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Abstract
Simultaneous visualization of multiple continuous data attributes in a single visualization is a task that is important
for many application areas. Unsurprisingly, many methods have been proposed to solve this task. However, the
behavior of such methods during the exploration stage, when the user tries to understand the data with panning
and zooming, has not been given much attention.
In this paper, we propose a method that uses procedural texture synthesis to create zoom-independent visual-
izations of three scalar data attributes. The method is based on random-phase Gabor noise, whose frequency is
adapted for the visualization of the first data attribute. We ensure that the resulting texture frequency lies in the
range that is perceived well by the human visual system at any zoom level. To enhance the perception of this at-
tribute, we also apply a specially constructed transfer function that is based on statistical properties of the noise.
Additionally, the transfer function is constructed in a way that it does not introduce any aliasing to the texture. We
map the second attribute to the texture orientation. The third attribute is color coded and combined with the texture
by modifying the value component of the HSV color model. The necessary contrast needed for texture and color
perception was determined in a user study. In addition, we conducted a second user study that shows significant
advantages of our method over current methods with similar goals. We believe that our method is an important
step towards creating methods that not only succeed in visualizing multiple data attributes, but also adapt to the
behavior of the user during the data exploration stage.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms

1. Introduction

The visualization of multiple continuous variables is often
necessary for analyzing data in many disciplines [BH07].
While this can be done by showing several juxtaposed visual
representations of univariate data (small multiples), studies
show that simultaneous visualizations are advantageous over
adjacent representations in solving complex tasks [VCL11].
Furthermore, in adjacent visualizations, it is difficult to no-
tice slight differences in similar datasets, which may be im-
portant for data analysis [Tay02].

Showing multiple data attributes in a single visualization
presents several challenges. First, the number of communi-
cation channels that a user can perceive in a visualization
is very limited. To a certain extent all of them have been
employed in various multivariate visualization methods, for
example, color [Mil07], or the combination of texture and

color [HvWM06, UIM∗03]. Second, when users try to un-
derstand the data at hand by using a specific visualization
method, they usually need to interact with the representa-
tion. For example, a user may zoom out to gain the overview
over the data or zoom in to see more details. However, little
attention is given to the behavior of multivariate visualiza-
tion methods during this data exploration stage.

Methods that employ texture for the visualization of data
attributes are especially sensitive during interaction. On the
one hand, if the texture is created so that all the small de-
tails would be represented in the visualization, it may be-
come aliased and too fine for the depicted values to be per-
ceived when the user zooms out to gain a global overview
of the data. On the other hand, if the texture is created for
global overview, zooming in will reveal a lack of detail that
may hide important features of the data. Therefore, creating
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a texture that adapts to the current zoom level would be ad-
vantageous.

In this paper, we propose a method that uses texture syn-
thesis based on procedural noise to create zoom-independent
visualizations. The procedural nature of our texture synthe-
sis model allows us to adapt the texture to any zoom level. As
a consequence, the resulting textures are alias-free and data
values can be interpreted at any scale. The base for our tex-
ture synthesis model is random-phase Gabor noise [LLD11],
which has predictable statistical properties and allows a high
degree of control. To encode the data values, we map them
to two texture properties. First, we map data values to the
texture frequency. Second, we use a transfer function for the
noise values to correlate the texture density with the data val-
ues. Our method is also able to produce anisotropic textures,
which can be used to visualize one more scalar value with
the orientation of the texture. To produce the final image, the
generated texture is composed with underlying color infor-
mation by modifying the value component within the HSV
color model as described in Section 3. The limitations of our
method are discussed in Section 5. In Section 7, we have
conducted a preliminary user-study to find suitable contrast
levels for our method and we show strong evidence that our
method is effective by providing the results of a second com-
parative user study, which shows that our method surpasses
commonly used multivariate visualization methods.

2. Related work

We subdivide the work that is related to our method in
three distinct categories. The first category contains meth-
ods, which do not use noise, but aim for visualizations of
continuous multivariate data. The second category consists
of algorithms using noise-based methods for visualization.
In the third category, we discuss a separate area of research
– stylized rendering and animation. The goals of stylized an-
imation almost coincide with our goal of zoom-independent
texture synthesis.

2.1. Visualization of continuous multivariate data

Tang et al. propose to use natural textures for the visualiza-
tion of weather data [TQWZ06]. While this method is com-
parable to our method, the authors do not discuss the be-
havior of their method during user interaction. Given that
the texture is generated once per dataset and not adapted
to the zoom level, this method may lead to strong aliasing
artifacts during data exploration. A similar problem can be
found using the color weaving method proposed by Urness
et al. [UIM∗03]. They visualize several scalar fields in a
texture obtained with line integral convolution (LIC). To dis-
play several variables, the authors propose to select highly
saturated and perceptually iso-luminant colors first. Subse-
quently, they build a 2D colormap for each variable and use
the saturation component to show the actual value of the

variable. The value component is used to maintain the origi-
nal contrast features of the LIC texture. The authors also pro-
pose to use multiple frequencies for LIC texture generation
to highlight the regions of interest. To alleviate the problem
of under-representing, the authors propose to super-sample
the data before applying their algorithm. This may again lead
to aliasing artifacts if the super-sampled dataset resolution
exceeds the display resolution at an overview level.

The attribute blocks method by Miller subdivides the
screen into a regular grid of blocks [Mil07]. Each block cor-
responds to an array of visual representations (lenses). In
each lens, a single attribute is displayed with color maps sim-
ilar to [UIM∗03] (saturation of a distinct color). The author
proposes two possibilities for the behavior of attribute blocks
when the user scales the map. The first possibility is to link
the attribute blocks to the object space, i. e. , the attribute
blocks are scaled along with the map. This may lead to unde-
sired results on large and small scales, especially if the size
of a single attribute lens becomes smaller than a pixel. The
second possibility is to link the attribute block size to screen
space. This leads to an effect resembling a ‘screen door of
lenses’, as the map moves and the grid of attribute blocks
stays static. In contrast, our method adds or removes the de-
tails smoothly in-place, which results in a more consistent
visualization during the scaling process.

Healey et al. employ perceptually-based brush strokes
for non-photorealistic visualizations [HTER04]. The authors
discuss the behavior of their method during scaling. In con-
trast to our work, they discuss the display of additional data
rather than the adaptation of the approach for particular
zoom level.

Kosara et al. refer to blur based methods as semantic
depth of field (SDOF) [KMH01]. Their main idea is to blur
information which is not relevant for the current cognitive
task. However, the authors showed in later work [KMH∗02]
that SDOF cannot be used as a full visualization dimension
because users are not able to distinguish between different
levels of blur.

2.2. Noise-based methods

Noise-like textures were used for information display in the
work by van Wijk based on ‘spot noise’ [vW91], which has
been extended for multivariate data visualization by Botchen
et al. [BWE05]. However, these methods require a com-
plex definition of a constructing element (i. e. , spot shape),
which should be adapted for every task at hand. In the work
by Holten et al. [HvWM06], the authors propose a method
to generate textures with desired properties for filling several
disjoint areas (e. g. , member states of the USA). The draw-
back of direct spectral methods of texture synthesis is that
they lack local spatial control and this almost prohibits their
use for the visualization of continuous data. While these
methods are very powerful, they are not zoom-independent
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and their performance may be compromised during the data
exploration stage.

In recent work, Coninx et al. propose to use animated Per-
lin noise in conjunction with classic color maps to convey the
information about uncertainty of one scalar field displayed
on 3D surfaces [CBDT11]. The authors use the intensity
of Perlin noise multiplied by the amount of uncertainty as
lookup offset in a colormap. As a result, the data appears
noisy in areas where data is uncertain. Thorough analysis of
low-level perception of noise contrast allows to adjust the
noise to ensure that the uncertain areas are visible in the re-
sulting visualization. While our method shares the idea of
using noise for visualization purposes, our method aims at
visualizing arbitrary data and is not limited to uncertainty of
scalar fields.

2.3. Stylized rendering

Preserving texture appearance and scale is a common task
in stylized rendering and animation. In this context, it is
referred to as flatness requirement [BBT11]. Two other re-
quirements need to be met to assure high quality animation
with stylized rendering. Motion coherence refers to the cor-
relation between the motion of a 3D scene and the motion
of stylization primitives in screen space, and temporal con-
tinuity, corresponds to the absence of popping and flickering
artifacts. These three goals are inherently contradictory and
therefore a tradeoff between them must be made. However,
the motion coherence requirement is not relevant for our ap-
plication. Therefore, we only need to preserve flatness and
temporal continuity. We use one of the methods that satisfies
these two requirements well, namely random-phase Gabor
noise as proposed by Lagae et al. [LLD11], as a basis for
our visualization method.

3. Method

We adapt the texture created with random-phase Gabor noise
for the purpose of visualizing continuous multivariate data.
To employ texture for visualization, one needs to understand
how users perceive texture characteristics. The main tex-
ture characteristics perceived by the human visual system
are spatial frequency and orientation. The human visual sys-
tem is fine-tuned for the perception of a specific range of
spatial frequencies, which under normal viewing conditions,
corresponds to a range of 4 to 40 pixels [WK95]. We en-
sure that texture frequency lies within this range at arbitrary
zoom levels. Furthermore, the flexibility of random-phase
Gabor noise allows us to avoid flickering and popping arti-
facts during zooming.

Using random-phase Gabor noise we can convey three
distinct scalar data attributes. To visualize the first attribute,
we use local texture frequency (Section 3.2). The second at-
tribute is shown with local texture orientation (Section 3.3).
To strengthen the perception of the data attribute shown with

texture frequency, we map the noise values to texture inten-
sity using a noise transfer function (Section 3.4). We then
use the resulting texture to modulate the ‘value’ component
of the color-coded third attribute using the HSV color model
(Section 3.5).

3.1. Random-phase Gabor noise

Before we show how the data attributes are displayed with
the texture, we give a short overview of the random-phase
Gabor noise that serves as a basis for its construction. For a
more detailed description, please refer to the original work
by Lagae et al. [LLDD09, LLD11, LD11].

Random-phase Gabor noise is based on the convolution of
random positions using the phase-augmented Gabor kernel:

g(x;a,ω,φ) = e−πa2|x|2 cos(2πx ·ω+φ) , (1)

where a is the bandwidth, ω and φ are the frequency and
phase of the harmonic. The value of random-phase Gabor
noise with bandwidth a and frequency ω at an arbitrary po-
sition x is then computed as:

N (x) = ∑
i

g(x−xi;a,ω,φi), (2)

where xi are positions distributed according to an n-
dimensional Poisson impulse process with impulse density
λ. n is the dimensionality of the desired noise. φi is the ran-
dom phase associated with an impulse at position xi. Phases
φi are distributed according to uniform distribution in the in-
terval [0,2π)

Obviously, the Gabor kernels (Eq. 1) have infinite sup-
port, so computation of the exact value at a single position
would require significant time. To overcome this issue, Ga-
bor kernels are first truncated at some threshold level t. Then,
a virtual uniform grid with cell size equal to the radius of the
truncated kernel G is introduced. Consequently, to compute
a noise value at a certain position, it is only necessary to ac-
count for impulses in the cell this position belongs to, and its
immediate neighbors.

We obtain the spatially varying random-phase Gabor
noise according to Lagae et al. [LLD11]. This technique
allows us to adapt the frequency of the noise according to
the continuously changing value that has to be displayed.

3.2. Frequency control

Without loss of generality, let us assume that the value v
that has to be conveyed in the visualization lies in the in-
terval v ∈ [0,1]. To avoid sliding artifacts during panning
and zooming, we compute the noise values using the coor-
dinates in the original data space. However, to ensure that
the screen space frequency of the resulting texture lies in the
range perceived well by the human visual system, we adjust
the noise parameters according to the current zoom level. To
achieve that, we choose the grid size G in data space so that
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its screen space size lies within this range and the exact size
corresponds to the value being visualized:

G = Z−1 · s ·2(1−v)·log2(
S/s), (3)

where s and S are the desired minimum and maximum
screen-space sizes of the noise, and Z is the current zoom
level defined by the size in pixels of one data grid cell on the
screen. The exponential dependence on the visualized value
is due to the fact that repeatedly doubling the texture fre-
quency results in equal perceptual steps, while adding a con-
stant value does not [HvWM06]. The bandwidth a is then
computed as:

a =

√
− ln(t)/π

G
, (4)

and the radial frequency f is computed as [War04, p. 164]:

f = 1/G. (5)

3.3. Orientation control

The isotropic random-phase Gabor noise is obtained if the
parameters {ωi} associated with impulse positions xi are
computed in spherical coordinates with the radial compo-
nent set to the desired frequency f (Eq. 5) and the angular
frequency (or frequencies in case of 3D noise) is random-
ized [LD11]. If the randomization is not performed, the noise
will be anisotropic. By choosing the angular component of
{ωi} according to one of the displayed data attributes, we
are able to link the local orientation of the resulting texture
to the value of that attribute.

3.4. Noise transfer function

To strengthen the perception of the attribute visualized with
texture frequency, we redundantly encode this attribute with
average texture intensity. The texture intensity at a position
x in space is computed according to the noise value N (x)
at this point and a noise transfer function. The noise trans-
fer function is similar to the regular transfer functions used
in direct volume rendering but it maps the data values to a
single scalar instead of a RGBA quadruplet.

To correlate the noise with the actual values, we impose
the following constraint on the noise transfer function αn(t):

∀v :
∫ ∞
−∞

p(t) ·αn(t)dt = v, (6)

where p(t) is the probability density function (PDF) of the
intensity distribution of the noise. Note that imposing such a
constraint for random-phase Gabor noise is possible because
its PDF is predictable. Please refer to Appendix A for the
exact formulation of the random-phase Gabor noise PDF and
the proof of its independence from the size of the virtual grid
G.

To construct a transfer function that satisfies condition

Figure 1: Comparison of effect of noise transfer functions.
The value that is visualized changes from zero to one. Top:
underlying noise without modifications. Middle: after appli-
cation of step decay function. Bottom: After application of
spline decay function. To see the details, please zoom in or
refer to Appendix C.

in Eq. 6, we define a family of compactly supported decay
functionsD : R→R. In order to compute the intensity value
at position x, we first choose the concrete decay function
D ∈ D that satisfies the condition in Eq. 6 for a particular
value v of the scalar field at position x. We then evaluate the
procedural noise at position x to get the noise value N (x).
The texture intensity at position x is finally set to D(N (x)).

Additionally, we avoid aliasing that may occur when us-
ing a transfer function (see the middle row of Fig. 1 for an
example of aliasing occurring when applying a simple step
transfer function). In order to achieve this, we avoid high fre-
quencies in the resulting function. Therefore, it is not enough
to know the power spectrum of the noise, but also how the
transfer function modifies it. According to Bergner et al.
[BMWM06], the power spectrum is modified by the trans-
fer function in the following way:

f = fn ·max
t

∣∣D′(t)∣∣ , (7)

where f is the maximum frequency of the resulting func-
tion, fn is the maximum frequency of the underlying noise
function and D′(t) is the derivative of the transfer function.
To avoid introducing high frequencies to the resulting func-
tion, we use a family of C2-continuous cubic spline decay
functions of the following form:

DC
γ,q(t) =

{
2q
γ3 · |t|3− 3q

γ2 · |t|2 +q if |t| ≤ γ

0 otherwise
(8)

where DC
γ,q has the maximum value q and is nonzero for

t ∈ [−γ;γ]. It is straightforward to show that maxt
∣∣D′(t)∣∣ =

3q/2γ. If we know the screen-space frequency of the noise,
we can choose this parameter in a way that it does not
introduce aliasing. In our implementation, we ensure that
maxt

∣∣D′(t)∣∣ ≤ 1. It should be noted that we cannot main-
tain the value of 1 for DC(0), so we reduce the intensity of
this peak in order to guarantee that the requirement in Eq. 6
is met and the frequency requirement is not violated. See
Figure 2 for several example functions from the familyDC

γ,q.
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Figure 2: Several representative cubic spline decay func-
tions with varying parameters. The parameters γ and q are
computed so that the condition in equation 6 is satisfied for
a value v and that maxt

∣∣D′γ,q(t)∣∣< 1,∀Dγ,q ∈ DC.

There is no closed form solution for the parameter γ. There-
fore, we precompute a lookup table by evaluating the inte-
gral in Eq. 6, invert it to get a lookup table for γ(v), and use
linear interpolation to obtain intermediate values.

3.5. Color blending

Blending the obtained noise texture with color deserves spe-
cial attention. According to Holten et al. [HvWM06], ad-
ditive, multiplicative or alpha blending do not work well.
They use a combination of additive and multiplicative blend-
ing depending on the value encoded in the texture. However,
we observed that this method does not work well with tex-
tures obtained with our method as too little of the original
color stays visible. Therefore, in order to combine our tex-
ture with color, we convert the RGB color value to the HSV
color space and modify the value component (v-component)
according to the computed texture intensity at this point in
space. This allows us on the one hand to maintain the hue
and saturation of the original color and on the other hand
have enough contrast for the texture to be perceptible. Fur-
thermore, we can keep a significant amount of the original v-
component. There are two reasons for doing so. First, keep-
ing a part of the original v-component helps us to maintain
the resolution of the underlying color image, as zero values
of the noise transfer function do not result in a black color.
Second, we do not need the full value component range to
make the texture perceptible. Overall, the value component
of the color is computed as:

Ĉv = β ·Cv +(1−β) ·αn, (9)

where β is a constant, whose value controls the amount of
the original v-component in the resulting image, Cv is the
original and Ĉv is the modified v-component. In our imple-
mentation, we set β = 0.6 (see Section 7).

4. Applications

A common task in many application fields is to correlate
multiple dimensions of a dataset with each other in order
to draw conclusions from it. We have applied the proposed
method to two 2D application scenarios. In both examples,

we encode additional information on top of an existing base
visualization. Additionally, we show that our method scales
to three dimensions by providing a 3D use case.

4.1. Encoding additional information in video data

The first example is concerned with the evaluation of data
acquired during perceptual experiments performed with an
eye-tracker, as described in detail in [VMFS11]. In a user
study, the authors evaluated in which way and how much
the visual bottom-up saliency [Itt05] of a scene can be al-
tered to steer the attention of a subject to a certain piece of
information without noticeable changes for the subject. In
order to evaluate the success of their method, the authors
needed to compare three videos in a side-by-side fashion,
as shown in Fig. 3 (top row). The first video is the original
source video. The second video visualizes the user’s gaze
while watching the first video during the experiment. The
time a subject was looking at a certain spot in the shown
scene is color-coded. The third video shows the calculated
visual saliency for the original source video. In this evalu-
ation scenario the visual variable color is already used by
the gaze heatmap and therefore cannot be used for visual-
izing the modulated saliency on top of the same video. We
applied our method to to integrate the visual saliency as well
as the user’s gaze concurrently on top of the video. We set
the v-component of the user’s gaze color map to 1 so that
the texture does not affect the values read from it. The rest
of the frame is only context information and therefore v-
component changes are not required. Figure 3 (middle and
bottom rows) shows the combined result for a single sample
video frame. By inspecting the combined image, the expert
who evaluates the experiment can identify that users tend to
look more on saliency-modulated spots – which supports the
hypothesis made in [VMFS11].

4.2. Encoding additional information on top of
geospatial data

A second example is the visualization of weather data stem-
ming from various sources. We have selected freely available
global data from NOAA (http://www.noaa.gov/) at a resolu-
tion of approximately 11 km/pixel (4096 x 2048 pixels). We
have chosen to combine color-coded sea temperature with
the amount of precipitation over the sea and the precipita-
tion’s optical flow, which encodes the direction of movement
of precipitation areas. Precipitation is encoded with texture
frequency and texture intensity. The optical flow of the pre-
cipitation density is encoded as texture orientation. As we
obtained data for several days, we are able to display an ani-
mated sequence of the changes in time for these values. Fig-
ure 4 illustrates different zoom levels and possible findings
from a map encoding precipitation and sea temperature from
the 14th of September 2011.
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saliency modulated video heatmap from eye-tracker visual saliency

Figure 3: This figure shows our approach during the anal-
ysis of an eye-tracker experiment with visual saliency mod-
ulated videos [VMFS11]. The visual saliency is visualized
as texture frequency and texture intensity. Highly salient re-
gions are encoded with high texture frequency and intensity.
Concurrently, we show the time the user looked at a specific
region with a color-coded heatmap. To see the details, please
zoom in or refer to Appendix C.

4.3. Three-dimensional use case

As our procedural texture method is not limited to 2D we
also applied it to convey additional values in 3D volume
rendering. This use case demonstrates that the simplicity of
our method allows it to be directly scaled to 3D. In this ex-
ample, we display positional uncertainty of isosurfaces. We
encode the probability of a ray crossing the uncertain iso-
surface [PH11] with the 3D texture density (higher proba-
bility – denser texture). Furthermore, we estimate the spatial
deviation of the surface using the stochastic distance func-
tion [PRW11] and map it to the texture frequency (higher
deviation – lower frequency). Please refer to Appendix B for
the mathematical formulation of these quantities.

The resulting visualization, obtained with direct volume
rendering, is shown in Fig. 5 and in the accompanying
video. The level-crossing probabilities can be perceived in
the view-perpendicular directions (i. e. , along the silhou-
ette of the isosurface), while the spatial deviation can be

Figure 4: The shown world map color codes the average
sea temperature from 14th of September 2011. On top, the
procedural noise encodes the amount of precipitation (noise
frequency and texture intensity) with the optical flow of the
precipitation between 14th and 15th of September 2011 (tex-
ture orientation). Encoding the optical-flow value between
two points in time as second visualization channel, allows
the user to estimate the evolution of the precipitation value
as well. Note the increasing amount of details with increas-
ing zoom level. To see the details, please zoom in or refer to
Appendix C.

perceived in the view-parallel directions. While the method
by Pfaffelmoser et al. [PRW11] also allows the visualiza-
tion of spatial variability of an uncertain isosurface in view-
perpendicular directions, we believe that our method will
perform better if the user needs to understand the spatial
relationship between two or more uncertain isosurfaces be-
cause it is possible to choose a distinct color for each of the
corresponding 3D textures. Nevertheless, a thorough exam-
ination of 3D noise-based texture perception and a compar-
ison to the existing methods [DKLP02, PRW11, PWH11] is
required to judge the effectiveness of our method in 3D ap-
plications. We are excited to explore these topics in future
work.

5. Limitations

While our method provides a way to display both, an
overview and details at different zoom levels, it is prone
to some data hiding similar to other methods that employ
texture-based visualization. This problem is not given much
attention in the related work. Urness et al. propose to up-
sample the data in order to not hide any information in the
original data [UIM∗03]. Shenas and Interrante propose to
choose a texture, such that its frequency exceeds the data fre-
quency [SI05]. Taylor also points out the same problem and
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Figure 5: Several views of a 3D isocontour uncertainty visu-
alization of the Fuel dataset using our visualization method.
Texture density shows the level-crossing probability and tex-
ture frequency shows the estimate of spatial deviation of un-
certain isosurface, with higher frequencies corresponding to
lower deviations. To see the details, please zoom in or refer
to Appendix C.

relies on user interaction with the visualization to see the
details [Tay02]. Our method is also limited in this respect,
i. e. , our method cannot show the data variations whose fre-
quency exceeds that of the texture. However, as the texture
is distinguishable at any scale, we can at least show the gen-
eral trends within the dataset and rely on the user to zoom in
the areas of high interest. For our method, mapping the most
important and/or most varying data attribute to the underly-
ing color simplifies the task of finding regions of interest,
because the perceivable resolution is higher for the color-
mapped attribute than for the others.

6. Implementation and performance

We implemented our method for execution on GPUs using
NVIDIA CUDA [NVI11]. As the evaluation of procedural
noise for every position is independent from others, the par-
allelization of the evaluation procedure is straightforward.
The visualized datasets are stored as textures on the GPU,
which enables hardware accelerated bilinear interpolation
and texture caching.

The implementation is based on the Visualization Toolkit
(VTK) [SML06]. We use VTK as the framework for basic
interaction, data loading and rendering of color-coded data.
For every frame, we compute a viewport-size overlay with
our procedurally generated texture. The texture itself is gen-
erated using CUDA. We compute a transformation matrix
from screen space to data-texture space and pass this ma-
trix to the texture-synthesis procedure so it is able to sample
the values of the data textures. The acquired values, along
with the screen-space requirements for noise, are then used
to control the noise parameters.

The performance of our method depends mostly on
the performance of the procedural noise evaluation. As
all the noise parameters are computed on-the-fly, no ad-
ditional heap or global memory in CUDA is required.
On our test system (Intel Core i7-870, 8GB RAM,
NVIDIA GeForce GTX 480), the synthesis of a 2D texture

with a resolution of 1680x988 pixels takes on average 19ms
in case anisotropic noise is used, and 24ms if isotropic noise
is used. In total, the frame rate of the whole system does not
fall below 30 frames per second.

7. Optimal color blending

In order to evaluate the influence of the parameter β (Eq. 9)
on the ability to read data values, we conducted an experi-
ment with 79 participants. In a pilot study we identified a β

range of 0.5 to 0.9 to be suitable. For the main experiment
we tested the β values 0.5, 0.6, 0.7, 0.8, and 0.9, each creat-
ing one group. Participants were randomly assigned to these
groups.

As test data, we used 20 triplets of data values drawn from
uniform distributions with a minimum value of 0 and a max-
imum of 1. These triplets were encoded using texture fre-
quency, a color gradient from red to blue, and texture orien-
tation. Using the different β values we created 20 images of
64× 64 pixels for each group (see Fig. 6). The participants
were shown these 20 images in a randomized order. With the
help of a legend, they tried to read the encoded variables and
reported their results numerically. The entire task took them
approximately 10 minutes.

0.5

0.6 0.7 0.8 0.9β

0.0 1.0

0.5

Figure 6: 1st row: an example data triple (0.521, 0.633,
0.312) for the five tested β values. 2nd ,3rd ,4th rows: the leg-
end for our method that was used in both our user studies.
To see the details, please zoom in or refer to Appendix C.

We compared the obtained results to the original data val-
ues computing the mean squared error (MSE), as depicted
in Fig. 7. After outlier removal, we computed a one-way
ANOVA. We found no statistically significant difference be-
tween the groups for frequency (F4,73 = 1.713, p = .156), or
color gradient (F4,71 = 0.696, p = .597). There was a main
effect for orientation (F4,73 = 4.114, p = .005). A Tukey
post-hoc test revealed that the MSE for β = 0.6 and β = 0.7
was statistically significantly lower than for β = 0.9.

The results indicate that a β value of 0.6 or 0.7 works well,
as the MSEs are low for all three attributes. For our further
experiments we thus chose β = 0.6.

8. Comparative user study

We conducted a controlled experiment to evaluate the ef-
fectiveness of our visualization method in comparison with

© 2012 The Author(s)
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Figure 7: Average mean squared error for different β values
between 0.5 and 0.9. Choosing β between 0.6 and 0.7 seems
to create the best results, yielding an average mean squared
error below 2%.

Figure 8: Examples of the visualizations compared in our
user study (from left to right): our method (noise-based tex-
ture), attribute blocks [Mil07], and labeled contours (pro-
duced with ArcGIS 10). To see the details, please zoom in or
refer to Appendix C.

other multivariate visualization methods. We recruited 18
participants (aged 22 to 35, 15 males, 3 females) from a local
university with self-reported normal or corrected-to-normal
vision. The participants were from the fields of computer
science and economics. Fourteen participants indicated that
they had experience with visual data analysis.

We compared three techniques for multivariate data anal-
ysis in our user study (Fig. 8):

• Noise-based procedural texture (N) - our algorithm
• Attribute blocks (A) algorithm [Mil07]
• Labeled contours (C) with one variable mapped to color

and others mapped to labeled contour lines with different
contrast colors.

8.1. Task and Procedure

We designed the tasks relevant for an exploration of geo-
graphic data according to Hagh-Shenas et al. [HSKT09].
The visualization methods displayed the Climate Research
Unit (CRU) high resolution climate data, obtained via
Intergovernmental Panel on Climate Change (IPCC). We
used temperature, precipitation, and amount of water vapor
for January, averaged over 30 years (1961 - 1990). In these
datasets, the Earth’s surface is sampled with 0.5◦ intervals,
which results in images with a resolution of 720× 360
pixels. The exact mapping of variables for each method

is shown below. The diverging color scale was used for
all methods (attribute blocks required only half of it).

Our method Attr. blocks Contours
Temperature Frequency Grey-red Blue-red
Precipitation Blue-red Grey-blue Contour 1
Water vapor Orientation Grey-cyan Contour 2

The users were provided with a computer with two 22"
monitors, one showing a maximized window with the data
and the other displayed a corresponding legend. The viewing
distance was approximately 60 cm. The study was conducted
as a within-subjects experiment with three experimental con-
ditions (technique) and three tasks per condition:

• ‘global correlate’ - correlate all pairs of variables on the
full map: “If ‘a’ is small, is ‘b’ then also small? (yes / no
/ not clear)”

• ‘region comparison’ - determine the location of high-
est/lowest value for each variable

• ‘detail comparison’ - correlate all pairs of variables for
a certain region of the map: “Is the value of ‘a’ generally
greater or smaller as the value of ‘b’ in the pointed area?
(yes / no / not clear)”.

We have selected three rectangular regions (North-East of
South America, a region from India to Vietnam, and Papua
New Guinea) for the execution of the ‘detail comparison’
task. The users were encouraged to interact with the visual-
ization by using the mouse to pan and zoom.

The participants started each condition with a warm up
phase reading out values on random locations on the map.
The inter-task correctness was averaged to yield one cor-
rectness value per task and condition per participant. After
each condition, the users completed a questionnaire assess-
ing subjective satisfaction. Upon completion of the experi-
ment, they were asked to assess their overall preference. To
reduce the influence of learning effects, the sequence of the
conditions was counter-balanced and the sequence of the lo-
cations in the ’detail comparison’ task was randomized.

Hypothesis Our hypothesis was that the noise-based pro-
cedural texture performs better than the other techniques in
both quantitative and qualitative assessment.

8.2. Results

Correctness measures were evaluated using repeated mea-
sures ANOVA (α = .05) with Bonferroni adjusted post-hoc
comparisons. Questionnaire answers, which were given on
a seven-point Likert scale, were analyzed using Friedman
non-parametric tests for main effects and post-hoc compar-
isons using Wilcoxon Signed Rank tests with Bonferroni
adjustments. The questionnaire items concerning preference
were analyzed using repeated measures non-parametric Chi
Square tests with Bonferroni adjusted post-hoc comparisons.
The results are illustrated in Fig. 9.
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Figure 9: The results of our user study. From left to right: results of correctness of completing the quantitative tasks by the
users, a qualitative evaluation of the methods, and overall preference of the users for choosing a certain visualization method.
A higher value is better for all the cases. The red underline shows the methods that were superior in the cases where the results
are statistically significant.

Correctness We found a significant main effect for cor-
rectness on ‘global correlate’ (F2 = 29.759, p < .001) and
‘region comparison’ (F2 = 7.108, p = .003). Post-hoc com-
parison revealed that correctness was higher for N than A
and C in both cases. We did not find a significant main effect
on ‘detail comparison’ (F1.366 = 2.771, p = .077).

Subjective Assessment The questionnaire items assess-
ing readability (χ2(2) = 16.687, p < .001), ability to corre-
late different data values (χ2(2) = 12.091, p = .002), abil-
ity to find a certain point in the data (χ2(2) = 13.059, p =
.001), and overall acceptance of the technique (χ2(2) =
20.086, p < .001) were rated significantly higher for N and
A than for C. The ability to gain an overview of the data
(χ2(2) = 26.226, p < .001) revealed an order of the tech-
niques with N > A > C. The questionnaire item assessing
visual clutter (χ2(2) = 5.848, p > .05) was not significant.

While the preference counts for reading a concrete data
value (χ2(2) = 3.000, p > .05) was not significant, prefer-
ences for getting an overview (χ2(2) = 16.333, p < .001)
were significantly higher for N than for A and C. The
preference counts for correlating two data values (χ2(2) =
16.333, p < .01), and correlating more than two data values
(χ2(2) = 13.000, p = .002) were significantly higher for N
than for C, but the differences between N and A and between
A and C were not significant.

8.3. Discussion

Our hypothesis was supported by the results of the user
study. We found that for global correlation of data and for re-
gion comparisons the noise-based procedural texture method
performs significantly better than the other two methods. In
the subjective assessment, our method achieved the high-
est score in all questioned asked, with four answered being
statistically significant. Furthermore the personal preference
count shows a clear support for our method. Only for read-
ing concrete values from the map labeled contours achieved
a higher rating, which was not statistically significant. Read-
ing exact data values is not the goal for any of the tested

methods. Other techniques, such as interactive data probing,
should be used to complement them. Please refer to Fig. 9
for more details.

9. Conclusions and future work

We have presented a method for synthesizing a texture for
the display of multivariate information using a procedu-
ral noise function. The main advantage of our method is
that it gives a possibility to adjust the texture in a zoom-
independent manner to avoid aliasing at low scales and keep
the data readable at large scales. With our user study we have
shown that our method outperforms other methods that are
commonly used for similar tasks.

Animating the noise might increase the potential of our
method, creating time-varying visualizations of static data.
As motion is an additional communication channel, it may
be possible to extend our method for visualizing more data
attributes, i. e. , faster/slower animation for higher/lower
values. However, the usage of motion is a very controver-
sial topic in the visualization community, as it may attract a
user’s attention to unimportant portions of the data and lead
to eye fatigue. Nevertheless, we anticipate that with careful
evaluation, animation may give additional advantage to our
method and we leave it for future work. We will also explore
the use of glyph like textures [TQWZ06] for increasing the
number of displayed attributes. Using controlled orientation,
our method can also be applied to display vector field data
in conjunction with scalar data. We will conduct additional
studies to determine how our method performs in compari-
son to current methods for vector field visualization.
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