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Abstract
Attacks that exploit memory errors are still a serious
problem. We presentdata randomization, a new tech-
nique that provides probabilistic protection against these
attacks by xoring data with random masks. Data ran-
domization uses static analysis to partition instruction
operands into equivalence classes: it places two operands
in the same class if they may refer to the same object in
an execution that does not violate memory safety. Then
it assigns a random mask to each class and it generates
code instrumented to xor data read from or written to
memory with the mask of the memory operand’s class.
Therefore, attacks that violate the results of the static
analysis have unpredictable results. We implemented
a data randomization prototype that compiles programs
without modifications and can prevent many attacks with
low overhead. Our prototype prevents all the attacks in
our benchmarks while introducing an average runtime
overhead of 11% (0% to 27%) and an average space over-
head below 1%.

1 Introduction

Programs written in unsafe languages like C and C++ are
vulnerable to attacks that exploit memory errors, for ex-
ample buffer overflows and underflows [6, 43], dangling
pointers [8], and double frees [33]. Attackers routinely
exploit these errors to gain control over the execution of
vulnerable programs or to force vulnerable programs to
disclose confidential information.

We presentdata randomization, a new technique that
provides probabilistic protection against these attacks by
xoring data with random masks. Data randomization
uses static analysis to partition instruction operands into
equivalence classes according to the objects they may re-
fer to. It then assigns a random mask to each class, and
instruments code to xor data read from and written to
memory with the operand’s mask. This provides a prob-
abilistic version ofwrite integrity [9] andread integrity:

writes and reads have unpredictable results when they ac-
cess objects that they were not intended to (according
to the analysis). Data randomization can be applied to
C and C++ programs without modifications, it has high
coverage with no false positives, and it has low space and
time overhead.

We implemented data randomization by modifying a
C compiler to run the static analysis and to generate in-
strumented code. To compute the equivalence classes,
the compiler runs a points-to analysis [29] to determine
the set of objects that each instruction operand may refer
to in executions that do not violate memory safety. Then
it places operands that may refer to the same object, ac-
cording to the points-to analysis, in the same class. Each
class is assigned a random mask that is used at runtime
to xor all objects that are accessed through operands in
the class.

The data randomization compiler adds instrumenta-
tion to encrypt values written to memory: it inserts an
instruction before a write that xors the value being writ-
ten with the mask of the destination operand. It also adds
instrumentation todecrypt values read from memory: it
inserts an instruction after a read that xors the value read
with the mask of the source operand. This ensures that
data is stored “encrypted” in memory where it is vul-
nerable to attacks, and that registers store a “plaintext”
version of the data to enable processing with unmodified
CPUs.

We generate new random masks at load time and patch
the loaded binary to use the new masks. The compiler
outputs a file with the locations of the masks in the binary
to enable efficient patching.

Data randomization provides probabilistic read and
write integrity. Attackers that exploit memory errors to
write to objects in the wrong class cannot predict the val-
ues written because they are xored with a random un-
known mask. Similarly, attackers cannot obtain confi-
dential information by reading data from objects in the
wrong class because the data is xored with a random un-
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known mask.
It is interesting to compare data randomization with

previously proposed randomization techniques. For ex-
ample, instruction set randomization [34, 12] prevents
code injection attacks by xoring the program text of the
vulnerable program with a key unknown to the attacker.
It requires hardware support to achieve low overhead.
Data randomization can provide similar protection with
low overhead. It ensures that code injected into a buffer
cannot be decoded correctly by the processor because the
instructions are xored with a key unknown to the attacker.

PointGuard [24] is superficially similar to data ran-
domization but it only xors pointers and uses the same
mask to xor all pointers. Therefore, it cannot prevent at-
tacks that exploit memory errors to access non-pointer
data and leaking any pointer value compromises the en-
tire system. It may also fail to work on programs where
pointers may be aliased with non-pointer data.

Another technique, which is widely used, is address
space layout randomization (ASLR) [3, 13, 30, 38, 54].
ASLR randomizes the memory locations of data and
code. ASLR is vulnerable to attacks that exploit rela-
tive offsets to overwrite memory locations and to attacks
that place many copies of data chosen by the attacker
in the address space of the vulnerable program. For ex-
ample, heap spraying [46] places many copies of shell
code in the heap of the target program. This ensures that
when the attacker overwrites a code pointer there is a
high probability of executing the shell code. Data ran-
domization can reduce the probability of success of these
attacks.

We evaluated the coverage of data randomization us-
ing a suite of attacks to test buffer overflow prevention
techniques [53] and four real attacks on SQL server,
ghttpd, nullhttpd, and stunnel. Data randomization was
able to prevent all these attacks. We also evaluated the
overhead introduced by data randomization using SPEC
CPU and Olden benchmarks. Data randomization has
low runtime overhead and very low space overhead: it
had an average runtime overhead of 11% (0% to 27%)
and an average space overhead below 1% in our bench-
marks. On the nullhttpd web server instrumented with
data randomization, peak throughput while serving static
content from the SPECweb benchmark decreased by
only 6%.

The rest of the paper is organized as follows. Sec-
tion 2 presents an overview of data randomization. Sec-
tion 3 discusses the static analysis that we use to compute
equivalence classes and a safety analysis to avoid unnec-
essary instrumentation. Section 4 describes how the data
randomization compiler instruments code. Section 5 dis-
cusses the runtime environment used by data randomiza-
tion. Section 6 presents our experimental evaluation of
data randomization, including its performance overhead

and its effectiveness at blocking attacks. Section 7 dis-
cusses related work, and we conclude in Section 8.

2 Overview

Data randomization involves four components: static
analysis, compile-time instrumentation, load-time instru-
mentation, and run-time randomization. We will use the
example in Figure 1 to illustrate how all the components
work. The example is a simplified remote shell server
with a buffer overflow vulnerability that can be exploited
with non-control-data attacks [18]. The example is in-
spired by a real attack on an SSH server [4].

1: void ProcessConnection(connection * c) {
2: cred_t user;
3: char message[1024];
4: int i = 0;
5:
6: auth_user(&user, c);
8: while (!end_of_message(c)) {
9: message[i] = get_next_char(c);
10: i++;
11: }
12: seteuid(user.user_id);
13: ExecuteRequest(message);
14: }

Figure 1: Example code: simplified remote shell server
with a buffer overflow vulnerability.

The function in Figure 1 is called when the server re-
ceives a new connection request. The function starts by
calling auth user to authenticate the user and to store
the user credentials inuser . Next, the function enters
a loop that receives characters from the connection and
stores them in themessage buffer. After receiving the
message, the program callsseteuid to impersonate the
remote user and it callsExecuteRequest to execute
the command with the user’s privileges. This function
has a buffer overflow vulnerability in lines 8 – 10: by
supplying a long message, an attacker can overflow the
message buffer and overwrite theuser variable. The
attacker can thus supply an arbitrary user id (e.g., root)
and the server will execute commands with the corre-
sponding user’s privileges. This is a non-control-data at-
tack [18], since it does not force any unintended control-
flow transfer in the program.

Data randomization uses static analysis to partition
objects into equivalence classes such that objects that
can be accessed through the same pointer are placed in
the same class. For example, in Figure 1 the variables
message anduser are placed in separate classes. After
the analysis, we assign a random mask to each equiva-
lence class. Section 3 describes the static analysis and
random mask assignment.

The compile-time component instruments instructions
that write to or read from an object in memory to xor the
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object with the corresponding mask. If the instruction
is a write, the extra xor instruction effectivelyencrypts
the written value. If it is a read, itdecrypts the read
value. The compiler also records the offsets of masks
in the code. We describe this component in detail in Sec-
tion 4.

The load-time component generates a new random
mask for each equivalence class every time the program
is loaded. Then it patches the loaded binary to use the
new masks. This component simply reads the offsets
recorded by the compiler and overwrites old mask val-
ues with the new ones.

In the example of Figure 1, accesses to the vari-
ablesmessage anduser are xored with distinct random
masks. The instruction at line 9 encrypts the character it
stores inmessage with the corresponding mask, and the
instruction at line 12 decrypts theuser.user id value
it reads with a different random mask. This does not pre-
vent attackers from overflowing themessage buffer and
overwritinguser.user id but attackers can no longer
write a value of their choice touser.user id . Doing
so would require attackers to know the xor of the ran-
dom masks used by the program to write to themessage

buffer and to read from theuser.user id object.

This example illustrates the power of data randomiza-
tion relative to other randomization techniques. Since
there is no code injection, this attack would not be pre-
vented by instruction set randomization techniques [12,
34]. PointGuard [24], which xors pointers with a ran-
dom mask, would also fail to prevent this attack because
no pointer is overwritten. The ASLR techniques that
are widely deployed [3, 30] only randomize the base ad-
dresses of heap, stack, static data, and text areas. There-
fore, they would not prevent this attack either. Even
the comprehensive randomization technique described
in [14] would likely fail to prevent this attack. This tech-
nique uses two stacks to segregate buffers from other
variables butmessage and user are both buffers that
would be placed in the same stack frame. Data random-
ization can prevent attacks like this and it can be used
in production systems because it has low space and time
overhead.

3 Static analysis

We used the Phoenix compiler framework [39] to im-
plement the static analysis that computes equivalence
classes for data randomization. The analysis operates
on Phoenix’s medium level intermediate representation
(MIR), which is still independent of the target proces-
sor. Figure 2 shows the MIR for the vulnerable C code
in Figure 1.

_i = ASSIGN 0
CALL &_auth_user, &_user, _c

$L6: t274 = CALL &_end_of_message, _c
t275 = COMPARE(NE) t274, 0
CONDITIONALBRANCH(True) t275, $L7, $L8

$L8: t278 = CALL &_get_next_char, _c
t277 = ADD &_message, _i
[t277] = ASSIGN t278
_i = ADD _i, 1
GOTO $L6

$L7: CALL &_seteuid, _user+4
CALL &_ExecuteRequest, &_message

Figure 2: Example vulnerable code in medium level in-
termediate representation (MIR).

3.1 Computing equivalence classes

We use an inter-procedural points-to analysis due to An-
dersen [10] that is flow and context insensitive but scales
to large programs. It computes a points-to set for each
pointer operand, which is the set of logical objects the
pointer may refer to. The analysis is conservative: it in-
cludes all objects that the pointer may refer to at runtime
but it may include additional objects. Our implementa-
tion is similar to the one described in [29] but it is field-
insensitive rather than field-based (i.e., it does not distin-
guish between the different fields in a structure, union, or
class). WIT [9] uses the same points-to analysis.

The points-to analysis makes a global pass over all
source files to collectsubset constraints. For example,
each assignmentx = y results in a subset constraint
x ⊇ y, which means that the set of possible values ofx

contains the set of possible values ofy. We use Phoenix
to compile each source file to MIR and write all subset
constraints in the MIR to a file. After this global pass,
the analysis reads the constraints file and computes the
points-to sets by iterating over all the constraints until it
reaches a fixed point. Then, it stores the points-to sets
in a file. In the example in Figure 2, there is only one
pointer operand[t277] . The points-to analysis deter-
mines that it points to themessage array. We use[p] to
denote a dereference ofp.

We use the points-to sets to partition instruction
operands into equivalence classes. We place two
operands in the same equivalence class if they can refer
to the same object at runtime according to the points-to
analysis. This constraint ensures that our instrumentation
does not change program behavior in executions that do
not violate memory safety because all reads and writes to
an object are xored with the same mask. Under this con-
straint, we maximize the number of equivalence classes
to increase the number of attacks that we can prevent.

We compute equivalence classes using an iterative
process. Initially, there is a separate equivalence class
for each points-to set: the initial equivalence class for a
points-to setp → {o1, ..., on} is {[p], o1, ..., on}. Then
we merge equivalence classes that intersect until we
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reach a fixed point. We use an union-find data struc-
ture [20] to compute the classes efficiently. After pro-
cessing the points-to sets, we iterate over all objects that
are not referenced by any pointer. These are variables
that are never accessed indirectly, for example,i in Fig-
ure 2. We place each of these objects in a separate class.
For example,{ i } and{[t277], message } are two of
the equivalent classes computed for the code in Figure 2.

This analysis assumes that correct programs do not use
pointer arithmetic to navigate between independent ob-
jects in memory. For example in Figure 2, the analysis
assumes that correct programs will not uset277 , which
is a pointer into themessage array, to write touser .
Existing compilers already make this assumption when
implementing several standard optimizations. Therefore,
this assumption applies to the vast majority of programs.
However, it is precisely this assumption that is violated
by most attacks that exploit memory errors. Data ran-
domization can prevent attacks that violate this assump-
tion without false positives.

3.2 Avoiding instrumentation with safety
analysis

We also run a safety analysis at compile time to identify
equivalence classes that we do not need to instrument.
This is an important performance optimization.

The safety analysis classifies instruction operands as
safe or unsafe: an operand is safe if runtime accesses to
the operand can never violate memory safety. The anal-
ysis marks safe all temporary, local variables, or global
operands in the MIR. These operands are safe because
they always refer to registers or to a constant number of
bytes starting at a constant offset from the frame pointer
or the data segment. In the example in Figure 2, all
operands are safe except[t277] .

In addition, the safety analysis runs a simple intra-
procedural pointer-range analysis to compute writes and
reads through pointers that are always in bounds. These
pointer operands are marked safe. Our pointer-range
analysis is a simplified version of the one described
in [57]. It collects sizes of aggregate objects (e.g.,
structs) and arrays that are known statically. Then it uses
symbolic execution to compute the minimum size of the
objects each pointer can refer to and the maximum off-
set of the pointer into these objects. When the analy-
sis cannot compute this information or the offset can be
negative, it conservatively assumes a minimum size of
zero. Our current implementation can track constant off-
sets and offsets that can be bound using Phoenix’s built-
in value range information for numeric variables. Given
information about the minimum sizes, the maximum off-
sets, and the size of the intended accesses, the analy-
sis checks if accesses through the pointer are always in

bounds. If they are, the corresponding pointer operand
is marked safe. We used a similar safety analysis to im-
prove the performance of WIT [9].

We do not instrument reads and writes to objects in an
equivalence class when all the instruction operands in the
class are safe. We say that the objects referred to by these
operands are safe. These objects are stored in “plaintext”
in memory. But we still ensure that accesses that violate
read or write integrity have unpredictable results because
accesses to safe operands cannot violate memory safety
and accesses to unsafe operands are instrumented using
random masks. In the example in Figure 2, all objects are
safe except formessage anduser (because of an unsafe
access insideauth user not shown in the figure).

3.3 Assigning masks to classes

We need to select masks for classes carefully to ensure
that every byte in an object is consistently xored with
same byte mask. The issue is that there may be operands
of different sizes in the same equivalence class and the
accesses to objects in the class may have different align-
ments at runtime. For example, an integer array may be
accessed using achar * variable.

We assign random masks of different sizes to equiva-
lence classes. The size of the mask for a classC is the
minimum size of an operand inC. For example, ifC
has two elements[p] and [q] with size two and four
bytes, the mask size for classC is two bytes. We use a
maximum mask size of four bytes for masks. In order
to compute the mask size of each class, we record the
size of operands during the pass that collects points-to
constraints. In our example, in Figure 2, the mask size
for the [t277] ’s class is one byte and the mask size for
user+4 is four bytes.

After computing the mask sizes, we generate a random
mask with the right size for each class. Reads and writes
to objects in the class are xored with this mask. If the size
of an operand is greater than the mask size of its class,
the mask is extended by replicating it up to operand size.
Going back to our previous example, if[q] has size four
bytes and the mask for its class is0x3210 of size two
bytes, the extended mask is0x32103210 . This ensures
that the bytes in an object that can be accessed through
[q] or [p] are consistently encrypted and decrypted.

Provided memory accesses are aligned, this assign-
ment of masks to classes ensures that we can determine
the masks to use for instrumentation statically. Portable
programs satisfy this assumption because many architec-
tures raise exceptions when unaligned accesses are is-
sued or incur significant performance penalties for un-
aligned accesses.

We also experimented with a version of data random-
ization that assigns four byte masks to each class. In this
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case, we can still determine statically the masks to use
for access sizes of four or more bytes. However, the in-
strumentation for access sizes of one and two bytes must
use the alignment of the target address to determine dy-
namically the mask to use. For example, a one byte ac-
cess would be xored with thei-th least significant byte in
the mask, wherei is the value of the two least significant
bits of the address being accessed. To make the example
more concrete, if the mask for a class is0xDDCCBBAA,
a one byte access to address0x00200000 would be
xored with byte0xAA and a one byte access to address
0x0020002 would be xored with byte0xCC. This ver-
sion is more secure because it ensures a minimum size of
32-bits for the masks the attacker must guess. In most of
our applications, the overhead of the two versions is the
same but in some applications the version that always
uses four byte masks introduces a significant overhead.
We focus on the first version in the rest of the paper.

4 Instrumentation

After computing the equivalence classes and their masks,
the data randomization compiler generates code with in-
strumentation to encrypt and decrypt memory accesses.
We implemented a Phoenix [39] plug-in to insert the
instrumentation. Since the static analysis works on
MIR, we instrument the code by transforming MIR. This
avoids the complexity of mapping instruction operands
between different code representations. Transforming
a lower level intermediate representation would provide
more control over the generated code, but the current ver-
sion of the static analysis does not work on lower level
intermediate representations.

We start by presenting the code transformation that we
use in the general case. Then we describe the transfor-
mation for function calls. We end by describing the in-
strumentation for the version of data randomization that
assigns four byte masks to all equivalence classes.

4.1 General case

The compiler adds instrumentation to decrypt values read
from memory and to encrypt values written to memory.
It inserts instructions that xor a value that was read from
memory with the mask of its source operand and instruc-
tions that xor a value that is about to be written to mem-
ory with the mask of the destination operand. For exam-
ple, it transforms an MIR instructiono1 = OPERATION
o2,o3 into:

t2 = BITXOR o2, m2
t3 = BITXOR o3, m3
t1 = OPERATION t2, t3
o1 = BITXOR t1, m1

whereo1,o2, ando3 are unsafe operands,t1 ,t2 , andt3
are new temporaries, andm1,m2, andm3 are constants
with the mask values for the operands. The machine
model for the Phoenix MIR provides an infinite num-
ber of temporaries that are assigned to registers in a later
compilation stage. If any of the operands is safe, we can
remove instrumentation for that operand. For example,
if o1 ando2 are safe the instrumented code is:

t3 = BITXOR o3, m3
o1 = OPERATION o2, t3

This instrumentation ensures that operations are per-
formed on plaintext copies of the objects and that mem-
ory copies of unsafe objects are encryted.

Some of the temporaries that we insert during the in-
strumentation may be spilled to memory by the compiler.
This is not a problem for data randomization because the
memory accesses generated by the compiler are safe and
values written by an unsafe access to a spilled temporary
are encrypted with a mask unknown to the attacker. This
was a problem for PointGuard [24].

Usually Phoenix can generate efficient code for the
transformed MIR but we developed a number of opti-
mized transformations for common cases. These trans-
formations achieve significant speedups by reducing the
number of extra temporaries or instructions. For exam-
ple, we avoid adding an extra temporary in the com-
mon case of loads from memory. We transformt1 =
ASSIGN [t2] into:

t1 = ASSIGN [t2]
t1 = BITXOR t1, m2

In some cases, we do not need extra temporaries or in-
structions because we can modify the value of a constant
operand. For example, we instrument[t1] = ASSIGN

c by replacing the constantc by the result of xoringc
with [t1] ’s mask. We can use the same transformation
for instructions that compare whether an unsafe object is
equal to a constant.

We cannot use the general transformation directly
to instrument floating point operands and structure
operands larger than eight bytes because Phoenix’s
BITXOR operation does not support these operand types.
We allocate new local variables to hold copies of source
operands of these types instead of temporaries. Then we
call a function to xor the memory copies of these vari-
ables or the destination operand. This function is inlined
for speed and we can avoid copying operands to local
variables in some cases.

4.2 Function calls

Instrumentation of a function call has several steps.
First, we insert instructions to decrypt unsafe ac-
tual arguments before we call the function and
to encrypt the return value if it is stored in
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an unsafe object. For example, the instruction
o1 = CALL &_function, o2, o3 is trans-

formed into:

t2 = BITXOR o2, m2
t3 = BITXOR o3, m3
t1 = CALL &_function, t2, t3
o1 = BITXOR t1, m1

whereo1,o2, ando3 are unsafe operands,t1 ,t2 , and
t3 are new temporaries, andm1,m2, andm3are constants
with the mask values for the operands. We also insert
instructions to encrypt unsafe formal arguments at the
beginning of each function and to decrypt return values
at function exit.

This transformation allows us to decouple the instru-
mentation at the caller and the callee. It enables in-
strumentation of indirect calls without constraining the
masks assigned to argument operands. Another impor-
tant advantage is that it simplifies interaction with unin-
strumented code because arguments and return values
are passed unencrypted. We can invoke uninstrumented
functions that do not take pointer arguments or return
pointer values.

4.3 Instrumentation with fixed size masks

As discussed in Section 3.3, we can improve the security
of data randomization by assigning four byte masks to all
classes. The instrumentation for this version is identical
for operands with size greater than or equal to four bytes.
But it requires complex instrumentation for accesses of
one and two bytes. For example,t2 = BITXOR o2,
m2becomes:

t21 = ASSIGN &o2
t21 = BITAND t21, 0x3
t21 = SHIFTLEFT t21, 0x3
t22 = ASSIGN m2
t22 = SHIFTRIGHT t22, t21
t2 = CONVERT t22
t2 = BITXOR t2, o2

where the first five instructions compute which byte of
the mask to use based on the alignment of the byte being
read. This complex instrumentation does not directly add
extra memory accesses to data or branches but it requires
two extra registers. The increased register pressure can
indirectly cause poor performance due to extra memory
accesses.

In applications without many byte accesses, the more
secure version of data randomization has good perfor-
mance. However, it can have high overhead in applica-
tions with many byte accesses. We expect the overhead
to decrease in architectures with more registers like the
new 64-bit extensions of Intel processors. Additionally,
it should be possible to instrument loops efficiently by

rotating a mask at each iteration rather than computing
the alignment for each runtime access.

4.4 Load-time instrumentation

We generate new random masks when a program is
loaded. To enable efficient re-assignment of masks to
classes, the compiler emits a file with the byte offset,
size of each immediate operand containing a mask, and
the mask used. The loader uses this information to patch
the loaded binary: it reads the old immediate value of a
mask, looks up the corresponding new value, and over-
writes the old value with the new one in the binary.

4.5 Example

Figure 3 shows our example vulnerable code with instru-
mentation. The out-of-bounds writes to themessage ar-
ray are xored with the random mask0xF3 and the value
read from the user identifier field of theuser structure
is xored with the random mask0xACFB4711. There-
fore, to write a chosen 32-bit user identifier, attackers
must guess 32 random bits. They must guess the xor of
the random masks0xACFB4711 and 0xF3F3F3F3 . If
user identifiers are small positive integers, attackers may
choose to overwrite only the least significant bytes of the
user identifier field to reduce the number of random bits
they must guess. In the worst case, the attacker must still
guess eight random bits.

_i = ASSIGN 0
CALL &_auth_user, &_user, _c

$L6: t274 = CALL &_end_of_message, _c
t275 = COMPARE(NE) t274, 0
CONDITIONALBRANCH(True) t275, $L7, $L8

$L8: t278 = CALL &_get_next_char, _c
t277 = ADD &_message, _i
t300 = BITXOR t278, 0xF3
[t277] = ASSIGN t300
_i = ADD _i, 1
GOTO $L6

$L7: t301 = BITXOR _user+4, 0xACFB4711
CALL &_seteuid, t301
CALL &_ExecuteRequest, &_message

Figure 3: Example vulnerable code in medium level in-
termediate representation (MIR) with instrumentation.

This instrumentation also makes debugging hard but
we believe that it would be possible to modify a debugger
to use the appropriate masks when vieweing or changing
the values of variables.

5 Runtime

The runtime environment for data randomization pro-
vides an initialization function and wrappers for library
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functions and operating system calls. Our compiler in-
serts a call to the initialization function at the beginning
of main . This function xors global variables and the ar-
guments tomain with the approriate masks.

Many attacks make use of libraries when exploiting
vulnerabilities. For example, string manipulation func-
tions are notorious for their use in exploits of buffer over-
flow vulnerabilities. To increase data randomization’s
coverage, we provide wrappers for C library functions
and operating system calls that receive or return point-
ers. We have written wrappers for all the library func-
tions used in our test cases to ensure that all accesses to
unsafe objects are instrumented.

To implement a wrapper for a library function, one
must write a wrapper function and describe the subset
constraints that calling the function adds to the points-
to analysis (if there are any). We instrument the code to
call the wrapper instead of the original function and to
supply the wrapper with the masks for the objects that
the function reads and writes. In most cases, the wrapper
simply xors the objects before they are read by the library
function, calls the function, and then xors objects written
by the function before returning. For efficiency, we pro-
vide our own implementation for some library functions.
Wrappers for functions in the standard libraries can be
implemented once and then can be reused by any new
application without further modifications.

Figure 4 shows a wrapper forstrchr that decrypts
the string buffer on the fly. This wrapper takes three ar-
guments: a maskmask, a strings , and a characterc . The
wrapper iterates over the contents of strings , decrypting
each character with the given mask, and comparing the
decrypted value with the characterc .

char * strchr_DataRand(uint mask, uchar * s, uint c)
{

uchar cmask =
(uchar)((mask >>((((uint)s)%4) * 8)) & 0xff);

while (( * sˆcmask) && ( * sˆcmask) != (char)c)
{

s++;
cmask =

(uchar)((mask >>((((uint)s)%4) * 8)) & 0xff);
}

if (( * s ˆ cmask) == (char)c)
return (char * )s;

return NULL;
}

Figure 4: Example wrapper for strchr.

There are two interesting things to note about this
wrappper. First, we add context-sensitive subset con-
straints for calls to wrapped library functions. For ex-
ample, a call of the formx = strchr(s, c) is treated
as the assignmentx = s by the points-to analysis. This

improves the precision of our analysis. A context-
insensitive treatment of library functions would put all
string arguments tostrchr in the same class. Second,
the wrapper uses the address of the character being read
to select the mask byte used to decrypt it. All our wrap-
pers do this. This allows us to disregard access sizes
inside the libraries when computing the mask sizes for
equivalence classes (as described in Section 3.3). Addi-
tionally, we can use a mask size of 4-bytes for strings that
are exclusively manipulated through library functions.
Since many strings are exclusively manipulated through
library functions, this improves security by increasing
the number of bits attackers must guess to launch a suc-
cessful attack.

Providing wrappers for all library and system calls is
important to improve coverage but it is not strictly neces-
sary. When a program calls a library function for which
we have no source code and no wrapper, we do not in-
strument accesses to objects that are reachable from a
pointer that is passed to or received from this library
function. We determine these objects by running a reach-
ability analysis on the output of our points-to analysis
and we assign mask zero to the equivalence class that
contains these objects.

6 Evaluation

We ran experiments to evaluate the overhead of our im-
plementation of data randomization and its effectiveness
at preventing a range of real and synthetic attacks. This
section presents our results. Data randomization prevents
all the attacks in our tests and its CPU and memory over-
head are low for all the applications tested.

6.1 Performance overhead

In our first experiment, we measured the overhead added
by data randomization to seven programs from the SPEC
CPU 2000 benchmark suite [50] (gzip, vpr, mcf, crafty,
parser, bzip2 and twolf), and to nine programs from the
Olden [15] benchmark suite (bh, bisort, em3d, health,
mst, perimeter, power, treeadd, and tsp). We chose
these programs to facilitate comparison with other tech-
niques that have been evaluated using the same bench-
mark suites.

We compared the running time and peak physi-
cal memory usage of the programs compiled using
Phoenix [39] with and without data randomization. We
compiled the programs with options -O2 (maximize
speed), -fp:fast (fast floating point model), and -GS- (no
stack guards). When building binaries with data random-
ization, we linked with our runtime (see Section 5). We
ran the experiments on Windows Vista Enterprise, on an
idle Dell Optilex 745 Workstation with a 2.46GHz Intel
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Figure 5: Execution time overhead added by data ran-
domization for SPEC CPU (relative to the execution time
without instrumentation).
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Figure 6: Execution time overhead added by data random-
ization for Olden (relative to the execution time without
instrumentation).

Core 2 processor and 2GB of memory. For each experi-
ment, we present the median of 3 runs. The variance in
the results was negligible.

Figures 5 and 6 show the CPU overhead on SPEC and
Olden applications with data randomization. For SPEC,
the average overhead is 14% and the maximum is 26%.
For Olden, the average overhead is 8% and the maximum
is 20%. To put this overhead in perspective, WIT [9]
achieves a similar overhead: an average overhead of 10%
and a maximum of 23% in SPEC, and an average over-
head of 5% and a maximum of 17% in Olden. WIT
provides deterministic write and control flow integrity
but does not provide read integrity. The bounds check-
ing technique described in [26], which is the fastest we
know, has an average overhead of 15% and a maximum
overhead of 69% in the Olden benchmarks1. The com-
prehensive ASLR in [14] reports an overhead of 17% for
gzip whereas data randomization has a similar overhead
of 16%.

We also ran this experiment with the more secure ver-
sion of data randomization that assigns four byte masks
to every class (as discussed in Sections 3.3 and 4.3). The
average runtime overhead across all the benchmarks in-
creased from 11% to 18%. The runtime overhead did not
change for the 11 benchmarks that do not have many one
and two byte accesses but it increased for the other five.

Figures 7 and 8 show the memory overhead introduced

1These results are computed relative to the optimized baseline
in [26]. We believe this is more appropriate than reporting the 12%
overhead relative to the unoptimized baseline.
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Figure 7: Memory overhead of data randomization for
SPEC applications (relative to the memory used without
instrumentation).
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Figure 8: Memory overhead of data randomization for
Olden applications (relative to the memory used without
instrumentation).

by data randomization on SPEC and Olden applications.
The overhead is very low for all applications. For SPEC,
the average memory overhead is 1% and the maximum
is 3.5%. For Olden, the average overhead is 1% and the
maximum is 6.3%. This was expected because data ran-
domization does not introduce additional data structures
or padding. In contrast, WIT has an average space over-
head of 14% in SPEC and 12% in Olden.

We observed an interesting anomaly in this experi-
ment. In our initial measurements, mcf had a memory
overhead of 23%. We found that this was because of a
large memory allocation usingcalloc . Data random-
ization was touching all the memory to xor it with the
appropriate mask. Whereas the version without the in-
strumentation did not access all the memory. We ex-
pected the C runtime to zero the allocated memory but
it relies on the operating system to zero allocated pages
when they are first accessed. This is easy to fix by xoring
pages when they are first accessed.

We also measured the increase in the size of SPEC
and Olden binaries compiled with data randomization.
Figures 9 and 10 show the results. Instrumented SPEC
binaries are 16% larger on average, while Olden binaries
are 28% larger on average. This is a small increase in
code size and it is similar to the increase in code size
introduced by WIT.

We also measured the peak throughput of the null-
httpd web server compiled with data randomization. The
server ran on the same machine as the previous exper-
iments and we loaded it with static requests for a 1KB
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Figure 9: Code size increase of SPEC executables com-
piled with data randomization (relative to the size without
instrumentation).
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Figure 10: Code size increase of Olden executables com-
piled with data randomization (relative to the size with-
out instrumentation).
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Figure 11: Peak throughput of the nullhttpd web server
when serving a 1KB file from SPECweb.

file from the SPECweb [50] benchmark. We used a
small static file request to avoid masking our overhead
with the effects of disk access or process creation on the
server. The load was generated from simulated clients
on a HPxw4600 workstation with a 2.66GHz Intel Core2
Duo CPU and 4GB of memory, running Windows Vista
Enterprise, over a DLink 100Mbps Ethernet switch. The
results in Figure 11 show that peak throughput decreases
only by 6%.

6.2 Effectiveness against attacks

To evaluate the effectiveness of data randomization at
preventing attacks, we used a benchmark with synthetic
exploits [53] and several exploits of real vulnerabilitiesin
existing programs. This section describes the programs
and the vulnerabilities. Then it presents an analysis of
the security afforded by data randomization.

6.2.1 Synthetic exploits

We ran the benchmark described in [53] that has 18
control-data attacks that exploit buffer overflow vulnera-

bilities. The attacks are classified according to the tech-
nique they use to overwrite control-data, the location of
the buffer they overflow, and the control-data they tar-
get. There are two techniques to overwrite control-data.
The first overflows a buffer until the control-data is over-
written. The second overflows a buffer until a pointer is
overwritten, and uses an assignment through the pointer
to overwrite the control-data. The attacks can overflow
buffers located in the stack or in the data segment, and
they can target four types of control-data: the return ad-
dress on the stack, the old base pointer on the stack, and
function pointers and longjmp buffers in the stack or in
the data segment. Table 1 shows that data randomization
can prevent all the attacks in the benchmark.

Attack Target data structure

direct overwrite on stack

parameter function pointer
parameter longjmp buffer
return address
old base pointer
function pointer
longjmp buffer

direct overwrite on data segment
function pointer
longjmp buffer

overwrite through stack pointer

parameter function pointer
parameter longjmp buffer
return address
old base pointer
function pointer
longjmp buffer

overwrite through data segment pointer

return address
old base pointer
function pointer
longjmp buffer

Table 1: Synthetic attacks prevented by data randomiza-
tion.

6.2.2 Real vulnerabilities

In our final experiment, we tested data randomization’s
ability to prevent attacks with a set of real vulner-
abilities in real applications:SQL server , Ghttpd ,
Nullhttpd , andStunnel .

SQL server is a relational database from Microsoft
that was infected by the infamous Slammer [40] worm.
The vulnerability exploited by Slammer causessprintf

to overflow a stack buffer. Data randomization prevents
the attack because the wrapper forsprintf randomizes
the data that overwrites the current stack frame, including
the return address. This causes the server to exit when
freeing a local variable that was overwritten. Should the
return instruction be reached, the server would jump to
an invalid program location and crash.

Ghttpd is an HTTP server with several vulnerabil-
ities [1]. The vulnerability that we chose is a stack
buffer overflow when loggingGETrequests inside a call
to vsprintf . Data randomization prevents the attack
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because the wrapper forvsprintf randomizes the value
written by the attacker into the return address, causing
the server to crash when the return address is used.

Nullhttpd is another HTTP server. This server has
a heap overflow vulnerability that can be exploited by
sending HTTPPOST requests with a negative content
length field [2]. These requests cause the server to allo-
cate a heap buffer that is too small to hold the data in the
request. While callingrecv to read thePOSTdata into
the buffer, the server overwrites the heap management
data structures maintained by the C library. This vulner-
ability can be exploited to overwrite arbitrary words in
memory. We attackedNullHttpd using the technique
described in [18]. The attack works by corrupting the
CGI-BIN configuration string. This string identifies a
directory holding programs that may be executed while
processing HTTP requests. Therefore, by corrupting it,
the attacker can forceNullHttpd to run arbitrary pro-
grams. This is a non-control-data attack because the at-
tacker does not subvert the intended control-flow in the
server. Data randomization prevents the attack because
the wrapper forrecv randomizes the values written over
the heap management data structures. This causes the
server to crash when the values are used.

Stunnel is a generic tunnelling service that encrypts
TCP connections using SSL. We studied a format string
vulnerability in the code that establishes a tunnel for
SMTP [5]. An attacker can overflow a stack buffer by
sending a message that is passed as a format string to the
vsprintf function. Data randomization prevents the at-
tack because the wrapper forvsprintf randomizes the
value written by the attacker into the return address.

6.2.3 Security analysis

This section showed that data randomization can stop ex-
isting real exploits with low runtime overhead. We now
present a discussion of possible attacks against data ran-
domization. We assume that attackers know the code of
a vulnerable program, and that they can supply arbitrary
inputs to the program. We assume they know the equiva-
lence classes but do not know the masks used to random-
ize memory accesses. These masks are generated each
time the program starts and we assume that attackers do
not have access to the operating system process running
the program. These assumptions are a good fit for a net-
work service, for example.

Since data randomization does not remove memory er-
rors from the program, the attacker can craft inputs that
cause an instruction to write or read memory locations
unintended by the programmer. Unlike ASLR, data ran-
domization does not prevent attacks by making it hard for
attackers to access a chosen memory location. Instead, it
makes the result of accessing that location unpredictable.

This unpredictability depends on two factors.
First, if the the read and write accesses used by the at-

tacker to access the target location are in the same equiv-
alence class, the attack succeeds. Figures 12 and 13
show the number of distinct equivalence classes with un-
safe accesses for SPEC and Olden applications, respec-
tively. All SPEC applications have a reasonably high
number of distinct classes, except mcf. Olden applica-
tions have a small number of classes because they are
small benchmarks. We could increase the number of
classes by using more precise points-to analysis [37].
But our current analysis was sufficiently precise to thwart
all the attacks we tested, i.e., the read and write accesses
in an attack were in different classes.

It is important to note that objects that should never be
accessed by unsafe instructions (according to the anal-
ysis) are always in a separate class. Therefore they
are protected regardless of the precision of the points-to
analysis. This includes important attack targets like re-
turn addresses, exception handler pointers, and dynamic
linking data structures, as well as most local variables.

Second, the unpredictability of an access to a target
location depends on the size of the random masks used
to access the location. If the attack must write a cho-
sen value to the target location or read the value stored at
the chosen target location, the attack succeed with prob-
ability 2

−min(o,max(w,r)), whereo is the number of bits
in the target location,w is the bit size of the mask used
to xor the write access performed by the attacker, andr

is the bit size of the mask used by correct accesses to
the target location. Figures 14 and 15 show the distri-
butions of mask sizes used in SPEC and Olden applica-
tions, respectively. The results show that the majority
of accesses use 4-byte masks. Furthermore, using more
precise points-to analysis [37] would increase the aver-
age mask size. We could also guarantee that all accesses
use 4-byte masks with the version of the instrumentation
described in Section 4.3 but the overhead would increase.

Some attacks perform partial overwrites of pointers,
for example, they overwrite the least significant byte
of a pointer to defeat ASLR. Attacks that only need to
write eight bit values have a probability of success of
2
−8 regardless of the mask sizes. This probability is

still lower than the probability of success with deployed
ASLR techniques. It is interesting to note that data ran-
domization can provide this protection even for direct
overwrites of non-pointer data that is security critical.
ASLR [3, 13, 54] does not provide this protection.

Some attacks do not require complete control on the
value written to a target location. For instance, heap
spraying [46] attacks create many copies of shellcode [6]
in the heap of the target program and overwrite a code
pointer, e.g., a function pointer. If there are enough
copies of the shellcode, the attack will succeed for most
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Application Vulnerability Exploit
NullHttpd heap-based buffer overflow overwrite cgi-bin configuration data
SQL Server stack-based buffer overflow overwrite return address
STunnel format string overwrite return address
Ghttpd stack-based buffer overflow overwrite return address

Table 2: Real attacks detected by data randomization.
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Figure 12: Number of equivalence classes with unsafe
accesses in SPEC applications.
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Figure 13: Number of equivalence classes with unsafe
accesses in Olden applications.

values written to the pointer. Therefore, this attack can
bypass ASLR. But data randomization prevents the at-
tack because the shell code is xored with a random
mask unknown to the attacker. Data randomization pro-
vides the same protection as instruction set randomiza-
tion [34, 12] in this case but with low overhead and with-
out hardware support.

Information leakage attacks [27, 48] are also of par-
ticular concern for randomization approaches. It is im-
portant not to leak the masks used to randomize memory
accesses. It is hard to evaluate the probability of suc-
cessfully exploiting a vulnerability to leak information
about the randomization masks, but ASLR implementa-
tions have been subjected to this type of attack [27].

Data randomization may also be subjected to brute
force guessing attacks as described in [45]. In most
cases, we believe that the number of random bits the at-
tacker must guess is large enough to prevent these at-
tacks. Moreover, brute force attacks often cause visi-
ble anomalies, such as crashing the vulnerable applica-
tions; when these anomalies are observed, countermea-
sures such as automatic filtering [21] can be deployed to
thwart the brute force attack.
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Figure 14: Fraction of static memory accesses with
4-byte, 2-byte and 1-byte random masks, in SPEC ap-
plications.
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Figure 15: Fraction of static memory accesses with
4-byte, 2-byte and 1-byte random masks, in Olden ap-
plications.

7 Related work

Many techniques have been proposed to protect C and
C++ programs from memory error exploits. Several tools
find vulnerabilities by analyzing the source code of ap-
plications [51, 36, 17]. These tools have been very suc-
cessful at removing vulnerabilities from software before
it ships, but they are not sufficient because they are im-
precise: they can miss vulnerabilities and they raise false
alarms.

Memory safe dialects of C, such as CCured [41] and
Cyclone [31] can prevent all memory errors but they re-
quire significant changes to the source code of applica-
tions, and they require major changes to the C runtime,
e.g., they require a garbage collector.

Other techniques can be applied to C and C++ pro-
grams without modifications. Some techniques defend
from attacks that overwrite specific targets, such as return
addresses or other control data (e.g., [49, 11, 19, 25, 47]),
or that exploit specific vulnerabilities, such as format
string vulnerabilities (e.g., [23]). These techniques have
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low overhead but there are memory error exploits that
they cannot catch [53]. In particular, techniques inspired
by StackGuard [25] are widely used, but they provide
no protection from overflows of heap and static vari-
ables [43].

Other techniques provided higher coverage at the cost
of additional overhead. Several systems detect attacks
using dynamic taint analysis, e.g., [42, 22], which can
prevent many attacks that exploit memory errors and
other types of attacks. They work with binaries and
do not require source code. However, their overhead
is several orders of magnitude larger than data random-
ization’s. Xuet al [55] describe a dynamic taint analy-
sis technique that is implemented as a source-to-source
transformation on C programs. Their overheads are an
order of magnitude lower than previous techniques but
they are still above 100% when preventing memory error
exploits on CPU-intensive benchmarks.

There are several bounds checkers for C. For exam-
ple, the Jones and Kelly [32] bounds checker does not
require changes to the pointer format. It instruments
pointer arithmetic to ensure that the result and original
pointers point to the same object. To find the target ob-
ject of a pointer, it uses a splay tree that keeps track
of the base address and size of heap, stack, and global
objects. CRED [44] is similar but provides support for
some common uses of out-of-bounds pointers in exist-
ing C programs. These techniques have high overhead,
for example, CRED can slow down applications by up
to a factor of 12. Xuet al [56] describe a technique that
improves the coverage of the previous bounds checkers
and reduces their overhead. The technique of Dhurjati
et al [26] is similar to CRED but introduces several op-
timizations that reduce runtime overhead dramatically.
This technique has an average overhead of 15% and a
maximum overhead of 69% in the Olden benchmarks.

The concept of control-flow integrity was introduced
in [7, 35]. However, attackers can exploit memory errors
to execute arbitrary code without violating control-flow
integrity. There are examples of several attacks of this
type in [18]. CFI [7] and Program Shepherding [35] can-
not detect this type of attack. Data randomization pro-
vides probabilistic protection from these attacks and it
has lower overhead. Data-flow integrity (DFI) [16] pro-
tects programs by enforcing data-flow relations between
CPU instructions. For each instruction that reads a value,
it uses static analysis to compute the instructions that are
allowed to write the value. Then it instruments writes
and reads to ensure that the values read at runtime were
written by allowed instructions. Its coverage is similar
to data randomization’s but its average overhead on the
SPECint benchmarks is 104%. In a companion paper [9]
we proposeWrite Integrity Testing(WIT) a technique that
is based on the same static analysis as data randomiza-

tion. WIT has high coverage and low overhead, but it
can’t prevent some attacks detected by data randomiza-
tion because it doesn’t instrument reads. Furthermore,
WIT’s memory overhead is higher than data randomiza-
tion’s.

Several techniques are based on the idea of randomiz-
ing different aspects of computer programs [28]. Point-
Guard [24] randomizes pointer values in a manner simi-
lar to data randomization, but doesn’t protect non-pointer
data. In addition, PointGuard uses a single mask for
all pointers, so leaking any pointer value compromises
the entire system. Address space layout randomization
(ASLR) randomizes the locations of code and data in
memory to make it harder for attackers to target spe-
cific objects [3, 13, 54]. The best such technique that we
know [14] randomizes absolute and relative locations of
all memory-resident objects and combines ASLR with
other buffer overflow mitigation techniques. It has an
overhead similar to data randomization’s. Data random-
ization can prevent some attacks that can bypass ASLR,
such as direct overwrites of security-critical data and
heap spraying [46]. Data randomization can also be
combined with ASLR to make it more resistant to at-
tacks [27, 45, 52]. Other techniques do instruction set
randomization (ISR) [12, 34] but they have high over-
head without hardware support, and they cannot prevent
some attacks prevented by data randomization.

8 Conclusion

We presented data randomization, a new technique that
provides probabilistic protection from memory error ex-
ploits. Data randomization uses static analysis to par-
tition memory accesses into different classes according
to the objects that they may access. Data randomization
then assigns a distinct random mask to each class and, at
runtime, xors the data read/written from/to memory with
the corresponding mask. Therefore, memory accesses
that violate the results of the analysis, i.e., that access un-
intended objects, have unpredictable results. Our results
show that data randomization can block a broad range of
attacks, while introducing an average runtime overhead
of 11% and an average space overhead below 1%.
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