack succeed with prob-
vulnerability in the code that establishes a tunnel forability 2—m(e-maz(w.n)) "whereo is the number of bits
SMTP [5]. An attacker can overflow a stack buffer by in the target locationy is the bit size of the mask used
sending a message that is passed as a format string to the xor the write access performed by the attacker,and
vsprintf  function. Data randomization prevents the at-is the bit size of the mask used by correct accesses to
tack because the wrapper fagprintf  randomizes the the target location. Figures 14 and 15 show the distri-
value written by the attacker into the return address.  butions of mask sizes used in SPEC and Olden applica-
tions, respectively. The results show that the majority
of accesses use 4-byte masks. Furthermore, using more
precise points-to analysis [37] would increase the aver-
This section showed that data randomization can stop exage mask size. We could also guarantee that all accesses
isting real exploits with low runtime overhead. We now use 4-byte masks with the version of the instrumentation
present a discussion of possible attacks against data ragescribed in Section 4.3 but the overhead would increase.
domization. We assume that attackers know the code of Some attacks perform partial overwrites of pointers,
a vulnerable program, and that they can supply arbitrarfor example, they overwrite the least significant byte
inputs to the program. We assume they know the equivaef a pointer to defeat ASLR. Attacks that only need to
lence classes but do not know the masks used to randomvrite eight bit values have a probability of success of
ize memory accesses. These masks are generated ea&h regardless of the mask sizes. This probability is
time the program starts and we assume that attackers dtill lower than the probability of success with deployed
not have access to the operating system process runnifgSLR techniques. It is interesting to note that data ran-
the program. These assumptions are a good fit for a nedlomization can provide this protection even for direct
work service, for example. overwrites of non-pointer data that is security critical.
Since data randomization does not remove memory erfASLR [3, 13, 54] does not provide this protection.
rors from the program, the attacker can craft inputs that Some attacks do not require complete control on the
cause an instruction to write or read memory locationsvalue written to a target location. For instance, heap
unintended by the programmer. Unlike ASLR, data ran-spraying [46] attacks create many copies of shellcode [6]
domization does not prevent attacks by making it hard foiin the heap of the target program and overwrite a code
attackers to access a chosen memory location. Instead,pbinter, e.g., a function pointer. If there are enough
makes the result of accessing that location unpredictablezopies of the shellcode, the attack will succeed for most

6.2.3 Security analysis
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Application | Vulnerability Exploit

NullHttpd heap-based buffer overflow overwrite cgi-bin configuration data
SQL Server| stack-based buffer overflow overwrite return address

STunnel format string overwrite return address

Ghttpd stack-based buffer overflow overwrite return address

Table 2: Real attacks detected by data randomization.
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Figure 12: Number of equivalence classes with unsafe

accesses in SPEC applications. Figure 14: Fraction of static memory accesses with

4-byte, 2-byte and 1-byte random masks, in SPEC ap-
plications.
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Figure 15: Fraction of static memory accesses with
4-byte, 2-byte and 1-byte random masks, in Olden ap-

. . . lications.
values written to the pointer. Therefore, this attack cal P

bypass ASLR. But data randomization prevents the a
tack because the shell code is xored with a randony  Related work
mask unknown to the attacker. Data randomization pro-

vides the same protection as instruction set randomizq\-/Iany techniques have been proposed to protect C and
tion [34, 12] in this case but with low overhead and with- C++ programs from memory error exploits. Several tools

out hardware support. find vulnerabilities by analyzing the source code of ap-
Information leakage attacks [27, 48] are also of par-plications [51, 36, 17]. These tools have been very suc-
ticular concern for randomization approaches. It is im-cessful at removing vulnerabilities from software before
portant not to leak the masks used to randomize memorit ships, but they are not sufficient because they are im-
accesses. It is hard to evaluate the probability of sucprecise: they can miss vulnerabilities and they raise false
cessfully exploiting a vulnerability to leak information alarms.
about the randomization masks, but ASLR implementa- Memory safe dialects of C, such as CCured [41] and
tions have been subjected to this type of attack [27].  Cyclone [31] can prevent all memory errors but they re-
Data randomization may also be subjected to brutguire significant changes to the source code of applica-
force guessing attacks as described in [45]. In mostions, and they require major changes to the C runtime,
cases, we believe that the number of random bits the a€.g., they require a garbage collector.
tacker must guess is large enough to prevent these at- Other techniques can be applied to C and C++ pro-
tacks. Moreover, brute force attacks often cause visigrams without modifications. Some techniques defend
ble anomalies, such as crashing the vulnerable applicdrom attacks that overwrite specific targets, such as return
tions; when these anomalies are observed, countermeaeldresses or other control data (e.g., [49, 11, 19, 25, 47]),
sures such as automatic filtering [21] can be deployed t@r that exploit specific vulnerabilities, such as format
thwart the brute force attack. string vulnerabilities (e.g., [23]). These techniquesehav
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low overhead but there are memory error exploits thation. WIT has high coverage and low overhead, but it
they cannot catch [53]. In particular, techniques inspireccan’t prevent some attacks detected by data randomiza-
by StackGuard [25] are widely used, but they providetion because it doesn't instrument reads. Furthermore,
no protection from overflows of heap and static vari- WIT's memory overhead is higher than data randomiza-
ables [43]. tion’s.

Other technigues provided higher coverage at the cost Several techniques are based on the idea of randomiz-
of additional overhead. Several systems detect attackisg different aspects of computer programs [28]. Point-
using dynamic taint analysis, e.g., [42, 22], which canGuard [24] randomizes pointer values in a manner simi-
prevent many attacks that exploit memory errors andar to data randomization, but doesn’t protect non-pointer
other types of attacks. They work with binaries anddata. In addition, PointGuard uses a single mask for
do not require source code. However, their overheadll pointers, so leaking any pointer value compromises
is several orders of magnitude larger than data randonthe entire system. Address space layout randomization
ization’s. Xuet al [55] describe a dynamic taint analy- (ASLR) randomizes the locations of code and data in
sis technique that is implemented as a source-to-sourc@emory to make it harder for attackers to target spe-
transformation on C programs. Their overheads are amific objects [3, 13, 54]. The best such technique that we
order of magnitude lower than previous techniques buknow [14] randomizes absolute and relative locations of
they are still above 100% when preventing memory erroll memory-resident objects and combines ASLR with
exploits on CPU-intensive benchmarks. other buffer overflow mitigation techniques. It has an

There are several bounds checkers for C. For exameverhead similar to data randomization’s. Data random-
ple, the Jones and Kelly [32] bounds checker does nokation can prevent some attacks that can bypass ASLR,
require Changes to the pointer format. It instrumentSsUCh as direct overwrites of SeCUrity'Critical data and
pointer arithmetic to ensure that the result and originaheap spraying [46]. Data randomization can also be
pointers point to the same object. To find the target obcombined with ASLR to make it more resistant to at-
ject of a pointer, it uses a splay tree that keeps trackacks [27, 45, 52]. Other techniques do instruction set
of the base address and size of heap, stack, and globgndomization (ISR) [12, 34] but they have high over-
objects. CRED [44] is similar but provides support for head without hardware support, and they cannot prevent
some common uses of out-of-bounds pointers in existsome attacks prevented by data randomization.
ing C programs. These techniques have high overhead,
for example, CRED can slow down applications by up .
to a factor of 12. Xwet al [56] describe a technique that 8 Conclusion
improves the coverage of the previous bounds checker,

and reduces their overhead. The technique of Dhurjat?\/e presented data randomization, a new technique that

et al [26] is similar to CRED but introduces several op- provides probabilistic protection from memory error ex-

timizations that reduce runtime overhead dramaticallyplo'ts' Data randomization uses static analysis to par-

This technique has an average overhead of 15% and :ét'?r? mf)rnorytic??ﬁses Into dlfferen'rjclﬁsses daccprdtl_ng

maximum overhead of 69% in the Olden benchmarks. 0 "€ ODJECIS that they may access. Data randomization
The concet of control-flow intearity was introduced then assigns a distinct random mask to each class and, at

. P gty \ runtime, xors the data read/written from/to memaory with

in [7, 35]. However, attackers can exploit memory errors

. ; o the corresponding mask. Therefore, memory accesses
to execute arbitrary code without violating control-flow P 9 y

intearitv. Th | f | attacks of thi that violate the results of the analysis, i.e., that access u
Integrity. *here are examples of several alacks of thig,qhjeq objects, have unpredictable results. Our results

typedm [18].hC_IFI [7] anfd Progkrarg Sheph((ejrdm_g [3.5] €aN- show that data randomization can block a broad range of
\r/]i(()jtese;fr}gt);blﬁi;}[/igep(r)otz‘::t:gn. fro?ntir:sr;e Oarggfkt'sogféoi;attacks, while introducing an average runtime overhead
has lower overhead. Data-flow integrity (DFI) [16] pro- of 11% and an average space overhead below 1%.
tects programs by enforcing data-flow relations between

CPU instructions. For each instruction that reads a valueReferences

it uses static analysis to compute the instructions that are
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