
Algorithms for Optimal Decisions

Tutorial 6

Answers

Exercise 1 Solve the following problem by using the active set method and

taking x(0) = (x
(0)
1 , x

(0)
2 , x

(0)
3 ) = (0, 0, 1) as a starting point

min
x

f(x) = x2
1 + 2x2

2 + 3x2
3

s.t. x1 + x2 + x3 − 1 ≥ 0 (1)

x1, x2, x3 ≥ 0.

Solution : First, we rewrite the problem, so we have constraints which are
less or equal to zero:

min
x

f(x) = x2
1 + 2x2

2 + 3x2
3

s.t. 1 − x1 − x2 − x3 ≤ 0 (2)

−x1,−x2,−x3 ≤ 0.

• The starting point x(0) is feasible, since gi(x
(0)) ≤ 0, i = 1, 2, 3, 4.

• Set k = 0, where k is the iteration counter. The set of active constraints
at the point x(0) is J0 = {1, 2, 3}.

• The direction of movement d0 = x − x(0) = x will be found by solving
the following equality constrained problem:

min
x

f(x) = x2
1 + 2x2

2 + 3x2
3

s.t. g1(x) = 1 − x1 − x2 − x3 = 0 (3)

g2(x) = −x1 = 0

g3(x) = −x2 = 0
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• It follows from (3) that d0 = 0.

• Since d0 = 0 we need to compute multipliers µ(1) = (µ
(1)
1 , µ

(1)
2 , µ

(1)
3 ) for

problem (3).

• The Lagrangian of (3) is:

L(x, µ(1)) = x2
1+2x2

2+3x2
3+µ

(1)
1 (1−x1−x2−x3)+µ

(1)
2 (−x1)+µ

(1)
3 (−x2).

(4)

• The optimality conditions for (3) are:

∂L

∂x1

= 2x1 − µ
(1)
1 − µ

(1)
2 = 0

∂L

∂x2

= 4x2 − µ
(1)
1 − µ

(1)
3 = 0

∂L

∂x3
= 6x3 − µ

(1)
1 = 0

∂L

∂µ
(1)
1

= 1 − x1 − x2 − x3 = 0

∂L

∂µ
(1)
2

= −x1 = 0

∂L

∂µ
(1)
3

= −x2 = 0

Solution to the above system is
(x1, x2, x3, µ

(1)
1 , µ

(1)
2 , µ

(1)
3 ) = (0, 0, 1, 6,−6,−6).

• Only one of the Lagrange multipliers are negative µ
(1)
2 .

• From step 3 of the algorithm (see your notes) we can drop the constraint
g2(x) = −x1 ≤ 0 from the active set J0. Thus the new active set is
J1 = {1, 3}.

• Now we need to solve the following equality constrained quadratic prob-
lem:

min
x

f(x) = x2
1 + 2x2

2 + 3x2
3

s.t. g1(x) = 1 − x1 − x2 − x3 = 0 (5)

g3(x) = −x2 = 0.
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• The Lagrangian of (5) is:

L(x, µ(2)) = x2
1 + 2x2

2 + 3x2
3 + µ

(2)
1 (1 − x1 − x2 − x3) + µ

(2)
2 (−x2). (6)

• The optimality conditions for (5) are:

∂L

∂x1

= 2x1 − µ
(2)
1 = 0

∂L

∂x2

= 4x2 − µ
(2)
1 − µ

(2)
2 = 0

∂L

∂x3
= 6x3 − µ

(2)
1 = 0 (7)

∂L

∂µ
(2)
1

= 1 − x1 − x2 − x3 = 0

∂L

∂µ
(2)
2

= −x2 = 0.

Solution to the above system is
(x1, x2, x3, µ

(2)
1 , µ

(2)
1 ) = (3

4
, 0, 1

4
, 3

2
,−3

2
).

• One of the Lagrange multipliers of problem (5) is negative, so constraint
g3(x) is dropped.

• The direction d1 is then the vector from point x(1) = (3
4
, 0, 1

4
) to the

solution of the following constrained quadratic problem:

min
x

f(x) = x2
1 + 2x2

2 + 3x2
3

s.t. 1 − x1 − x2 − x3 = 0. (8)
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• Optimality conditions of (8):

∂L

∂x1
= 2x1 − µ

(3)
1 = 0

∂L

∂x2
= 4x2 − µ

(3)
1 = 0

∂L

∂x3
= 6x3 − µ

(3)
1 = 0 (9)

∂L

∂µ
(2)
1

= 1 − x1 − x2 − x3 = 0.

• The point (x∗
1, x

∗
2, x

∗
3, µ

(1)
1 ) = ( 6

11
, 3

11
, 2

11
, 12

11
).

• New point is feasible, so we can take that point as a new point. That
means that τ = 1. Also the Lagrange multiplier is positive, so point
x∗ = ( 6

11
, 3

11
, 2

11
) is the solution to our problem.

Exercise 2 Solve the following problem using the interior point method:

min
x

f(x) = x1 + x2

s.t. g1(x) = −x2
1 + x2 ≥ 0 (10)

g2(x) = x1 ≥ 0.

Solution : We shall use the logarithmic barrier function to solve the prob-
lem (10). Thus problem (10) is approximated by a sequence of unconstrained
problems:

min
x

f(x) − ηk

2
∑

i=1

log(gi(x)), (11)

where the values of the parameter ηk decrease and approach zero. We are
going to solve a number of problems (11) for a decreasing sequence of values
of the barrier parameter ηk, such that

limk→∞ ηk = 0.

First, we find the optimality conditions of the unconstrained problem (11)
where the value of the barrier parameter is fixed:

∂
∂x1

(x1 + x2 − ηk(log(−x2
1 + x2) + log(x1))) = 0

∂
∂x2

(x1 + x2 − ηk(log(−x2
1 + x2) + log(x1))) = 0

⇒ (12)

⇒
1 − ηk

1
−x2

1
+x2

· (−2x1) − ηk

x1

= 0

1 − ηk(
1

−x2

1
+x2

) = 0
(13)
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Solving (13) we have:

− ηk

−x2
1 + x2

= −1, (14)

and

1 − (−2x1) −
ηk

x1
= 0 ⇒ 1 + 2x1 −

ηk

x1
= 0 ⇒

2x2
1 + x1 − ηk = 0. (15)

The solution of (15) is given by the formula:

x1 =
−1 ±√

1 + 8ηk

4
. (16)

Since x1 must be positive, only the root

x1 =
−1 +

√
1 + 8ηk

4
(17)

is of interest. Substituting (17) into (14) yields:

−ηk

−(−1+
√

1+8ηk

4
)2 + x2

= −1 ⇒ . . . ⇒

⇒ x2 =
(−1 +

√
1 + 8ηk)

2

16
+ ηk. (18)

Formulae (17) and (18) give the optimum of the unconstrained problem (10)
where the value of the barrier parameter ηk is fixed. For example, if ηk = 1
then the point

(x
(1)
1 , x

(1)
2 ) = (

−1 +
√

1 + 8

4
,
(−1 +

√
1 + 8)2

16
+ 1) = (0.5, 1.25) (19)

is the optimum solution of the following unconstrained problem:

min
x

f(x) − 1 ·
2

∑

i=1

log(gi(x)). (20)

Now, if ηk is fixed to a smaller value, say ηk = 1
2

then the point

(x
(2)
1 , x

(2)
2 ) = (

−1 +
√

1 + 81
2

4
,
(−1 +

√

1 + 81
2
)2

16
+ 1) = (0.309, 0.595) (21)

is the optimum solution of the following unconstrained problem:

min
x

f(x) − 1

2
·

2
∑

i=1

log(gi(x)). (22)

The following table shows the computed value of the points (x
(k)
1 , x

(k)
2 ) for

different values of ηk.
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k ηk x
(k)
1 x

(k)
2

1 η1 = 1 0.5 1.25
2 η2 = 1

2
0.309 0.595

3 η2 = 1
4

0.183 0.283
4 η2 = 1

10
0.085 0.107

↓ ↓ ↓
0 0 0

In the limit (i.e. limk→∞ ηk = 0) the minimizing points (x
(k)
1 , x

(k)
2 ) approach

the solution (x∗
1, x

∗
2) = (0, 0) of the original constrained problem (10).

In this problem there is only one unconstrained local minimum for each value
of ηk. The problem happens to have the unique solution. It turns out that in
problems with many local optima there is a sequence of local unconstrained
minima converging to each set of constrained local minima. This is illustrated
in the next example.
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