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Stylization-based ray prioritization for guaranteed frame rates
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Figure 1: Four different scenarios rendered with a conventional ray-based rendering engine and with the presented adaptive approach in a
1024×768 viewport. (a) shows the areas in which the rays are fully computed (left) and the resulting reconstruction by our algorithm (right).
(b) shows how our approach can boost the frame rate while preserving the quality level. Our algorithm can also be applied to ray-tracing
scenes with complex materials (c). Priority sorting of the expected visual quality of a pixel allows us to guarantee frame rates for every type
of ray-based environment while maintaining a visually appealing result (d). Selected non-obvious artifacts, which are introduced by using
our method for guaranteed frame rates, are marked with small arrows in (c) and (d).

Abstract

This paper presents a new method to control graceful scene degra-
dation in complex ray-based rendering environments. It proposes
to constrain the image sampling density with object features, which
are known to support the comprehension of the three-dimensional
shape. The presented method uses Non-Photorealistic Rendering
(NPR) techniques to extract features such as silhouettes, suggestive
contours, suggestive highlights, ridges and valleys. To map differ-
ent feature types to sampling densities, we also present an evalua-
tion of the features impact on the resulting image quality. To recon-
struct the image from sparse sampling data, we use linear interpo-
lation on an adaptively aligned fractal pattern. With this technique,
we are able to present an algorithm that guarantees a desired mini-
mal frame rate without much loss of image quality. Our scheduling
algorithm maximizes the use of each given time slice by rendering
features in order of their corresponding importance values until a
time constraint is reached. We demonstrate how our method can
be used to boost and guarantee the rendering time in complex ray-
based environments consisting of geometric as well as volumetric
data.
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1 Introduction

A common challenge of high-quality ray-based image generation is
maintaining the interactivity of the applications. This interactivity
is normally achieved by sacrificing some of the image quality dur-
ing the interaction and by progressively refining the result as soon
as the scene interaction stops. The simplest method in this context
is regular sub-sampling: rendering the scene in a small viewport
during interaction and stretching the resulting image to the target
image size using linear interpolation. This method indiscriminately
discards features and results in a blurred render frame or block ar-
tifacts.

Adaptive sampling approaches try to assign the computational costs
to regions with high image fidelity and to approximate the remain-
ing image parts. Typically, these techniques use features that have
been detected in the image plane. These approaches obviously
require the final result as an input for the optimal result, which
is impossible. Hence, image regions from previously rendered
frames [Dayal et al. 2005] or sparsely sampled regions [Painter and
Sloan 1989] are used. However, image space methods suffer from
less accuracy than object space methods because of the required
projection to discrete image pixels. Furthermore, many image space
algorithms may cause more computational overhead than benefit
because of the already high GPU utilization of modern ray-based
image synthesis systems [Parker et al. 2010].Therefore, we investi-
gated the key element of adaptive approaches, which is the determi-
nation of which elements of an object can be coarsened and which
must be preserved. Much perceptually based research has been
performed in this area by researchers from the Non-Photorealistic
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Rendering (NPR) community. However, these results have only
been used for scene stylization and enhancement. We present a
new sampling strategy for ray-based image synthesis, which uses
information about object space features that are known to support
the comprehension of 3D shapes [Cole et al. 2008]. In this paper,
these NPR techniques are used to control the reduction of ray sam-
ples and thus to achieve a higher image quality while maintaining
the same level of interactivity.

Our implementation produces a feature buffer for every frame that
is efficient enough for use during the ray generation as a lookup ta-
ble for the required ray density. We derived a feature priority map
from the feature buffer that consists of silhouettes, suggestive con-
tours, ridges and valleys, all of which affect the ray density differ-
ently (see Figure 1(a)). Because different features generate different
ray densities, our method is able to support an importance-driven
rendering to guarantee the minimum desired frame rate. Even
though our main focus is the visualization of volumetric datasets,
we also demonstrated a way to apply our method to geometric ob-
jects with highly complex materials in ray-tracing scenes. Figure 1
shows some selected examples using this approach. The main con-
tributions of our method can be summarized as follows:

• A method that allows the optimization of the ratio between the
sampling rate of the scene and its resulting perceptual quality
(Section 4).

• A progressively refineable sampling pattern, which is used to
reconstruct sparsely sampled regions of the image without the
need for frame-to-frame coherence (Section 4.4).

• An algorithm that uses our method to guarantee frame rates
while maximizing the visual quality within the available time
frame (Section 5).

• An evaluation of different object space line features to catego-
rize them based on their abilities to enhance the image quality
(Section 6).

• A discussion of an addition to our method, which uses a fast
computation of the image space visual saliency. With this
method, we can also include features that can only be eval-
uated in image space (e.g., textures and shading details) (Sec-
tion 9).

2 Previous work

Previous researchers have been concerned with the real-time per-
formance of ray-based image generation algorithms. Recent work
has introduced the exploitation of modern GPUs for solving the
brute-force full-resolution ray traversal interactively, while coarse
adaptive and progressive sampling approaches have been discussed
since ray-tracing algorithms first became available. We give a brief
overview of recent GPU methods and adaptive progressive render-
ing methods in Section 2.1 and discuss possible scene feature com-
putation strategies in Section 2.2. A further overview of the re-
construction techniques for sparsely sampled data is given in Sec-
tion 2.3, and the attempts to guarantee a minimal frame rate are
outlined in Section 2.4.

2.1 Interactive ray-based rendering

Exploiting the GPU. Numerous rendering engines have been
developed to deal with one of the most computationally expen-
sive problems of computer graphics: ray-tracing. Besides CPU-
based libraries [Parker et al. 1999; Wald et al. 2007], most recent
GPU approaches reach remarkable frame rates for low- to medium-
complexity scenes [Seiler et al. 2008; Parker et al. 2010] in full
quality. However, screen filling scenes or scenes with high com-
plexity are still too slow for hard real-time constraints.Furthermore,
rendering algorithms that aim at achieving real-time performance

for the full-quality ray-casting of volume data use empty-space
skipping [Li et al. 2003], iso-surface ray-casting [Wald et al. 2005;
Wang and JaJa 2008], ray pre-integration [Engel et al. 2001], homo-
geneous region encoding [Freund and Sloan 1997] and many kinds
of direct GPU implementations [Fernando 2004, Chapter 39].

Adaptive progressive rendering. Adaptive approaches, such as
the one presented in this paper, aim instead for the best possible
trade-off between interactive frame rates and the loss of image qual-
ity instead of finding the maximum achievable frame rate for a full
quality image. Finding this trade-off is still an ill-defined problem
because the perception of quality differs between human beings and
between applications. However, several algorithms exist to accel-
erate rendering speeds through ray reduction. The simplest method
is a regular sub-sampling with a nearest neighbor interpolation. As
discussed by [Mitchell 1987] and still used in many interactive ray
based rendering systems [Schroeder et al. 1998; Wald et al. 2002],
this method is prone to strongly perceivable aliasing artifacts dur-
ing the interaction. To deal with this problem, most related work
has investigated the impact of different sampling pattern strategies
in image space [Dippé and Wold 1985; Painter and Sloan 1989;
Notkin and Gotsman 1997]. The sampling pattern is usually vi-
sually noticeably refined over time until a desired quality level is
reached.

Levoy reformulated the front-to-back image order volume render-
ing algorithm to use an adaptive termination of ray-tracing [Levoy
1990]. The subdivision and refinement process is based on an ε
threshold and does not consider human feature perception and tem-
poral coherence. Later work altered the ray termination criteria
[Danskin and Hanrahan 1992] depending on the required render-
ing time or used texture-based level of detail [Weiler et al. 2000],
topology guided downsampling [Kraus and Ertl 2001] or multiple
resolutions of the same dataset [La Mar et al. 1999; Boada et al.
2001].

2.2 Important image areas

The choice of a suitable sampling pattern is crucial for adaptive
rendering. For non-trivial systems, the pattern refinement strategy
is usually chosen depending on prominent features. In the following
paragraphs, we discuss our selected methods to find those regions.

Image space methods. Most methods refine the image sampling
pattern based on image intensity variances. Early algorithms as-
sume that image areas with high frequencies require a denser sam-
pling than do large uniform areas [Lee et al. 1985; Painter and Sloan
1989] to gain a visually acceptable result. Later systems adapt
this assumption towards the limitations of the human visual sys-
tem. [Ramasubramanian et al. 1999] have been one of the first who
have successfully introduced an image-based perceptual threshold
map which steers the sampling density of a global illumination path
tracing algorithm. The Ramasubramanian system shows that it is
possible to generate images, which have visually no difference to a
ground truth, with only 5-10% of the rays which have been used for
a reference solution.

During the development of our algorithm, we have also experi-
mented with the extraction of features from image space by using
visual bottom-up saliency [Itti et al. 1998].The saliency of an image
is usually defined as a measure of how much a particular location
contrasts with its surroundings in dimensions such as color, orien-
tation, motion , and depth. The resulting feature classifications are
very similar to the object-space results but at a lower performance
and accuracy, and they must be computed for every frame. For
these reasons, we first chose the object-space approach of analyz-
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ing meshes. In Section 9, we discuss the incorporation of saliency
computations for scenes that show mainly textured objects or hard
shadows and strong reflections. One main problem is that for an
optimal result, the final image would be needed at full resolution
before the scene is rendered. However, a full resolution image is
only available from previous frames, which can be used to generate
a spatiotemporal gradient cross-hair as introduced by [Dayal et al.
2005]. This approach introduces severe spatial and temporal noise.
However, the core of our method does not require any temporal co-
herence.

Non-Photorealistic Rendering of line features. NPR deals
with salient object features, often directly in object space. Re-
lated rendering techniques are mainly used for illustrative rendering
and in cognitive science. [Cole et al. 2008], for example, to show
that object contours including the object silhouette are also used by
artists to outline scenes. Several visualization algorithms show that
these features can be used to simplify complex scenes for a better
understanding of the essential parts [Bruckner 2008; Burns et al.
2005; DeCarlo and Rusinkiewicz 2007].

The features of an object or a scene can be extracted in various
ways: meshes can be analyzed in object space or, after rendering,
in image space. The same method applies to volumetric data sets,
where the object space contains a voxel grid instead of a set of ge-
ometric primitives. Finding features in a rendered image has the
advantage of including textures and other effects, while in object
space, more accuracy is usually available because the data have not
been discretized into pixels. Moreover, the features in object space
may be view-independent, which allows their reuse without recom-
putation. Figure 2 gives a visual impression of some sparse object
features that we evaluate for ray decimation in this work. Our def-
initions of object features are similar to those from [DeCarlo and
Rusinkiewicz 2007].

(a) (b) (c) (d) (e) (f)

Figure 2: The happy Buddha object (a) rendered with different
sparse line features. Silhouettes (b), suggestive contours (c), sug-
gestive highlights (d), ridges (e) and valleys (f) are evaluated for
ray decimation in this work.

2.3 Sparse data reconstruction

Computing only rays for important areas means that the final im-
age has to be reconstructed from those sparse samples. Numer-
ous approaches exist besides the simplest, conventional approach
of regular subsampling. This attempt requires a nearest neighbor
computation or a linear interpolation and leads to perceivable block
artifacts. A good general overview of non-homogeneously sampled
data reconstruction is given in [Amidror 2002].

Specialized approaches for computer graphics can be found
for point-based rendering. The widely used pull-push algo-
rithm [Gortler et al. 1996] utilizes a pyramid algorithm for sur-
face reconstruction. It has been adapted for the image-space re-
construction of under-sampled point-based surfaces by [Grossman
and Dally 1998]. [Pfister et al. 2000] extended this approach to

fill the holes between splats. Unfortunately, these approaches are
not suited for direct GPU implementations, as stated by [Marro-
quim et al. 2008]. The approach of [Marroquim et al. 2008], who
proposed a GPU implementation for large point-based models with
elliptic box-filters and deferred shading, is also applicable to the
reconstruction problem in this work. However, its computational
overhead is still higher for large viewports than that of the method
presented in Section 4.4.

2.4 Guaranteed frame rates

To the best of our knowledge, our method is the first that suc-
cessfully implements an algorithm to guarantee a certain minimal
frame rate and still maintains an acceptable image quality for ray-
based image generation. [Pomi and Slusallek 2005] proposed that
a guaranteed frame generation time would be essential for mixed
reality TV studio ray tracing applications, but they did not imple-
ment such an approach. For non-ray-based rendering approaches, a
few systems that guarantee a certain frame rate exist. For example,
[Jeschke et al. 2005] replaces complex objects optimally by impos-
tors. These examples show that several applications require guar-
anteed frame rates. However, this problem is not well researched.

3 Overview of the method

Our approach consists of two passes. First, a set of line features is
extracted from the data set’s corresponding meshes and projected
to the screen space, resulting in a feature buffer. According to our
evaluation (see Section 6), we assign priorities to different types of
features. The feature buffer is evaluated during the ray setup and
traversal, which forms the second pass. Given that we can assign
a priority value to every ray, it is possible to construct a rendering
system that aims at producing the best image quality within a given
time frame as outlined in Figure 3.

base-geometry 
frame feature 

frame static priorities

prior 
feature classi�cation

…

Sort according 
to priorities

STOP

sparse data
frame

final image
frame

Sparse data 
interpolation

Figure 3: Overview of our prioritized rendering algorithm. Every
ray’s priority is computed according to Section 4.2 and is used to
sort the pixels in a one-dimensional priority queue. If a certain time
limit is reached, the rendering process stops.

We adaptively adjust the image space sampling frequency accord-
ing to the feature buffer. More rays are sent into the scene in
feature-rich areas and their vicinity, while the sampling frequency
for feature-poor areas is strongly decreased. The same strategy can
be used for per-ray quality parameters (such as ray bounces, ob-
ject space sampling frequency or stopping threshold). Finally, we
reconstruct the image by filling in color values for pixels to which
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we have not previously assigned a ray. In Section 4.4, we present
a suitable method for a full image reconstruction using a fractal re-
construction pattern and an adaptive linear interpolation.

Our method is applicable to a ray-based rendering of geometric
surface meshes and to volumetric data sets. The only difference
is given by the feature extraction step. For surface meshes, the
feature-forming geometry is defined by the mesh itself. Using vol-
umes requires the extraction of multiple iso-surfaces based on an
evaluation of the given transfer function before the line features are
rendered.

4 Importance-driven sampling and recon-
struction

To control the frequency of the sampling pattern based on differ-
ent types of features, we render an importance buffer in each frame
(Section 4.1). This importance buffer is filled by a projection of
each single line element to the screen space followed by a compu-
tationally cheap falloff estimation. This buffer defines the impor-
tance of pixels (Section 4.2). We derived the corresponding sam-
pling density using a fractal sampling pattern (Section 4.3).

4.1 Object space importance buffer

To provide a sufficiently high frame rate in the first render pass, we
have extended the approach from [DeCarlo and Rusinkiewicz 2007]
with selective GPU acceleration techniques, which are described in
Section 7. For our method, the feature projection buffer must be
produced in a time frame that is shorter than the savings from the
main rendering pass. In practice, we can render this step at sev-
eral hundred frames per second because the features are rendered
as simple OpenGL lines. These lines are also reused from frame to
frame, and the vertices are only either removed or inserted. To sim-
ulate smooth features and to gradually decrease the priority in the
vicinity of features, we can replace these lines by textured triangle
strips, compute a distance transform on the feature buffer, or use a
fractal pattern as described in Section 4.4, the last option providing
the highest flexibility. In this way, we generate an intensity falloff
around the features. To remove any hidden features, we also render
the underlying base mesh with a homogeneous white surface and a
fully opaque one. Next, we encode the resulting feature projection
buffer as follows:

• Red pixels define a pure background,
• Black pixels define primary salient features,

(luminance = 0 =̂ contours)
• Gray to black pixels define secondary salient features,

(1.0 - luminance = feature priority =̂ ability of the feature to
improve visual quality as defined in Section 6)

• White defines homogeneous object areas with no salient fea-
tures.

4.2 Adaptive subsampling

When the feature frame is available, the actual ray traversal starts.
Every pixel of the output frame defines a possible ray starting point
which is equal to one thread in terms of GPU stream processing. If
the feature frame contains a red pixel at the thread’s position, this
ray’s thread will immediately return and fill its corresponding posi-
tion in the output buffer with the background color. If the feature
frame contains a pure black pixel, i.e., a primary feature, the ray
will be processed completely until the given convergence criteria
are fulfilled. If the feature-buffer shows a secondary feature, we
consult an adjustable ray priority table, which is used to determine

the image space sampling pattern (see Section 4.3). The combina-
tion of feature priority pfeat, which is deduced from the intensity of
the feature buffer, combined with the pattern priority ppatt, which
is read from the sampling priority table, is used to determine the
ray’s priority pray . Every arbitrary function fmap with two input
parameters is possible to combine these two independent priorities:

pray = fmap(pfeat, ppatt) (1)

For an efficient implementation, we use a second-order Taylor se-
ries approximation, because its implementation consists only of ba-
sic and fast algebraic operations. It is defined by six fixed parame-
ters αi,j :

pray =
∑

i+j≤2

αi,j · pifeat · pjpatt (2)

The rays are traced according to their priority pray . If the mapping
function captures every ray’s contribution to image quality, a fixed
threshold can be used to only trace rays with a high contribution. In
this case, −α0,0 can be used as the threshold and rays with a prior-
ity above zero are traced. Another option to sort rays according to
their priority and use the available time slot to draw the rays with
the highest contribution (see Section 5). The way that fmap and
thus the α values are chosen, controls the influence of the feature
priorities on the output image. Low weights for terms dominated
by pfeat will result in a nearly uniform pattern, while a high con-
tribution of pfeat creates samples at only the feature areas. A good
trade-off between these extremes is a method that creates a dense
sampling pattern along important features while reducing the num-
ber of samples along the transition from a feature to feature-less
areas. Lower priority features would thus receive a lower sampling
density than would higher priority features, and homogeneous areas
would contain only a few sampling points (see also Figure 7).

In practice, we have used a rather simple choice for the α val-
ues: α2,0 = α0,2 = 0 and αi,j = 0.5 ± 0.2 for all remaining
terms. However, an optimal mapping function fmap takes infor-
mation about the rendered objects into consideration. Images of
strongly transparent objects naturally show few homogeneous ar-
eas; thus, increasing the influence of ppatt (increasing α0,1 and
α0,2) will have a positive influence on the image quality. Nearly
opaque objects with low color variation will benefit from an in-
creasing influence of pfeat (increasing α1,0 and α2,0), as most vari-
ation in color appears along the feature regions.

For the remaining case – a white pixel in the feature buffer, which
indicates no salient feature at that position – we assign a feature
priority of zero and only use the ray pattern priority to determine
whether the ray should be traversed. All non-background rays,
which have not been traced, are subject to a reconstruction step as
described in Section 4.4.

4.3 Sampling pattern

The choice of an incrementally refineable sampling pattern is cru-
cial to smoothly add detail to transitions between fully traced ar-
eas and a coarsely traced background. The design of this sampling
pattern should further consider the possibility of interpolating the
resulting ray pattern efficiently. Both problems can be addressed
by defining a fractal sampling scheme that considers only two local
shapes: a square and a diamond (45◦ rotated square). We start with
the coarsest sampling density, which only needs to be sufficiently
coarse, and a power of two, and create a square pattern by placing
a ray at every 8× 8 square of pixels. We then place a sample at the
center of the square that exactly matches the center of a pixel and
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Figure 4: We use a sampling priority pattern similar to that out-
lined in this figure. For illustration reasons, this figure shows a
much finer grid than would be used in reality. Blue defines the ini-
tial rays with priorities 1.0. With every sampling step, the pattern
becomes finer, and the priority decreases (color coded in the figure).

splits every square into four triangles. Together with the surround-
ing squares, which are augmented with an additional sample, a di-
amond pattern results. The density of this pattern can be increased
by placing a ray at the center of each diamond. This procedure leads
again to a uniform square pattern. Repeating these steps places rays
at exactly the centers of pixels until every pixel is covered with a
single sample. The associated priority values are deduced by start-
ing with the maximum priority and linearly decreasing the priority
with each new shape. The whole procedure is outlined in Figure 4.
The pattern can be refined locally and thus increase the sampling
density for arbitrarily sized regions.

4.4 Image reconstruction

To improve the quality of the reconstructed image, we have inves-
tigated methods to fill areas for which no rays have been traversed.
We focus on reconstructing without losing much performance. Our
approach linearly interpolates samples based on the fractal pattern
presented in Section 4.3.

Various methods exist for interpolating non-homogeneously sam-
pled data [Amidror 2002]. However, our sampling pattern allows
us to combine the choice of ray locations with their interpolation
and compute both steps efficiently. A pixel contained in the interior
of a square pattern can be constructed with a bilinear interpolation
from the four anchor points defining the square. Because the di-
amond shape is a rotated square, we only need to rotate the pixel
position accordingly to enable a standard bilinear interpolation for
this shape.

The transition from one interpolation density to the next requires an
additional step, as up to three anchor points might be missing. In
this case, we have to interpolate the missing anchor points from the
coarser pattern first. From another point of view, we add a ray ac-
cording to the pattern described in Section 4.3, but instead of tracing
it, we interpolate its value from the already given rays. As this new
anchor point is placed exactly in the middle of the already existing
ones, the linear interpolation breaks down to an evenly weighted
mixture of the four anchor points. For an efficient implementation,
we have to make sure that we do not create a dependency chain
when gradually decreasing the sampling density. If the sampling
density is decreased too abruptly, there will not be enough lower
density rays available to construct the missing points for the next
higher density. Thus, the missing point has to be constructed from

another density level first. Therefore, for maximum performance,
we make sure that the features are smoothed sufficiently such that
enough rays are traced to construct all of the missing anchor points
in a single step.

5 Guaranteed frame rate rendering

For a continuous rendering scenario with a good frame-to-frame
coherence, we can build a reactive rendering system that adjusts the
number of traced rays depending on the time needed for previous
frames. This step is possible by dynamically adjusting the threshold
that defines which rays shall be rendered, i.e., by decreasing α0,0 by
a fixed value if the frame rates are too low. If the scene is static and
the camera is still, the rays traced in the previous frame are reused,
and we progressively add new rays by increasing α0,0. Thus, the
image converges to the highest quality.

For hard real-time scenarios with low frame-to-frame coherence or
with little still image renderings with progressive refinement over
time, the aforementioned approach fails. An unexpected load on
the GPU, complex objects popping up in the scene or the simple
lack of a previous frame prohibits us from deducing enough infor-
mation for the next frame. However, in these cases, we can still
rely on the ray priorities to guarantee the given update rates. We re-
quire an additional sorting step before the actual ray tracing is con-
ducted. Every ray’s priority is computed according to Section 4.2
and inserted into a one-dimensional priority queue. In this scenario,
the parameter α0,0 is irrelevant because it has no influence on the
sorting order. During the following rendering step, each block of
threads fetches a set of rays from the front of the queue and pro-
cesses them. This step is repeated until the available time frame
is nearly over. The use of this priority queue guarantees that the
available time is spent on rays that have been classified as being the
most important. For the sorting itself, we use a fixed number of
buckets instead of completely sorting the queue to increase perfor-
mance. As we cannot guarantee that all elements within a bucket
will be processed, we randomize the order in every bucket. Oth-
erwise, the render order for similar ray priorities would match the
insertion order, and the sampling density might thus only increase
locally.

Our experiments have shown that the reconstruction step’s execu-
tion time is very short and has little variation. We can thus mea-
sure an upper bound for this step in the initialization phase and
reduce the time frame during the rendering accordingly to have
enough time for the reconstruction step. This setup enables us to
output a frame within the desired latency. The time measurement
is performed on the graphics card itself, which allows each block
of threads to work autonomously without synchronization via the
host. For static scenes, we can again use our system for a progres-
sive rendering. As low priority rays are still present in the queue
after the time frame is over, we can simply re-launch the rendering
kernel right after presenting the current quality level. In this way,
the next set of rays are traced within the next time frame, and we
are able to progressively update the scene with the next lowest ray
importance level.

6 Feature Classification

To evaluate how features improve the visual quality of the result, we
have tested ray traced objects and selected volume-rendered objects
with different transfer functions. We assume as the lower visual
quality bound the simplest subsampling approach: rendering at a
lower resolution with a block filter kernel reconstruction. The upper
visual quality bound is given by the ground truth (ray tracing at
full resolution). We evaluate subsequently how the image quality
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improves when pixels, which are marked as a certain feature, are
rendered with an increased sampling density.

To quantify the visual improvements of different features, we use
two image comparison metrics (comparing the feature-enhanced
image to the ground truth image): the average absolute pixel dif-
ference (AAPD) and the Structural Similarity Index (SSIM).

The first quantity is simple, parameter-free, and easy to compute.
Moreover, it has a physical meaning similar to the mean square
error (MSE), the energy of the error signal. Problems with averag-
ing methods arise when the subjective human’s perception of image
quality has to be quantified. As it was shown in [Wang and Bovik
2009], these methods are very similar despite the differences in im-
age distortions.

The second quantity, SSIM, is a generalized form of the Univer-
sal Quality Index and was proposed by [Wang et al. 2004]. This
metric shows distinct values for different kinds of image distortions
according to well-defined luminance, contrast, and structure com-
parison measures.
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Figure 5: These graphs evaluate the render quality in terms of the
AAPD (a) and the SSIM (b) compared with the required logarith-
mic ray count that is needed to reach that quality. Both plots are
an average of our test datasets (ray-traced geometry as well as vol-
umes). For both evaluation methods the center areas of the graphs
show evidence that the conventional regular subsampling approach
performs worst, whereas rendering along contour lines performs
best.

Figure 5 shows that all object space features improve the image
quality during interaction, compared with the conventional regular
subsampling rendering. We observed that using the exterior silhou-
ette leads to the best result for objects with a low interior feature
count. Otherwise, using ridges and contours yields the best out-
come. In the case of objects with a clear boundary (e.g., as used
for ray-tracing), the external silhouette alone shows the highest rel-
ative quality improvement. For translucent volumetric objects, the
external silhouette does not necessary improve the image quality
because it might cover the whole dataset and exclude the (proba-
bly more important) internal features. Based on our observations
from automatic tests, we first roughly classified the features into
strong visual features and medium visual features. We did not in-
troduce the class weak visual features here because we have already
considered regions on/in an object with no response to any feature
extraction algorithm as regions with a low image signal frequency.
Our experiments show that contours in particular lead to a much
better relative perception during the scene interaction for our tested
scenes. Ridges and (subjectively) exterior silhouettes also yielded a

good result in all of the tested scenes, especially for transparent vol-
umetric objects. Therefore, we categorize contours as strong fea-
tures (along with the external silhouettes as a subset of contours)
and the remaining ones as medium features. In Section 5, we di-
rectly use the results from Figure 5 to define static feature priority
lookup tables for each separate feature in a numerical way. Using
the values measured in this section, we can provide good default
values for the priority lookup tables. However, a user is still able to
alter these priorities in our system.

It is desirable to evaluate the importance of different features for
every frame independently. For a fully automatic evaluation of the
image quality improvement of different line features per frame, ob-
taining the ground truth is necessary, which is of course not feasi-
ble during runtime. Therefore, users can alter the proposed feature
ranking in our system during runtime. Preliminary experiments
with this feature have shown that users tend to fully disable fea-
tures such as suggestive contours, suggestive highlights and valleys
to gain higher frame rates. These features have also shown a low
visual improvement during our offline evaluation as outlined in Sec-
tion 6.

7 Implementation

We have implemented our method as part of the OptiX SDK [Parker
et al. 2010], which we have enhanced with volume rendering abil-
ities. OptiX provides a C++/CUDA-based programming interface,
which is specialized for ray-tracing applications. Because several
materials, like the glass effect, which has been used in this work, are
already implemented in the SDK, we only had to extend the frame-
work to include a volume material and specialized ray generation
programs (cameras) to support our method.

In OptiX, a simple ray-tracing program normally consists of a com-
bination of a hit function, a trace function, a miss function, and a
camera for the ray setup. The main functions are executed per ray.
The hit function is used to intersect rays with object surfaces in the
scene. The trace function evaluates the color contribution of a ray
between two intersections, and the miss function fills rays that hit
no geometry with a defined background color. These functions are
implemented in separate CUDA files, which are preprocessed by
the OptiX SDK.

7.1 Feature preserving adaptive sampling camera

The rays are set up by a ray generation program, which can be seen
as a camera. We use a pinhole camera model as the basis for our
implementation and alter the ray generation scheme by our adaptive
approach. The feature frame is rendered by using an extended ver-
sion of the publicly available framework provided by [DeCarlo and
Rusinkiewicz 2007], which is based on the Princeton Trimesh2 li-
brary. To provide high frame rates for very complex objects, we ex-
tended this library with GPU-accelerated calculations. Therefore,
we moved all per-frame calculations (e.g. n̂(p) · v̂(p)) to CUDA
kernel functions and attached the line-output to an OpenGL Vertex-
Buffer object. This vertex buffer is subsequently rendered into an
OpenGL Framebuffer object, which is concurrently mapped as a
texture in the OptiX context. The ray setup is then done according
to this texture as described in Section 4.2.

For volume rendering, we have also attempted a direct feature line
extraction as proposed by Burns et al. [Burns et al. 2005]. Exper-
iments with the Burns system have shown that the frame rates are
not as high as those obtained with iso-surfaces, which are used in
the DeCarlo system, especially for very large volumes and multiple
transfer function peaks. This fact can be explained by the differ-
ence in the order of complexity when processing a surface (O(n2))

48



compared with when processing a volume dataset (O(n3)). Be-
cause iso-surfaces for the feature frame generation only have to be
recalculated when the transfer function changes, we have decided
to use the feature extraction approach from De Carlo et al. How-
ever, it would also be possible to use the approach of Burns et al.
because it also shows frame rates that are high enough to meet our
two-pass rendering criteria.

7.2 Volume rendering

We have implemented a standard ray-casting approach as a mate-
rial trace function. In contrast to tight-fitting bounding geometry
volume rendering systems, the volume bounding geometry can be
a simple cube or a sphere instead of a tight fitting one. This detail
reduces the necessary intersection calculations and maximizes the
thread coherence, which was stated by [Parker et al. 2010] to be one
of the most important factors for an efficient execution. Because ev-
ery ray can store a certain amount of payload, we save the entrance
point and the exit point of the hit function in every ray’s payload
structure. After transforming these two points to the volume object
space, we let every ray accumulate all of the values in between, de-
pending on the given transfer function. In addition, the values are
shaded according to the Phong illumination model depending on
the approximated volume gradient.

Mesh extraction Our method requires a smooth surface mesh
for feature rendering. At that stage, we distinguished between a
pure geometric input for ray-tracing applications and volumetric
data sets for a direct volume ray-casting. In the first case, the input
mesh can be used directly by the feature extraction step. The second
case requires an intermediate step depending on the used volume
transfer function and the volume histogram. In our case, a trans-
fer function is defined by several color gradients, mapping a certain
intensity range to a defined color and opacity. One can also define
high dimensional transfer functions for a better visual result (e.g.,
using the gradient magnitude as a second dimension, as proposed
by [Kniss et al. 2001]). However, for an iso-surface extraction, the
peak value of the direct (1D) mapping gradients or the projection
of the color gradient’s opacity peak to the intensity axis for high-
dimensional transfer functions together with the peak of the volume
histogram is sufficient. Consequently, we define the necessary iso-
values for a multi-iso-surface extraction as the highest peaks of the
volume’s histogram if the transfer function is not zero at that posi-
tion. We use a fast GPU-accelerated marching cubes implementa-
tion (CUDA version of the [Lorensen and Cline 1987] algorithm)
to extract the iso-surfaces whenever the transfer function changed.
Because the resulting meshes are over-tessellated, we simplify this
mesh with a GPU-based simplification method as described in the
following paragraphs.

Mesh preparation The quality and size of surface meshes, used
as inputs for our algorithm, vary dramatically. Ray-tracing appli-
cations are often applied to high quality meshes with hundreds of
thousands of triangles. The iso-surface meshes extracted from vol-
umes are known to be noisy and often contain lots of small trian-
gles, which can be merged without a loss in quality. We thus use
a combination of mesh smoothing [Taubin 1995] and mesh simpli-
fication [Luebke and Erikson 1997] to generate meshes that fulfill
our demands: (a) the mesh contains little noise, (b) the number of
faces is low enough to generate the feature buffer quickly, and (c)
main features from the original mesh are conserved at the according
position.

Our algorithm successively applies Taubin smoothing, mesh sim-
plification and another instance of Taubin smoothing. The first
smoothing step is especially important for iso-surfaces extracted

from a volume. Taubin smoothing preserves the volume of the
mesh and thus also conserves the location of remaining features.
Our implementation of the mesh simplification method is run once
per mesh as a preprocessing step and does not include any view-
dependent simplifications. A static simplification based on a fixed
error metric turned out to be sufficient for our demands. Both algo-
rithms allow a highly parallel GPU-based implementation, which
enables low latency on input data changes. The overall process
takes up to a second, depending on the mesh complexity and the
number of peaks in the transfer function.

8 Results

In Section 6, we present our results on how much a certain object
feature can improve the visual quality. In this section, we evaluate
the performance of the overall system. Our test system is equipped
with an Intel i7 Processor, 6 GB System memory and an Nvidia
Quadro 6000 graphics card. Figure 6 shows the increase of the
AAPD (a) and the decrease of the SSIM (b) for increasing guaran-
teed frame rates.
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Figure 6: These plots show the increase of the AAPD (a) and the
decrease of the SSIM (b) for increasing guaranteed frame rates
averaged over different data sets. The viewport for this test was
1024 × 768. Note that, after a certain guaranteed frame rate, the
time frame becomes too short to render the important features. This
issue becomes apparent in the plots by the bend at approximately
35 fps.

The feature lookup texture can be rendered with up to 1000 frames
per second on a modern graphics workstation in a moderate view-
port and it does not need to be of the same size as the render frame.
Therefore, the computation time for this step can be neglected. For
quality estimation, we use the fractal pattern interpolation image re-
construction method, as described in Section 4.4. Table 1 gives an
overview of the overhead computation times of our method com-
pared with the unaltered ground truth. Figures 7 and 8 show the
decrease of quality with an increasing frame rate demand. The im-
age quality remains stable as long as the frame rate is reasonably
adjusted. Figure 7 also shows the pixels that are required to cal-
culate a full ray traversal and compares our image reconstruction
method to a regular subsampling with linear interpolation. Figure 8
shows the quality decrease for a volumetric object.
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Figure 7: This figure illustrates the decreasing ray count with increasing requested guaranteed frame rates for a 1024× 768 viewport. The
top row shows the actual pixels that have been traced, and the middle row shows the result with our fractal pattern interpolation scheme. (i)
and (j) of the top row are the edge images of the traced pixels to emphasize their positions in the printed versions of this paper. The bottom
row shows the results using a regular sub-sampling pattern with a linear interpolation for comparison.

9 Image space saliency

Because pure object space features do not incorporate high frequen-
cies in textures and hard shadows or reflections/refractions, we car-
ried out additional experiments to enhance the feature-buffer with
this information. If required, users can activate the saliency infor-
mation for the features buffer. Therefore, we rendered the unaltered
scene at a lower resolution and calculated the saliency of this image
before the feature frame is generated. For that step, we make use
of the OptiX rendering engine’s ability to render small scenes at
full resolution with very high frame rates. If the image space addi-
tion is selected, a third render-pass is added in the beginning of our
method, which rendered the unaltered scene at a very low resolu-
tion (typically a factor of 4 to 8 smaller, depending on the graphics
hardware used and target resolution). Subsequently, a GLSL shader
implementation of the method from [Itti et al. 1998] is applied to
compute the image’s saliency. The feature buffer is then enhanced
with a linearly interpolated version of this image. The saliency in-
formation defines some additional lower levels within our priority
queue. This step usually requires 10-20 ms. However, for this step,
the required rays are reused in the reconstruction step to further im-
prove the image quality. As an example, the feature buffer including
the proposed saliency measure is shown together with the resulting
reconstruction in Figure 9.

The visual saliency information of a small scene viewport is only a
rough approximation of the full resolution; hence, we assigned the

lowest priorities to the results of this preprocessing step. However,
adding an image space method narrows the possible speedup of our
approach. Our results show that for most objects (including the
heavily shaded ones), the object space feature extraction step is suf-
ficient for a visually pleasing rendering during the interaction step.
Our image reconstruction scheme converges progressively within a
few frames as soon as the scene interaction stops. Therefore, miss-
ing shading details are added quickly with low visual annoyance.
However, because of the computational overhead, the maximum
performance boost, with respect to the maximum guaranteed frame
rate with a visually acceptable result, decreases by approximately
10 frames per second. Using only the saliency information (without
the object space features) results either in a very bad reconstruction
result or a low speedup because of the rough image approximation
and the low resolution of the saliency frame.

We have also evaluated the possibilities of image warp-
ing [Hauswiesner et al. 2010] for reusing the saliency information
from previous (fully resolved) frames. This approach has shown
promising results for a limited scene interaction and few object dis-
occlusions, thus, for scenes with a high frame-to-frame coherence.
However, image warping and saliency computations are compu-
tationally more expensive than the pure feature frame generation
in object space. This fact lowers the maximum reachable perfor-
mance; however, a pure image space method is not as accurate as
the proposed object space approach.
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Table 1: An overview over the average rendering times for each
step and different objects using our approach on our test system
(variance < 1%). For geometry, we tested the Stanford Dragon,
Buddah, and Bunny datasets, our piggy dataset and some simpler
drinking glass meshes, as shown in the accompanying video with
the ray-traced ’glass’ material from Figure 1(c). For volume, we
tested the 5123 datasets, MANIX and FEET, as shown in Fig-
ure 1(b) and (d) with different transfer functions. The measured
times refer to a computation within a 1440 × 900 viewport. Note
that not all rays on feature lines have to be computed. To obtain
high guaranteed frame rates that maintain a visual appealing re-
sult, low priority features might be omitted by our algorithm from
Section 5. The average ray count also varies with different view-
ports.

geometry volume av. ray count
[ms] [ms] [#rays]

feature frame 2 3 -

rays on contours 11 12 34.970

rays on ridges 12 14 37.208

rays on silhouette 5 8 9.373

rays on sug. highlights 10 19 23.043

rays on sug. contours 6 11 18.793

rays on valleys 5 7 10.288

reconstruction 15 15 17.756

sum 66 89 151.431

ground truth 208 251 2.457.600

10 Conclusions and future work

This paper presents a novel method for integrating NPR features
into a rendering environment as a quality hint for the required gran-
ularity during a ray-based rendering without frame-to-frame coher-
ence requirements. We show that higher frame rates are achiev-
able during a scene interaction without a severe loss of image qual-
ity. Our method outperforms the state-of-the-art implementation of
adaptive rendering, for example, delivered with the OptiX SDK,
in terms of speed and quality. It also reflects perceptual features
more accurately due to its use of object space feature extraction
than comparable approaches in image space.

We have performed a quantitative evaluation of the perceptual fea-
tures to determine their impact on the visual quality and to show
which features are best suited for adaptive ray-based image gener-
ation. Our algorithm can therefore also be used to achieve guaran-
teed frame rates by sorting the image pixels according to the feature
priorities. Our algorithm is mainly intended for highly complex ray-
based calculations, such as volume rendering, and for systems that
require that object rendering does not occupy the whole computa-
tion unit (e.g., additional GPU-based simulation and segmentation).

We plan to perform a larger user study with different ray-tracing
materials and ray-casted volumetric objects. From such a work, we
expect a qualitatively founded classification of salient object fea-
tures to answer the question of which feature works best for a par-
ticular type of object by means of human perception. In this work,
we show evidence that contours are the most valuable feature of an
object in terms of mathematically estimated image error and qual-
ity. However, to better qualify the remaining, less distinctive fea-
tures, a deeper analysis will have to be performed with a sufficient
number of human subjects.

(a) full sampling (b) 15 fps

(c) 30 fps (d) 40 fps

(e) 50 fps (f) 60 fps

Figure 8: This figure illustrates the decreasing quality with increas-
ing requested guaranteed frame rates for a 5123 volumetric dataset
in a 1024×768 viewport. Image (b) still uses all available features
to steer the sampling pattern and interpolates only more coarsely in
feature-poor areas. This is visible in homogenous regions (e.g., at
the small arrow in (b)). In (c) nearly all ridges and valleys and some
parts of the silhouette are discarded for the interpolation, which
can be seen for example at the left heel (at the small arrow in (c)).
(d) leaves out also some rays which would be formed by contours,
which causes coarser borders of the bones (e.g., at the small arrow
in (d)). The interpolation in (e) and (f) has to discard all features,
which results in the shown images.

(a) (b)

Figure 9: The visual saliency information can be included into our
feature buffer (a) for the reconstruction of a ray-traced textured
object (b). The saliency information was computed on a six-fold-
smaller ground truth, the processed rays were reused for the final
reconstruction. Colors in (a) have been encoded according to our
definitions from Section 4.1.
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