
Ray Casting of Multiple Volumetric Datasets with Polyhedral Boundaries
on Manycore GPUs

Bernhard Kainz ∗ Markus Grabner ∗ Alexander Bornik † Stefan Hauswiesner ∗ Judith Muehl ∗

Dieter Schmalstieg ∗ ‡

Figure 1: Examples of our new approach to efficiently combine direct volume rendering with polyhedral geometry. Our renderer is able to
render many volumes together with complex geometry. Images from left to right: Rendering a 20k polygons dragon with a 2563 brain volume
and nine 643 smoke clouds; three 10k segmented vessels, tumor and liver surface in a ribcage 5123 volume; a segmented brain in an open
skull, each a 2563 volume; 35 translucent rods each with 76 polygons placed in an apple with 5123 voxels.

Abstract

We present a new GPU-based rendering system for ray casting of
multiple volumes. Our approach supports a large number of vol-
umes, complex translucent and concave polyhedral objects as well
as CSG intersections of volumes and geometry in any combination.
The system (including the rasterization stage) is implemented en-
tirely in CUDA, which allows full control of the memory hierarchy,
in particular access to high bandwidth and low latency shared mem-
ory. High depth complexity, which is problematic for conventional
approaches based on depth peeling, can be handled successfully.
As far as we know, our approach is the first framework for multi-
volume rendering which provides interactive frame rates when con-
currently rendering more than 50 arbitrarily overlapping volumes
on current graphics hardware.

CR Categories: I.3.3 [Computing Methodologies]: COM-
PUTER GRAPHICS—Picture/Image Generation; I.3.6 [Comput-
ing Methodologies]: COMPUTER GRAPHICS—Methodology
and Techniques

∗Graz University of Technology (TU-Graz), Institute for Computer
Graphics and Vision (ICG), Inffeldgasse 16, 8010 Graz, AUSTRIA
†Ludwig Boltzmann Institute for Clinical-Forensic Imaging (LBI),

Universitaetsplatz 4, 8010 Graz, AUSTRIA
‡kainz|grabner|bornik|hauswiesner|muehl|schmalstieg@icg.tugraz.at

1 Introduction

Ray casting has prevailed as the most versatile approach for direct
volume rendering because of its flexibility in producing high qual-
ity images of medical datasets, industrial scans and environmental
effects [Engel et al. 2006]. The large amount of homogeneous data
contained in a volumetric model lends itself very well to paralleliza-
tion. Today even a commodity graphics processing unit (GPU) is
capable of ray casting a single high resolution volumetric dataset at
a high frame rate using hardware-accelerated shaders.

However, rendering a single homogeneous volume is not sufficient
for more advanced applications. Simultaneous rendering of multi-
ple volumes is necessary when several datasets have been acquired.
For example, in medical imaging complementary techniques such
as anatomical image acquisition methods (e.g., computed tomo-
graphy (CT), magnetic resonance imaging (MRI), ultrasound) and
functional image acquisition methods (e.g., positron emission to-
mography (PET), single photon emission computed tomography,
and functional MRI) can be used to examine a patient. Moreover,
models of medical tools and polyhedral segmentation results in the
correct geometric context are essential for computer aided surgery.
Currently available methods have limited capabilities for interactive
investigation of multi-modal volumetric data enhanced by polygo-
nal models. The demand for sophisticated visualization of volume
and surface data is, however, not unique to medical applications.
Many other real-time graphics applications such as computer games
and CAD are currently restricted to opaque surface mesh rendering
and can not utilize the high visual potential of volumetric effects.

A special case of multi-volume rendering are exploded views,
where multiple instances of a volume are rendered with individual
clipping and transformation parameters applied to yield illustrative
visualizations [Bruckner et al. 2006]. Multi-volume rendering is
harder than rendering single volumes, because it requires handling
of intersections and per-sample intermixing. Resampling the vol-
umes to a single coordinate frame is not desirable because of the
resulting loss in quality (or increased memory requirements) and
limited flexibility of layouting. Another requirement of advanced
applications is the combination of volumes with polygonal meshes.
Polygonal models are useful for embedding foreign objects or ref-

erence grids into volumes, but also to apply clipping shapes, high-
light areas of interest or display segmented geometry. We also note
that the intersection of the bounding boxes of multiple volumes is
given as a polyhedron. Such an intersection of bounding boxes is
useful as a conservative approximation of the region for which in-
termixing of the shading contributions of intersecting volumes is
required. For expressiveness and convenience, support for polyg-
onal structures should not be limited to convex shapes or opaque
materials.

Recent GPU accelerated multiple volume renderers [Roessler et al.
2008; Brecheisen et al. 2008] perform ray casting in a fragment
shader and rely on a depth peeling [Everitt 2001] approach to iden-
tify homogeneous ray intervals. Depth peeling is a highly redundant
multi-pass technique, which repeatedly rasterizes the same geom-
etry to sort all possible depth samples. Consequently, a ray caster
based on depth peeling does not scale to a larger number of vol-
umes, since depth peeling of a larger number of bounding boxes or
of complex polygonal meshes quickly becomes the dominant per-
formance factor.

The use of depth peeling is implied by the use of conventional shad-
ing languages, which represent an abstraction of a graphics hard-
ware pipeline with fixed function portions. In a conventional shad-
ing language, the programmer has limited control over the infor-
mation passed from the vertex shader to the fragment shader stage.
Often an efficient sort-middle approach [Molnar et al. 1994] is per-
formed by the graphics hardware, but the strategy by which frag-
ments are re-assigned from vertex shaders to fragment shaders is
not exposed to the programmer.

It is therefore not possible to collect all depth samples obtained
from rasterizing the complete bounding geometry or polygonal
meshes and pass the sample collection on to a fragment shader to
perform depth sorting and ray casting together in the natural order.
Instead, (repeated) rasterization and ray casting of segments are in-
terleaved. The separate shaders for depth peeling and ray casting
communicate via global GPU memory, which is orders of magni-
tude slower than the local memory of the GPU cores. Scalability of
this approach is therefore ultimately limited by memory bandwidth.

In this paper, we investigate an approach suitable for current many-
core GPUs, which overcomes the inefficiencies imposed by a fixed
function pipeline. We employ the new Compute Unified Device Ar-
chitecture (CUDA) [Nickolls et al. 2008; NVIDIA 2008], a C-like
language for general purpose computations on the GPU. Similarly
to the OpenGL renderer described by [Seiler et al. 2008], we imple-
ment a volume rendering pipeline based on polygon tiling entirely
in software. This approach has complete control over the rendering
process and executes an efficient sort-middle approach. Geometry
is rasterized only once, and all depth samples are passed on to ray
casting through on-chip shared memory, which is also significantly
faster than global memory. Ray casting is coherently executed in
tiles of 8× 8 pixels with straight rays. Both geometry and fragment
processing (ray casting) are executed in a massively parallel way
using CUDA’s multi-threaded execution model.

The efficiency gained by this approach allows us to support a very
general multi-volume data model, thereby unifying a number of ad-
vanced volume rendering approaches. The model consists of a re-
cursively defined constructive solid geometry (CSG) structure com-
posed of arbitrary volumetric polyhedra, i.e., two-manifold (possi-
bly concave) triangular meshes with volumetric texturing. Every
polyhedron is associated with a volumetric 3D texture, a transfer
function and a geometric transformation. This structure is similar
to a volume scene graph approach [Nadeau 2000] and supports any
combination of the following use cases:

• Multiple intersecting volumes with individual coordinate sys-
tems and resolutions. CSG operations are used to distinguish
overlapping and non-overlapping areas.

• Volumes can have arbitrary two-manifold bounding or clip-
ping geometry. Concave polyhedra can conveniently be used
as tight fitting bounding geometry. Selected areas in a volume
can be highlighted interactively.

• Volumes can intersect and be intersected with transparent,
concave geometry.

• Polygonal models can have volumetric effects, in particular
they can be made of transparent homogeneous material (not
just transparent surface rendering).

• CSG operations on a volume segmented into multiple regions
with polyhedral boundaries can be used to assign individual
transfer functions to each region. Each region can be trans-
formed individually, allowing exploded views. Multiple in-
stances of a region are possible for side by side comparison.

1.1 Contribution

To the best of our knowledge, our work is the first that supports the
above-mentioned features and that enables the display of dozens of
volumetric datasets with complex intersecting and clipping geom-
etry on a consumer GPU with real-time frame rates. We describe
the details of our approach and give a rationale for design choices,
which is grounded in the operating principles of manycore GPUs
abstracted by the CUDA programming framework. We present an
analysis of the results obtained with our approach, which shows that
it is independent of the polygonal depth complexity of a scene and
achieves a significant speedup over state-of-the-art multi-volume
rendering frameworks based on conventional shader languages.

2 Related Work

2.1 Multi-volume rendering

Rendering of multiple volumes is a recurring topic of research.
While multi-volume rendering was previously limited to static im-
ages (for example [Nadeau 2000]), CPU based rendering has rel-
atively recently achieved real-time frame rates through the use
of cache-coherent, multi-threaded strategies [Grimm et al. 2004].
However, the processing power of CPUs has been overtaken by
GPUs, which have more parallel execution units. Volume rendering
is now commonly based on representing regular volumetric models
as 3D textures in the GPU memory, and casting rays in the frag-
ment shader. The setup of rays is done through rasterization of
the volume’s bounding geometry [Roettger et al. 2003; Krüger and
Westermann 2003]. With the advent of branching and looping in
the shader, a ray can now be traversed inside the shader rather than
through multi-pass rendering [Stegmaier et al. 2005].

Through the use of depth peeling [Everitt 2001], handling of more
complex scenarios becomes possible. In the context of GPU-based
volume rendering, depth peeling has been used to clip volumes
[Weiskopf et al. 2003] and to intersect individual volumes with ge-
ometry [Termeer et al. 2006; Borland et al. 2006]. Recently multi-
volume rendering has been combined with depth peeling and dy-
namic shader generation into a very efficient framework [Roessler
et al. 2008]. Depth peeling is used on the bounding geometries of
multiple volumes to perform what are essentially CSG operations,
and every distinct volumetric area is handled with optimized shader
code that is derived from an abstract representation. A similar ap-
proach combining depth peeling and dynamic shader generation is
taken in [Plate et al. 2007]. The work in [Brecheisen et al. 2008] is

unique in that it is able to combine multiple volumes with arbitrary
layers of translucent, concave geometry.

2.2 Fragment processing

Depth peeling is a widely used multi-pass technique that relies on
manipulation of the z-buffer to progressively reveal layers of oc-
cluded geometry. Generally speaking, multi-pass techniques are
methods used to overcome the limitations on the resources of the
GPU, in particular in terms of available storage. Given unlimited
memory, an approach like the A-buffer [Carpenter 1984] can store
all fragments in a list sorted by depth. Such an implementation is
not really feasible in hardware, and therefore various approaches
operating with bounded memory rely on multiple passes. Achiev-
ing effects involving multiple fragments often requires sorting of
fragments by depth. Hardware-accelerated depth peeling [Everitt
2001] is such a method, but requires N rendering passes of N ob-
jects, leading to undesirable O(N2) complexity. Several pieces of
work try to at least reduce this complexity by a constant factor,
by making use of additional memory. This can take the shape
of specific extensions of the fragment stream processing model of
the GPU [Mark and Proudfoot 2001; Aila et al. 2003] or by re-
lying on existing extended framebuffer capabilities [Callahan and
Comba 2005; Liu et al. 2006; Bavoil et al. 2007; Bavoil and Myers
2008]. Some work combines such an approach with an approxi-
mate pre-sorting on the CPU, in order to approach linear time be-
havior [Wexler et al. 2005; Callahan and Comba 2005; Carr et al.
2008]. However, such a pre-sorting is not feasible for general
scenes. In contrast, our approach avoids conventional buffers and
does not require pre-sorting for handling very complex models.

A common acceleration technique for polygon rasterization are
coverage masks [Fiume et al. 1983], which encode the pixel-wise
inside condition with respect to a half plane in any possible orien-
tation (typically for 8×8 pixel squares). Arbitrary convex polygons
(and triangles in particular) can be processed by computing the in-
tersection of the half planes associated with the edges, which is
equivalent to a bit-wise AND operation of the corresponding cov-
erage masks. In the literature, there are examples both for precom-
puted masks [Fiume et al. 1983; Greene 1996] and for on-the-fly
computation [Eyles et al. 1988; Akeley 1993; Seiler et al. 2008].

2.3 Rendering on manycore GPUs

Recent trends indicate that graphics programming is rapidly mov-
ing away from fixed-function approaches towards general compute
languages executing on manycore architectures [Hou et al. 2008].
Rather than redesigning existing techniques to fit the highly con-
strained execution environment found in conventional GPU pro-
gramming using shader languages, software rendering methods can
become competitive again by executing them on manycore GPUs.

A noteworthy example is the Larrabee manycore architec-
ture [Seiler et al. 2008], which is based on multiple x86 cores
and uses a flexible software renderer including a recursive poly-
gon tiling algorithm [Greene 1996]. This approach is highly op-
timized towards Larrabee’s hardware capabilities, in particular its
vector processing units, which are used, e.g., for on-the-fly cover-
age mask computation.

Developing on GPUs with CUDA is not quite as flexible as
Larabee’s execution environment, but allows similar results to be
achieved using mainstream graphics hardware. For convenience,
we review the main aspects that influence our work. CUDA ex-
ecutes kernels written in C in a massively multi-threaded fash-
ion on the GPU’s multiple processing cores. Threads are grouped
into blocks, which are executed with round-robin scheduling on a

multi-processor consisting of several single processors and a lim-
ited amount (16k) of fast shared memory, which acts as a cache.
Threads also have access to the GPU’s global memory at a slower
speed. Fully utilizing all processors while avoiding memory bottle-
necks requires careful design of algorithm and parameters.

A brief report on ray casting single volumes with CUDA is given
in [Marsalek et al. 2008], concentrating on the best choice of exe-
cution parameters for basic ray casting. Single volume ray casting
with moving least squares was considered in [Ledergerber et al.
2008]. This method achieves very high quality reconstruction, but
seems more appropriate for unstructured volumes. Ray casting of
large deformable models composed of opaque polygons was pre-
sented in [Patidar and Narayanan 2008]. This work sorts all poly-
gons into a view dependent 3D grid at every frame, and therefore
focuses mainly on the sorting. To the best of our knowledge, our
work is the first multi-volume ray caster developed specifically for
the manycore execution model represented by CUDA.

3 System overview

∪

∩−

in
ne

r
m

at
er

ia
l

bo
un

da
ry

m
at

er
ia

l

Volume Atlas

Common Geometry Storage

transfer
function

transfer
function

boundary
material

Figure 2: The scene graph consists of CSG operations and poly-
hedral objects with volumetric textures and/or material properties.
Textures are stored in a texture atlas, polygonal geometry and vol-
ume boundaries in common storage, which allows for instancing.
Note that the two bounding volumes of the head in the geometry
storage are computed from different transfer functions.

Our system is able to produce ray casting images of complex inter-
secting volumetric datasets with polyhedral boundaries. All com-
putation executes on the GPU, the only information that is received
from the CPU for every frame is the camera position. The scene
that represents the input to the ray casting procedure is structured
in the following way (see Figure 2):

• Raw volume data from multiple volumes is represented in a
volume atlas.

• Polyhedral objects consist of a triangular mesh. A polyhe-
dral object can be concave, but must be two-manifold, so that
interior and exterior can be distinguished.

• A scene consists of a simple scene graph. Interior nodes are
associated with CSG operations, whereas leafs refer to a poly-
hedral object as the boundary, a volume texture or single ma-
terial property for the interior, and an affine transformation for
global placement of the object. The transformations can also
be animated. Instances can be created by referencing the same
polyhedral object and/or volume texture more than once.

The ray casting algorithm follows the usual steps of a rendering
pipeline: transformation of polygons, rasterization, and fragment
processing. The latter is done in a pixel-parallel way per 8 × 8 tile
and is responsible for traversing adjacent rays through the volumes
stored as 3D textures. It therefore naturally exploits texture cache
coherence.

Unlike depth peeling approaches, our rendering system traverses
the scene only once. We implement all steps in CUDA software
and therefore have access to all intermediate results of the pipeline,
which are kept in shared memory wherever possible for maximum
performance. We still need two separate kernels (one for triangle
processing and one for fragment processing) since the ray caster
requires a sorted list of all relevant fragments at each pixel, which
is only guaranteed to be complete after processing all triangles.

Project Triangles
To Screen Space

N
u
m
b
e
r

o
f

T
r
i
a
n
g
l
e
s

P
a
r
a
l
l
e
l

P
r
o
c
e
s
s
s
i
n
g

T
h
r
e
a
d
s

Polygon Tiling

Coverage Mask
Computation

List of all Triangles +
Meta Information

Evaluate Plane Equation
per Fragment / Thread

Fragment Sort in z

Project Fragment to
Object Space

Process Ray Segment(s) -
Accumulate Color

Write to Display Bu�er
at Thread Positon

N
u
m
b
e
r

o
f

P
i
x
e
l
s

P
a
r
a
l
l
e
l

P
r
o
c
e
s
s
s
i
n
g

T
h
r
e
a
d
s

Maximum
Opacity Reached?

Figure 3: The flow-chart shows an overview of our rendering sys-
tem. The main steps - triangle processing and pixel processing - are
executed in separate compute kernels.

The triangle kernel is responsible for geometric transformations,
assignment of triangles to viewport tiles, and computation of cover-
age masks (see Section 3.1). The pixel kernel receives the frag-
ments covering a pixel in arbitrary order. They must be sorted
in z-direction before they can be used to split a ray into homoge-
neous segments (see Section 3.2). The final ray casting and shading
step requires the blending of several intersecting volumetric objects
and therefore the efficient accumulation of the individual volumes’
contributions along the rays (see Section 3.3). Support for con-
cave bounding geometry simplifies empty space skipping (see Sec-
tion 3.4). Volume samples are taken from a volume texture atlas
(see Section 3.5). The following sections describe details of the
individual steps of the system. For an overview see Figure 3.

3.1 Triangle rasterization

In conventional rendering of scenes dominated by opaque objects,
high performance is related to being able to identify occluded por-
tions of the scene early in the pipeline. In contrast, our volume

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

x

y in
si
de

ou
ts
id
e

(a) coverage mask

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(b) unit row r0

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(c) unit column c0

Figure 4: On-the-fly half plane inclusion test for a 4 × 4 pixels
square. The coverage mask (a) is composed of shifted copies of the
unit row r0 = 0x000F (b) or the unit column c0 = 0x1111 (c). The
numbers refer to bit positions in the coverage mask.

rendering must unconditionally rasterize all polygons and pass in-
formation on the screen coverage of a polygon as quickly as pos-
sible to the pixel processing. After transforming a triangle into
screen space, for each tile of 8 × 8 pixels intersecting the triangle’s
bounding box, a 64-bit coverage mask [Fiume et al. 1983] is com-
puted. This simple strategy maps well to CUDA hardware due to
its low resource requirements and outperforms more sophisticated
approaches (such as [Seiler et al. 2008]) for typical scenes.

It is essential for our approach that every fragment covered by the
triangulated volume boundary is visited exactly once since we ini-
tialize the ray segments for our ray caster at the rasterized surface
fragments. Coverage masks are well suited for this purpose due
to the simple bit-wise AND operation of the contributions of the
corresponding half planes. However, precomputed coverage masks
can not be used in this case since a particular mask is selected from
the lookup table based on a discretized orientation of the half plane,
which might result in a few misclassified pixels. We therefore com-
pute the covered pixels for each triangle on-the-fly. Since the GPU
cores in our target platform (NVIDIA GT200) are scalar proces-
sors, the method proposed by [Seiler et al. 2008] is not favorable in
our case. Instead, we make use of bit shift operations to compute
one row (or column) of the N × N pixel coverage mask in constant
time.

Consider the example in Figure 4(a). The outside half plane is de-
fined by ax + by + c > 0. A bit in the mask is set to one (dark
squares in Figure 4(a)) if the corresponding pixel center (filled cir-
cle) is located inside the half plane, and otherwise set to zero. For
plane coefficients a > 0 and |a| > |b| (such as in this example), we
compute the number n1(y) of “one” bits in a given row y ∈ Z, which
equals the number of corresponding pixel centers to the left of the
line separating the inside and outside half planes:

x = −
by + c

a
, n1(y) = clamp(0, bxc,N), (1)

where clamp(i, j, k) = max(i,min(j, k)). The bit mask r(y) of a sin-
gle row y can be obtained in constant time from the unit row mask
r0 (Figure 4(b)) by means of two bit shift operations:

r(y) = (r0 >> [N − n1(y)]) << [N · y]), (2)

where “>>” and “<<” denote the bit shift operation to the right and
left, respectively. The entire coverage mask m is then

m =

N−1∑
y=0

r(y). (3)

For |a| < |b| we proceed in a similar way column-by-column, using
the unit column mask c0 in Figure 4(c) instead. The case a ≤ 0 is
handled by symmetry and bit-wise inversion.

Note that all constants in equations (1) and (2) can be precom-
puted, such that equation (3) can handle both the row-by-row and
column-by-column case without conditional expressions to distin-
guish them. It is therefore possible to process triangles with ar-
bitrary edge orientation in parallel in a SIMD-efficient way. On
current NVIDIA hardware, this method is four times faster than
a straightforward per-pixel computation of the mask as proposed
by [Seiler et al. 2008].

The triangle kernel’s completion ensures an application wide syn-
chronization point before entering the pixel kernel. However, com-
munication from the triangle kernel to the fragment kernel must use
relatively slow global memory. Similar to the workflow presented
by [Akeley 1993], we carry out computation of the coverage masks
in the triangle kernel and not in the pixel kernel, because commu-
nicating a 64-bit coverage mask is cheaper than a full triangle de-
scription with 3 screen-transformed vertices.

Every triangle record contains the coverage mask and the id of
the contributing triangle. No additional per-fragment information
is stored in global memory, which makes the communication sig-
nificantly more efficient than conventional buffer strategies [Mark
and Proudfoot 2001; Bavoil et al. 2007]. The triangle records are
organized in chunks of 64 records each, which are drawn from a
pre-allocated pool of memory. When a tile receives its first triangle
(or the previous chunk is fully occupied), a globally unique 32-bit
chunk index is appended to the list of chunk indices associated with
this tile. We choose a maximum of 64 chunks per tile, which allows
for a total number of 4096 triangles per tile. Parallel creation of this
data structure is synchronized among the worker threads of the tri-
angle kernel using atomic functions.

3.2 Depth sorting

A block of threads responsible for a tile consists of 64 threads, one
for each pixel in the tile. A thread’s first task is to build a repre-
sentation of the ray, consisting of the intersections with the trian-
gles, sorted by depth. The thread iterates through the list of triangle
records and checks its bit in the coverage mask. If the bit is set, it
computes the depth of intersection from the triangle’s plane equa-
tion. The z-values and triangle IDs are stored as array in fast shared
memory. We therefore allocate only a single 32-bit value per en-
try, 16-bit for the signed z-value and 16-bit for the triangle ID. The
entries in this array are interleaved to avoid banking conflicts.

Moreover, the available shared memory of almost 16 KB is subdi-
vided into 64 slots, allowing every thread to store a maximum of
63 entries. This limits the maximum depth complexity to 63. The
array is maintained in sorted order by inserting new values at the
appropriate position, with those entries closest to the camera first
(more complex sorting algorithms are likely to perform worse on
such a small dataset). It is therefore guaranteed that the array con-
tains the 63 closest fragments, no matter in which order they appear
in the input. It turns out that the time spent for sorting is small
compared to the subsequent ray traversal time, even for a specially
designed worst-case scenario where the entire list of fragments has
to be reversed (i.e., has quadratic time complexity in the number of
fragments). Moreover, due to the spatial coherence in moderately
complex scenes, the insertion operation is likely consistent across
many threads. Fragments with rank 64 or higher in the sorted order
are discarded. The rationale of this approach is that fragments oc-
cluded by 63 closer layers will have minimal influence on the final
image, and can therefore be omitted.

To illustrate this claim, we have tested the approximations on ob-
jects with very high depth complexity. A ground truth implementa-
tion using larger but slower global memory rather than shared mem-
ory was used for comparison. The object presented in Figure 5,

(a) (b) (c) (d)

Figure 5: (a) Thumbscrew (max. depth complexity of 81). (b) Im-
age from our system (depth complexity limited to 55). (c) Reference
image with full depth complexity (slower algorithm). (d) Enlarged
differences. Fewer than 0.05% of the pixels show errors > 5% of
the color range.

which was chosen for the highest depth complexity from our sam-
ple scenes, has a maximum depth complexity of 81 in the present
view. Fewer than 0.05% of pixels exceed the threshold of a 5% dif-
ference between the fully correct and the approximated image (i.e.
12.75 gray levels of the overall color range 0-255). The contrast
enhanced difference image in Figure 5 confirms this observation.

Allocating 16 bits for a triangle id limits the number of simultane-
ously visible triangles to 64k. We have found this to be an accept-
able compromise, since the visual complexity in a scene is usually
dominated by the volumetric objects. There are two ways to trade
off other features for a larger number of visible triangles. We can
forsake the ability to access a triangle’s normal for surface shad-
ing (see Section 3.3). In this case the triangle id can be replaced
by an object id, and we can still perform all volumetric shading
effects and CSG operations. Alternatively, we can limit the maxi-
mum depth complexity to 32 layers, and use the additional 32-bit
per depth entry for a quantized normal.

3.3 Ray casting of homogeneous segments

After sorting, a pixel thread iterates through the above-mentioned
depth sorted array in order, from nearest to farthest. The depth
interval between two consecutive entries in the array defines a ho-
mogeneous segment of the ray with respect to intersected objects.
While traversing the array, we maintain information on the set of
currently intersected scene objects, which are leafs of the CSG tree
defining the scene. Figure 6 illustrates an example of the CSG op-
erations enabled in this way.

An empty set of scene objects means the segment can be skipped.
If one or more scene objects are intersected, the starting point of the
ray has to be transformed into the model coordinates of each scene
object, thus forming a set of object space rays. Each object space
ray has to use the same step size in world coordinates to correctly
blend the samples from each scene object. Since scene objects can
have different size and resolution, we use the minimum step size of
all objects along the ray segment to guarantee that no features are
missed. Since this can lead to oversampling of objects with lower
resolution, we provide an option to adjust this parameter. Objects
which would require a high sampling rate might not provide more
information at that rate, so we let the user balance between speed
and accuracy. However, oversampling does not significantly influ-
ence performance due to texture cache coherence. For blending
sampling points of different objects, we query the transfer functions
separately and multiply the resulting colors with their transparency
and a sampling factor which accounts for oversampling. The results
are summed up and accumulated to the ray. For purely polyhe-
dral objects made from a homogeneous material, no volume texture
sampling is necessary. If a ray segment consists only of polyhedral
objects, the loop can be avoided while still yielding high quality
translucency. This can yield performance improvements of up to
10%. Once a ray segment has been sampled, the intermediate re-

(a) (b) (c)

Figure 6: CSG operation examples: boolean difference (a),
boolean union (b) and boolean intersection (c). Note that visual-
ization of the boundary surface for highlighting cutting region(s)
can be toggled by including or not including the boundary in the
operation as shown in (a) and (c). In both cases the particular
choice results in cutting surface being highlighted.

sult is blended into the final result color for this pixel. If a certain
opacity threshold is exceeded, the ray can be terminated.

Since polyhedral geometry plays an important role, both surface
shading of the polygons and volumetric shading from 3D textures
are combined. Optionally, conventional surface material parame-
ters can be assigned to every scene object to add Phong shading
and surface transparency effects at object boundaries.

3.4 Empty space skipping

Empty space skipping is an essential acceleration technique for
volume rendering. In conventional hardware accelerated ray cast-
ing, exterior empty space skipping is typically done by calculating
bounding geometries [Avila et al. 1992; Li et al. 2003]. The bound-
ing geometry is rendered with vertex coordinates encoded as RGB
values, so that the graphics hardware computes the ray entry and
exit points for accumulation. Interior empty space skipping either
requires a multi-pass ray casting approach similar to depth peel-
ing or sampling of an additional lower resolution texture, which
encodes empty and full bricks (sub-volumes) of a volume.

The efficient handling of bounding geometry in our rendering sys-
tem allows exterior and interior space to be skipped in a uniform
way. A lower resolution mask volume is calculated decomposing
the original volume into uniform bricks, which are masked out if
the transfer function evaluates to zero at each underlying dataset
voxel. The brick size is user configurable per volume, for medical
datasets a size of 83 resulted in maximum performance. The actual
bounding geometry polygons enclosing full bricks are obtained us-
ing a traversal similar to a marching cubes algorithm [Lorensen and
Cline 1987] of the mask volume, which avoids generation of du-
plicate polygons. Detection of empty bricks and the subsequent
geometry calculation for a particular volume requires evaluation of
the transfer function for all voxels in a volume and must be re-
peated every time the transfer function changes. For interactive
transfer function editing, short calculation times are essential. This
can easily be achieved by performing the calculation in parallel on
the GPU, thereby avoiding additional slow data transfers from sys-
tem memory. Computation times for a 5123 dataset are around 5
milliseconds on an NVIDIA 280 GTX.

New bounding geometry polygons are inserted into the global tri-
angle list in global GPU memory and associated with the relevant
scene object. During ray traversal using the sorted fragment list,
bounding geometry polygons allow for simultaneous exterior and
interior space skipping based on a set of active objects, which is up-

dated whenever a bounding geometry fragment is processed, adding
or removing a particular object. Note that the set also contains
in/outside information from all polygonal objects and is the basis
for the evaluation of the CSG-tree. The algorithm may directly skip
to the next fragment, whenever the set is empty and/or the CSG
expression evaluates correspondingly.

The use of tight fitting bounding geometry improves frame rate by
up to 15%, in particular for transfer functions which make large
portions of a volume transparent. In general, the optimization af-
fects both the triangle and the pixel processing kernel, since smaller
triangles can be processed more efficiently than large ones in the
triangle kernel, and the pixel kernel needs to process fewer ray seg-
ments, both in screen space and along the rays.

3.5 Volume texture atlas

To overcome the limited possibilities concerning reallocation of ar-
rays in global memory, we use a 3D texture atlas for the volumetric
datasets. A texture atlas is a single large 3D texture, which is as-
signed to one texture unit. The maximum size of the texture atlas
depends only on the available graphics memory.

Finding an optimal memory layout is an instance of the cuboid
packing problem [Huang and He 2009]. Since volume data sets
often have a square cross section with a power-of-two edge length,
we can (without significant waste of memory) reduce the packing
problem to a single dimension, where the solution is trivial. The
texture atlas memory is organized into slots of a certain size, de-
pending on the application’s needs. A volume can occupy one or
several contiguous slots. The border voxels of every slot are dupli-
cated to allow the use of unclamped texture coordinates in the in-
nermost loop (this is not related to OpenGL texture borders, which
facilitate seamless stitching of separate textures).

4 Results

We tested our implementation using CUDA 2.0 on a desktop PC
(Intel 3.16 GHz Dual Core2-Duo with 3 GB RAM) running 32-bit
Windows Vista and 64-bit Linux. We used two alternative GPUs, a
GeForce GTX 280 with 1GB RAM and a Tesla C1060 Computing
Processor with 4 GB RAM. The latter is able to work with volumes
up to 10243.

4.1 Performance comparison

For performance evaluation, we compared our framework with
two recently published state-of-the-art multi-volume render-
ers [Roessler et al. 2008; Brecheisen et al. 2008], which were kindly
provided by the authors. In the following, we refer to these tools as
Roessler and Brecheisen, and Ours for our own work. The compar-
ison was done on the GTX 280.

C1 represents a high quality medical scan. C2 and C3 are medi-
cal scenes with multiple volumes, which use multiple modalities or
scans from different body parts. Figure 1 shows C2 as third im-
age. C4 and C5 show an anatomical scan involving a time resolved
scan, for example of blood flow, leading to a larger number of vol-
umes. C6 is a combination of an anatomical scan with a high reso-
lution iso-surface. C7 is a volume of the abdomen combined with
a 10k polygonal model representing the liver surface, a 30k poly-
gon model representing the liver portal vessel tree and a 5k polygon
model representing a tumor as shown as second image in Figure 1.

Table 1 compares the frame rates achieved with Roessler and
Brecheisen and our approach. Roessler generates shader code for

No Volumes Polygons Roessler Brecheisen Ours
C1 1 × 5123 none 14 - 46 9 - 17 10 - 21
C2 2 × 2563 none 24 - 38 6 - 12 17 - 25
C3 4 × 2563 none 5 - 9 1 - 3 16 - 25

C4 1 × 2563
none 1.5 - 3 n.p. 15 - 237 × 1283

C5 1 × 2563, none n.p. n.p. 10 - 1720 × 643

C6 1 × 5123 1 × 30k n.p. 1 – 2 7 – 15

C7 1 × 5123
1 × 30k

n.p. 0 – 1 7 – 151 × 10k
1 × 5k

C8 50 × 643 1 × 30k n.p. n.p. 8 – 16

Table 1: Overview of test scenes used for performance comparison
with state-of-the-art tools

Scene MaxDepth DDP Ours
S1 20 123 – 150 52 – 62
S2 40 14 – 16 18 – 28
S3 81 25 – 46 31 – 52

Table 2: Comparing Dual Depth Peeling (DDP) to our approach
for three scenes with high depth complexity (MaxDepth); screen
size: 1050 × 800. In scenes with high and large-area depth com-
plexity, our rendering system outperforms DDP.

every scene and is therefore quite efficient for a few volumes. How-
ever, it cannot handle geometry and therefore cannot be used for
cases C6 through C8. It could also not run C5 on our system since
the generated shader code was too large. Brecheisen is able to han-
dle up to four volumes combined with an arbitrary number of inter-
secting geometric objects, and therefore cannot handle C4, C5 or
C8.

In our experiments, we varied viewport size (between 5122 and
7682), transfer functions and camera positions. Reported minimum
and maximum frame rates are averaged over the tested viewport
sizes, since the tools used for comparison do not allow arbitrary
choices of viewport size. Lighting was done with pre-calculated
gradients, since Roessler only provides this method. Progressive
rendering was disabled in all evaluated tools. The tests were per-
formed with 8-bit value per sample datasets due to the restrictions
of Roessler and Brecheisen. A transfer function with high trans-
parency was chosen to avoid early ray termination. Camera zoom
was set to a value such that most screen pixels were covered. Table
1 indicates that our approach compares favorable with shader based
systems in particular for scenes with many volumes or complex ge-
ometry.

While not its main objective, our system can also render correct
transparency in scenes with high geometric depth complexity. We
compared this capability to NVIDIA’s Dual Depth Peeling (DDP)
demo [Bavoil and Myers 2008]. We used three scenes with different
depth complexity and memory bus consumption for the geometry
passes. Table 2 confirms our expectation that it can outperform
depth peeling for more complex scenes. Note that unlike DDP,
we use high quality per-pixel Phong shading. Figure 7 shows the
test scenes from a viewpoint with average depth complexity. S1
contains the Stanford dragon reduced to 20k polygons. S2 contains
20 boxes in a row. S3 contains screws with polygonal winding.

Our system scales very well when the geometry is filled with a vol-
umetric texture or when complex objects intersect. Table 2 supports
this observation.

(a) Scene S1 (b) Scene S2 (c) Scene S3

Figure 7: Scenes with a high depth complexity for a comparison
with the NVIDIA Dual Depth Peeling Demo [Bavoil and Myers
2008].

4.2 Workload distribution

In order to better understand our rendering system, an analysis of
the workload for various conditions was undertaken. The triangle
kernel uses only 2-10% of the computation time, depending on the
triangle/voxel ratio of the scene. The NVIDIA Visual Profiler re-
vealed that the triangle kernel is able to efficiently occupy all pro-
cessors of the GPU, thus optimally hiding global memory latency.
Moreover, projecting triangles and computing coverage masks are
very uniform tasks with few diverging branches, which allows peak
rates to be obtained. Overall, the pixel kernel uses up to 90% of
the computation time. Since kernels are executed in threads on the
GPU asynchronously with respect to the CPU, the GPU code was
instrumented using the clock() API function to query the number of
GPU cycles. Unfortunately, this function does not report the time
spent per thread, but rather the clock of the processor, while the pro-
cessor performs time slicing of multiple threads. Low consumption
of register space and shared memory allows more threads to be ac-
tive (i.e., time-sliced) concurrently and therefore better hiding of
memory latency. This improves performance, but at the same time
makes clock measurements unreliable.

We therefore experimented with both low and heavy loads on
shared memory. A low load can be achieved by limiting the maxi-
mum complexity of the scene. For example, lowering the maximum
depth complexity or the number of intersecting objects frees regis-
ter space and shared memory per execution block, and therefore
enables the GPU scheduler to run other blocks while waiting for
memory transfers. Through this strategy, we could obtain overall
performance improvements of up to 40%. We also selected setups
which create a heavy load on shared memory, giving no opportunity
for time slicing. This allowed us to perform the following analysis.

For scenes with significant geometry, but relatively little volume
data, (see leftmost picture in Figure 1) the results indicated that up
to 50% of the pixel kernel’s work consists of sorting fragments in
z-direction. The rest consists of Phong shading of geometry sur-
faces (<3%), accumulating pure geometry interiors (<3%) and ray
traversal of volumetric data (23%).

As an example for a scene with heavy volumetric load, consider
the head/brain scene from the third picture in Figure 1. In this
example, computing and sorting depth values amounts to 7% of
computations, while ray traversal takes up to 60%, which can be
split into 12% for ray setup and 48% for the accumulation loop.
Tests with various scenes confirmed that ray traversal is generally
the most costly part. This is reassuring because it seems likely that
the O(n3) complexity for handling the volumetric data should dom-
inate the system’s performance. However, it also means there is
limited room left for improvements.

4.3 Memory consumption

The memory requirements of the described method are mainly re-
lated to the texture atlas and the triangle records used to communi-
cate between triangle kernel and pixel kernel. The texture atlas size
depends on cumulated sizes of the volumes contained in the scene.
We commonly use a texture atlas of 5283, which can accommodate
all the scenes used in the evaluation, in about 562 MB of global
memory. Pre-calculation of gradients for lighting increases the re-
quired memory by a factor of four, because for every sample three
additional values need to be stored.

The triangle record memory consumption for a viewport
size of 7682 pixels is 962 (tiles) × 64 (chunks per tile) ×
4 (bytes per index) = 2.25MB for the fixed-size set of chunk in-
dices, plus the variable-sized chunk pool (768 bytes per chunk).
Our experiments were run with a total chunk pool size of 6MB,
which can be raised for more complex scenes up to the limit im-
posed by the available amount of memory on the graphics card.

5 Conclusion

Due to recent improvements in multicore GPU programming mod-
els, we were able to develop a new approach for multi-volume and
geometry rendering. CUDA is not specifically designed for graph-
ics, but allows the development of a software rendering pipeline,
which is executed in a massively parallel way. A key property of
this approach is the efficient use of scatter operations, which allows
a scene’s polygons to be rasterized only once.

This approach is relevant to a broad range of applications. It in-
creases the practical applicability of volume rendering to very com-
plex scenes, including intersecting volumes and geometry in clini-
cal practice or in computer games and art. As shown in this paper,
our system is easy to implement, robust, and readily runs on con-
sumer hardware. Since our implementation is designed for many-
core graphics hardware, we are looking forward to future general
purpose GPU architectures such as Larrabee [Seiler et al. 2008],
which should significantly increase the flexibility of the algorithms
and enable new design choices.

Acknowledgements

We would like to thank Friedmann Roessler (University of
Stuttgart), Ralph Brecheisen (Eindhoven University of Technology)
and Stefan Bruckner (Vienna University of Technology) for provid-
ing their rendering systems, and Joseph Newman for many useful
remarks.

This work was funded by the European Union in FP7 VPH initiative
under contract number 223877, the Ludwig Boltzmann Institute for
Clinical-Forensic Imaging, and the FWF under contract W12009-
N15.

References

Aila, T., Miettinen, V., and Nordlund, P. 2003. Delay streams for
graphics hardware. ACM Transactions on Graphics (TOG) 22,
3, 792–800.

Akeley, K. 1993. Reality engine graphics. In Proceedings of 20th
annual conference on Computer graphics and interactive tech-
niques SIGGRAPH ’93, ACM, New York, NY, USA, 109–116.

Avila, R. S., Sobierajski, L. M., andKaufman, A. E. 1992. Towards
a comprehensive volume visualization system. In Proceedings of
IEEE Visualization ’92, 13–20.

Bavoil, L., and Myers, K. 2008. Order independent transparency
with dual depth peeling. Tech. rep., NVIDIA.

Bavoil, L., Callahan, S. P., Lefohn, A., Comba, J. L. D., and Silva,
C. T. 2007. Multi-fragment effects on the GPU using the k-
buffer. In Proceedings of ACM symposium on interactive 3D
graphics and games, 97–104.

Borland, D., Clarke, J., Fielding, J., and Taylor, R. 2006. Volu-
metric depth peeling for medical image display. In Proceedings
of SPIE Visualization and Data Analysis, 1–11.

Brecheisen, R., Platel, B., Vilanova, A., and ter Haar Romenij,
B. 2008. Flexible GPU-based multi-volume ray-casting. In
Proceedings of Vision, Modelling and Visualization, 1–6.

Bruckner, S., Grimm, S., and Kanitsar, A. 2006. Illustrative
Context-Preserving exploration of volume data. IEEE Transac-
tions on Visualization and Computer Graphics 12, 6, 1559–1569.

Callahan, S. P., and Comba, J. L. D. 2005. Hardware-assisted visi-
bility sorting for unstructured volume rendering. IEEE Transac-
tions on Visualization and Computer Graphics 11, 3, 285–295.

Carpenter, L. 1984. The A-buffer, an antialiased hidden surface
method. ACM SIGGRAPH Computer Graphics 18, 3, 103–108.

Carr, N., Mech, R., and Miller, G. 2008. Coherent layer peeling
for transparent high-depth-complexity scenes. In Proceedings
of SIGGRAPH/EUROGRAPHICS symposium on graphics hard-
ware, 33–40.

Engel, K., Hadwiger, M., Kniss, J., Rezk-Salama, C., and
Weiskopf, D. 2006. Real-time Volume Graphics. A. K. Peters.

Everitt, C. 2001. Interactive order-independent transparency. Tech.
rep., NVIDIA.

Eyles, J., Austin, J., Fuchs, H., Greer, T., and Poulton, J. 1988.
Pixel-planes 4: A summary. In Advances in Computer Graph-
ics Hardware II (Eurographics’87 Workshop), Springer-Verlag,
London, UK, 183–207.

Fiume, E., Fournier, A., and Rudolph, L. 1983. A parallel scan
conversion algorithm with anti-aliasing for a general-purpose ul-
tracomputer. In ACM SIGGRAPH Comp. Graph., 141–150.

Greene. 1996. Hierarchical polygon tiling with coverage masks. In
ACM SIGGRAPH Computer Graphics, 65–74.

Grimm, S., Bruckner, S., Kanitsar, A., and Gröller, M. E. 2004.
Flexible direct multi-volume rendering in interactive scenes. In
Proceedings of Vision, Modeling, and Visualization, 386–379.

Hou, Q., Zhou, K., and Guo, B. 2008. BSGP: bulk-synchronous
GPU programming. ACM Transactions on Graphics (TOG) 27,
3, 19.

Huang, W., andHe, K. 2009. A new heuristic algorithm for cuboids
packing with no orientation constraints. Computers & Opera-
tions Research 36, 2, 425–432.

Krüger, J., and Westermann, R. 2003. Acceleration techniques
for GPU-based volume rendering. In Proceedings of IEEE Visu-
alization, 287–292.

Ledergerber, C., Guennebaud, G., Meyer, M., Baecher, M., and
Pfister, H. 2008. Volume MLS ray casting. IEEE Transactions
on Visualization and Computer Graphics 14, 6, 1372–1379.

Li, W., Mueller, K., and Kaufman, A. 2003. Empty space skipping
and occlusion clipping for texture-based volume rendering. In
Proceedings of IEEE Visualization, 317–324.

Liu, B., Wei, L.-Y., and Xu, Y.-Q. 2006. Multi-layer depth peel-
ing via fragment sort. Tech. Rep. MSR-TR-2006-81, Microsoft
Research Asia.

Lorensen, W. E., and Cline, H. E. 1987. Marching cubes: A high
resolution 3D surface construction algorithm. ACM SIGGRAPH
Computer Graphics 21, 4, 163–169.

Mark, W. R., and Proudfoot, K. 2001. The F-buffer: a
rasterization-order FIFO buffer for multi-pass rendering. In Pro-
ceedings of SIGGRAPH/EUROGRAPHICS workshop on graph-
ics hardware, 57–64.

Marsalek, L., Hauber, A., and Slusallek, P. 2008. High-speed
volume ray casting with CUDA. In Proceedings of IEEE Sym-
posium on Interactive Ray Tracing, 185.

Molnar, S., Cox, M., Ellsworth, D., and Fuchs, H. 1994. A sort-
ing classification of parallel rendering. IEEE Computer Graphics
and Applications 14, 4, 23–32.

Nadeau, D. R. 2000. Volume scene graphs. In Proceedings of IEEE
symposium on volume visualization, 49–56.

Nickolls, J., Buck, I., and Garland, M. 2008. Scalable parallel
programming with CUDA. ACM Queue 6, 2, 40–53.

NVIDIA. 2008. NVIDIA CUDA Programming Guide 2.0. NVIDIA
Corporation.

Patidar, S., and Narayanan, P. J. 2008. Ray casting deformable
models on the GPU. In 6th Indian Conference on Computer
Vision, Graphics & Image Processing, 481–488.

Plate, J., Holtkaemper, T., and Froehlich, B. 2007. A flexi-
ble multi-volume shader framework for arbitrarily intersecting
multi-resolution datasets. IEEE Transactions on Visualization
and Computer Graphics 13, 6, 1584–1591.

Roessler, F., Botchen, R. P., and Ertl, T. 2008. Dynamic shader
generation for GPU-based multi-volume ray casting. IEEE Com-
puter Graphics and Appllications 28, 5, 66–77.

Roettger, S., Guthe, S., Weiskopf, D., and Ertl, T. 2003. Smart
Hardware-Accelerated Volume Rendering. In Proceedings of
EG/IEEE TCVG Symposium on Visualization VisSym ’03, 231–
238.

Seiler, L., Carmean, D., Sprangle, E., Forsyth, T., Abrash, M.,
Dubey, P., Junkins, S., Lake, A., Sugerman, J., Cavin, R., Espasa,
R., Grochowski, E., Juan, T., and Hanrahan, P. 2008. Larrabee:
a many-core x86 architecture for visual computing. ACM Trans-
actions on Graphics (TOG) 27, 3, 18.

Stegmaier, S., Strengert, M., Klein, T., and Ertl, T. 2005. A
simple and flexible volume rendering framework for graphics-
hardware-based raycasting. In Proceedings of International
Workshop on Volume Graphics, 187–241.

Termeer, M., Bescós, J. O., and Telea, A. 2006. Preserving sharp
edges with volume clipping. In Proceedings of Vision, Modeling
and Visualization, 341–348.

Weiskopf, D., Engel, K., and Ertl, T. 2003. Interactive clip-
ping techniques for texture-based volume visualization and vol-
ume shading. IEEE Transactions on Visualization and Computer
Graphics 9, 3, 298–312.

Wexler, D., Gritz, L., Enderton, E., and Rice, J. 2005. GPU-
accelerated high-quality hidden surface removal. In Proceedings
of SIGGRAPH/EUROGRAPHICS conference on graphics hard-
ware, 7–14.

