
Algorithms for Optimal Decisions

Tutorial 3

Answers

Exercise 1 Show that the steepest descent direction

−
∇f(xk)

‖∇f(xk)‖2
(1)

is the solution of the constrained problem:

min
d

∇f(xk)
td

s.t. ‖d‖2
2 = 1. (2)

Solution : We need to show that the solution of the constrained problem

min
d

F (d) = ∇f(xk)
td

s.t. G(d) = ‖d‖2
2 − 1 = 0 (3)

is equal to d∗ = − ∇f(xk)
‖∇f(xk)‖2

.

Observe, initially, that in problem (3) the objective function F (d) is a linear
function of dt = (d1, d2, ..., dn) since

F (d) = (
∂f(xk)

∂x1
,
∂f(xk)

∂x2
, . . . ,

∂f(xk)

∂xn

)













d1

d2
...

dn













=

=
∂f(xk)

∂x1
d1 +

∂f(xk)

∂x2
d2 + . . . +

∂f(xk)

∂xn

dn =

=
n

∑

i=1

∂f(xk)

∂xi

di.
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Also, the constraint of the problem (3) is quadratic:

G(d) = ‖d‖2
2 − 1 = dtd − 1 = (d1, d2, . . . , dn)













d1

d2
...

dn













− 1 =

= d2
1 + d2

2 + . . . d2
n − 1 =

n
∑

i=1

d2
i − 1.

The Lagrangian of problem (3) is given by:

L(d, λ) = F (d) + λG(d) =

= ∇f(xk)
td + λ(‖d‖2

2 − 1). (4)

The KKT conditions for optimality of problem (3) are:

∇dL(d, λ) = ∇f(xk) + 2λd = 0 (5)

∇λL(d, λ) = ‖d‖2
2 − 1 = dtd − 1 = 0. (6)

Assuming that λ 6= 01 and solving (5) for d we have:

d = −
1

2λ
∇f(xk). (7)

Substituting (7) into (6) we have:

(−
1

2λ
∇f(xk))

t(−
1

2λ
∇f(xk)) − 1 = 0

⇔
1

4λ2
∇f(xk)

t∇f(xk) − 1 = 0 ⇔
1

4λ2
‖∇f(xk)‖

2
2 = 1. (8)

Solving (8) for λ we obtain:

λ =
1

2
‖∇f(xk)‖2. (9)

Substituting λ (from (9)) into (7) we have:

d = −
1

21
2
‖∇f(xk)‖2

∇f(xk) = −
∇f(xk)

‖∇f(xk)‖2
. (10)

Hence, the pair

1otherwise ∇f(xk) = 0
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(d∗, λ∗) = (− ∇f(xk)
‖∇f(xk)‖2

, 1
2
‖∇f(xk)‖2)

is the optimum solution of the problem (3), or in other words the descent
direction d∗ is the optimum solution of (3).

Exercise 2 Consider the following unconstrained problem:

max
x

f(x) = 2x1x2 + 2x2 − x2
1 − 2x2

2. (11)

Find its solution using the steepest ascent method starting from the point

x(0) = (x
(0)
1 , x

(0)
2 ) = (0, 0).

Solution : The steepest ascent method is the same as the steepest descent
method, but it uses the opposite direction. That is, the steepest ascent
method moves from point xk to the point xk+1 = xk + τ∇f(xk), while the
steepest descent method moves from point xk to the point xk+1 = xk −
τ∇f(xk), where in both cases τ denotes the size of the step we take along
the steepest ascent direction, dsa = ∇f(xk), and steepest descent direction
dsd = −∇f(xk) respectively. Steepest ascent method is used when we want
to find the maximum of a function.

First find the gradient of f(x):

∇f(x) =





∂f(x)
∂x1

∂f(x)
∂x2



 =

[

2x2 − 2x1

2x1 + 2 − 4x2

]

. (12)
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START OF ITERATION 1

At the initial point

x(0) = (0, 0)t we have ∇f(x(0)) = (0, 2)t.

To begin with first iteration we need to find the next point (which can be
described as a better approximation than the initial point x(0) of the optimum
point x∗).

We have

x(1) = x(0) + τ∇f(x(0)) ⇒
[

x
(1)
1

x
(1)
2

]

=

[

0
0

]

+ τ

[

0
2

]

⇒

[

x
(1)
1

x
(1)
2

]

=

[

0
2τ

]

. (13)

Substituting (x
(1)
1 , x

(1)
2 ) = (0, 2τ) into f(x) we obtain:

f(x) = f(x1, x2) = f(0, 2τ) = 4τ − 8τ 2. (14)

Next we need to find the value of the step size which maximizes (14). It is a
univariable function so we can easily find its maximum:

∂

∂τ
f(x

(1)
1 , x

(1)
2 ) =

∂

∂τ
(4τ − 8τ 2) = 0 ⇒

⇒ 4 − 8 · 2 · τ = 0 ⇒ τ =
1

4
.

Hence the next point x(1) is:

x(1) = x(0) +
1

4
∇f(x(0)) = (0,

1

2
)t. (15)

END OF ITERATION 1

Since ‖∇f(x(1))‖2 6= 0 we carry on.
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START OF ITERATION 2

At the new point

x(1) = (0, 1
2
)t we have ∇f(x(1)) = (1, 0)t.

To begin with the next iteration we need to find the next point x(2). We have

x(2) = x(1) + τ∇f(x(1)) ⇒
[

x
(2)
1

x
(2)
2

]

=

[

0
1
2

]

+ τ

[

1
0

]

⇒

[

x
(2)
1

x
(2)
2

]

=

[

τ
1
2

]

. (16)

Substituting (x
(2)
1 , x

(2)
2 ) = (τ, 1

2
)t into f(x) we obtain:

f(x(2)) = f(x
(2)
1 , x

(2)
2 ) = f(τ,

1

2
) = τ − τ 2 +

1

2
. (17)

Next we need to find the value of the step size which maximizes (17). It is a
univariable function so we can easily find its maximum:

∂

∂τ
f(x

(2)
1 , x

(2)
2 ) =

∂

∂τ
(τ − τ 2 +

1

2
) = 0 ⇒

⇒ 1 − 2 · τ = 0 ⇒ τ =
1

2
.

Hence the next point x(2) is:

x(2) = x(1) +
1

2
∇f(x(1)) = (

1

2
,
1

2
)t. (18)

END OF ITERATION 2

Since ‖∇f(x(2))‖2 6= 0 we carry on.
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START OF ITERATION 3

At the new point

x(2) = (1
2
, 1

2
)t we have ∇f(x(2)) = (0, 1)t.

To begin with the next iteration we need to find the next point x(3). We have

x(3) = x(2) + τ∇f(x(2)) ⇒
[

x
(3)
1

x
(3)
2

]

=

[

1
2
1
2

]

+ τ

[

0
1

]

⇒

[

x
(3)
1

x
(3)
2

]

=

[

1
2

1
2

+ τ

]

. (19)

Substituting (x
(3)
1 , x

(3)
2 ) = (1

2
, 1

2
+ τ)t into f(x) we obtain:

f(x(3)) = f(x
(3)
1 , x

(3)
2 ) = f(

1

2
,
1

2
+ τ) = τ − 2 · τ 2 +

3

4
. (20)

Next we need to find the value of the step size which maximizes (20). It is a
univariable function so we can easily find its maximum:

∂

∂τ
f(x

(3)
1 , x

(3)
2 ) =

∂

∂τ
(τ − 2 · τ 2 +

3

4
) = 0 ⇒

⇒ 1 − 4 · τ = 0 ⇒ τ =
1

4
.

Hence the next point x(3) is:

x(3) = x(2) +
1

4
∇f(x(1)) = (

1

2
,
3

4
)t. (21)

END OF ITERATION 3

Since ‖∇f(x(3))‖2 6= 0 we carry on.

You can try and do the rest of iterations by yourselves, but there are many.
You can also write a computer program to perform those iterations.

A big disadvantage of the steepest descent method is that although it makes
satisfactory progress during the initial iterations it may become very slow as
it approaches the optimum.

However, it always guarantees to find a point where the value of the objec-
tive function is greater than the value of objective function at the previous
point.
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