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Abstract

This thesis describes a workflow to obtain high level, hardware accelerated

scientific visualizations from the measurement of four dimensional cardiac

blood flow data through phase contrast magnetic resonance imaging (PC-

MRI). Extending an existing medical data viewer, called iMEDgine, which

is based on Coin3D, an open source scene graph library, enabled the im-

plementation of point based and sparse velocity field visualizations with

an additional presentation of the underlying anatomical image data. The

workflow includes a preprocessing of the raw data with a Toolbox provided

by Siemens Medical Solutions. To evaluate the results of the presented vi-

sualization algorithms several real human heart datasets and an additional

artificial flow phantom setup were measured with different parameters. The

results of these sequences showed that a high-level visualization may provide

a deeper insight in the cardiac cycle for diagnostic and research purposes.

Keywords: phase contrast magnetic resonance imaging; PC-MRI; cardiac

blood flow; artificial flow phantom; scientific visualization; flow visualiza-

tion; scene-graph; Cash-flow; iMEDgine; GPGPU



Kurzfassung

In dieser Arbeit werden Abläufe definiert, die die Nachverarbeitung und

Darstellung von vierdimensionalen Kernspinresonanz-Phasenkontrast Auf-

nahmen des menschlichen kardiovaskulären Blutflusses ermöglichen. Hi-

erzu werden verschiedene Möglichkeiten der hardwarebeschleunigten Ström-

ungsvisualisierung untersucht und als Erweiterung zu einem existierenden

medizinischen Bildbetrachtungsprogrammes implementiert. Als Basis di-

ent hierzu ein szenengraph-basierter Ansatz der vollständig auf Grafik-

hardware ausgeführte Visualisierungsalgorithmen in dessen Knoten kapselt.

Um die Ergebnisse von punkt- und trajektorienbasierten Algorithmen zu

evaluieren wurden mehrere Datensätze von gesunden Probanden mit ver-

schiedenen Parametern aufgenommen und ein Flussphantom gemessen, das

eine künstliche Stenose eines Blutgefäßes simuliert. Die Ergebnisse zeigten,

dass eine interaktiv nutzbare, frei kombinierbare und effiziente Visualisierung

mit verschiedenen Methoden zu neuen diagnostischen Verfahren und einem

besseren Verständnis des menschlichen kardiovaskulären Systems führen

kann.

Schlagwörter: Phasenkontrast Magnetresonanzverfahren; PC-MRI; Strö-

mungsvisualisierung; kardiovaskulärer Blutfluss; Szenengraphen; iMEDgine;

GPGPU; Flussphantom
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Chapter 1

Introduction

Assessment of blood flow properties is crucial in the understanding and diagnosis of

many cardiovascular diseases. The Magnetic Resonance (MR) through-plane phase

contrast method provides a lot of useful information from flow through cross sections

or velocities in preferred directions. However, its usefulness in situations involving

complex fluid dynamics - as for example in the cardiac chambers - is limited, because

the main directions of flow are neither known nor constant in time. Conceptually the

easiest way to acquire three-dimensional blood flow data is to measure both through-

plane and in-plane velocity components via phase contrast sequences. Velocity vectors

are determined on each imaging plane: In the case of the combined through-plane and

in-plane measurement for each pixel.

This measurement method is already available [Reiter2006; ClincalMRI2006], but

the vast amount of data and its complex composition requires the development of tools

and methods for a clear representation aimed at physicians who may evaluate possible

vascular diseases or understand the human cardiovascular system in a better way. High-

performance real time GPU accelerated visualization techniques help to investigate the

resulting four-dimensional datasets in this work. These methods are also applicable to

other kinds of flow data.

The problem we are dealing with is that radiologists and physicians can form mental

images of a certain structure from human anatomical images slices, but flow information

given in additional images is not perceptible in a similar way. The main problem with

flow sensitive sequences is that three dimensional flow data requires three additional

images for each measured slice image and that they have to be investigated in addition

to basic morphological data. For physicians this is not feasible. Flow is also changing
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over time, so the resulting datasets are four-dimensional, which implies that high-

performance interactive visualizations are required for a presentation of this data in

combination with a conventional presentation of medical data.

The desired solution is a workflow which integrates these measurement sequences

with a preprocessing software into an interactive visualization framework. Therefore,

we extended a medical image viewer with scene graph based and hardware accelerated

point based visualization algorithms to combine the measured velocity fields with the

morphological background.

Chapter 2 gives an overview of possible visualization techniques for medical data

and flow data. This approach introduces scientific visualization used for n-dimensional

flow data. Due to the high computational costs for rendering flow and anatomical

datasets, hardware acceleration techniques are required. The corresponding graphics

hardware architecture is also presented in chapter 2.

It is crucial to present interesting parts of blood flow in an instructive way, so that

a possible diagnostic use is given. The special MRI sequence which was developed to

continuously measure the movement of blood in human vessels is described in chapter 3

after a short introduction into the basics of magnetic resonance imaging.

To apply these algorithms chapter 4 defines the workflow with all preprocessing

steps for the raw data which are required until an advanced data visualization can be

performed. This workflow is one of the main attainments of this work and is outlined

in figure 1.1.

This work concentrates on point-based and sparse flow representations as defined by

[Weiskopf2007]. We implemented different types of direct particle based visualizations

and particle trajectory based line visualizations. Additionally we provide several cutting

plane visualizations and improvements of basic line approaches. All these visualization

algorithms can be combined arbitrarily and are specified in detail in chapter 5.

To reduce the development work for GUI and further overhead, a medical image

viewer called iMEDgine was extended, which is based on scene graphs as provided by

the Coin3D [SystemsInMotion2007] library. On the one hand data flow abilities were

added as provided by a scene graph extension library called Cash-flow [Kalkusch2005]

and on the other hand high-performance and parallel executed shader algorithms for

complex flow visualizations were developed. Chapter 5 describes the details for these

combinations and outlines their dependencies.
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Figure 1.1: This workflow diagram describes the traversal of the measured raw data.
Data acquisition is marked with (A) and described in chapter 3. Following the first
arrow rightwards leads to the data preprocessing (B) which is described in chapter 4.
From the preprocessing-Toolkit module on, the user has to perform some data improve-
ment (C). The processed data is stored in files (D). These files are used in combination
with the anatomic raw images from (A) by our flow visualization framework (E). This
framework is further discussed in chapter 4 and chapter 5. (A) and (D) belong to the
data layer, (B) and (D) to the application layer and (C) needs user interaction. The
arrows additionally indicate the course of the data flow.

For experiments we have accomplished several collateral PC-MRI measurements

at the radiology department of the Landesklinikum Graz and the Diagnostikzentrum

Graz. Besides the acquisition of datasets from real human hearts, a flow phantom

was built to measure flow through an artificial narrowing. The results of this setup

compared to real human blood flow are presented in chapter 6. Performance analyses

of all implemented visualization techniques are compared on two reference PC-systems

in section 6.4.

Finally a forecast for future possibilities is made in chapter 7. Among others, further

developments may be seen in the fast and accurate calculation of derived flow quantities

and better control mechanisms for an arbitrary interactive visualization. Quantities

derived from velocity values could be partial pressure differences or correlated tissue
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stress visualizations. These applications may provide crucial indicators for a possible

course of a vessel surgery. Currently, these quantities are determinate by perilous

catheter based measurements. They may get obsolete through further investigations of

4D PC-MRI cardiac flow measurements and according visualization techniques.
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Chapter 2

Visualization

Visualization is a broad term referring to various fields and disciplines. It is always

related to a human perception, so the interpretation of visualization can differ from

person to person.

In the focus of this work, visualization generally means the representation of com-

plex data with visual means. In this context the goal of visualization is to give different

observers the same perception of the same coherences of the same data. This chapter

introduces different kinds of presentation techniques and accordingly splits them up to

the underlying data and the information which has to be transported.

Such high-level definitions can be subdivided into numerous sections, which can be

organized in a tree structure. This chapter will follow one path of this tree up to pos-

sibilities suited for complex datasets as described in chapter 3. The junctions through

this tree will define technical visualization and its divisions into scientific visualization

and information visualization which are separated in section 2.1. Passing some insights

in ongoing graphics hardware developments will yield a high level description of the

programing abilities of such a graphical processing unit (GPU) with a special view on

vector processing and flow visualization opportunities.

The focus of this thesis is the processing of image data with additional cardiac

flow patterns, recorded from a MR imaging device. Consequently, cardiac flow data

visualization belongs to the field of scientific visualization which will be illuminated in

section 2.1.1.
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2.1 Technical Visualization

2.1 Technical Visualization

Visualization can be defined as a technique for exploration and presentation of data

as well. According to [Wijk2005] the creation of images, diagrams or animations to

communicate a certain message, is just as important as the exploration of new and

unknown datasets.

Two main fields of technical visualizations can be divided in the following: informa-

tion visualization and scientific visualization. The difference between them is the kind

of data they operate on. Information visualization attempts to efficiently map data

variables onto visual dimensions in order to create graphic representations [Gee2005].

Abstract data is data that has no inherent mapping to space and can cover nearly

everything from databases to statistics or biochemical processes. The main objective

is in most cases the arrangement of abstract data intuitively for the user sight.

Scientific visualization should be treated in opposition to information visualization

since it deals with physically-based data mainly with spatial character. This means all

but everything which can be measured with a sensor or sensor-related devices. This

makes it relatively easy to visualize physical data in an intuitive way by mapping the

space coordinates in the dataset to screen coordinates as discussed by [Voigt2002]. Fig-

ure 2.1 illustrates the differences between information- and scientific visualization by

two examples. They show on the left hand side the files used for this thesis but ordered

by their size, using the tool from [Eindhoven2002], which refers to information visual-

ization. The right hand side example shows a weather heat-map for the temperature

distribution of a day in June which refers to scientific visualization due to the spatial

correlation of its base data.

In the next section the field of scientific visualization will be investigated more

closely. The aspects of presentation of potentially huge quantities of data and repre-

sentation approaches to aid the exploration, presentation and hypotheses generation

from them will be a matter of particular interest.

2.1.1 Scientific Visualization

The main parts of this area of research are volume visualization and flow visual-

ization [Hauser2002]. To provide an overview over this topic some major visualization

approaches are discussed in the following.
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2.1 Technical Visualization

(a) (b)

Figure 2.1: Figure (a) shows the ”information visualization” approach for the or-
ganization of the files used to generate this thesis. They are ordered here by
their size with the tool SequoiaView from [Eindhoven2002]. Figure (b) visual-
izes the (measured or predicted) temperature differences by means of a heat map
and can be associated with scientific visualization. This images were taken from
http://www.wetter.at/wetter/oesterreich/. These examples illustrate how different
these two areas of visualizations are with respect to the underlying data and the re-
sulting presentation.

The context in which visualization is used should be taken into account first. In

figure 2.21 we show visualizations organized depending on the dimensionality of the

underlying data from the inside outward. Besides several other fields of usage we could

identify the area where this work is located in. This place is marked with a red cross

at the border between three-dimensional and n-dimensional data.

Another good choice for an ordering concept of scientific visualization was presented

by [Tory2004], who tried to squeeze this field of research into a taxonomy shown as in

table 2.3. This taxonomy is based on the data structures by which the underlying data

can be described and on the number of independent variables. These variables can

for example refer to the dimensionality of the space in which the data is embedded.

The data structures are scalar, vector, tensor or multivariate ones. In this ordering

concept we can identify the area of interest for this thesis more precise since the basic

data structure for the measured flow data are multidimensional, respectively three-

dimensional vectors. The number of independent variables is four.
1sub-images taken from http://www.research.ibm.com/dx/imageGallery/,

http://www.wetter.at/wetter/oesterreich/ http://www.btci.org/bioimaging/2005/preview05.html,
http://openqvis.sourceforge.net/gallery.html and http://aspadvice.com/forums/thread/28774.aspx.
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2.1 Technical Visualization

Figure 2.2: We could identify some fields of technical visualization sorted from 1D
to nD data and from red to purple. We have centered the largest and oldest part of
visualization which is suitable for all sciences but mostly restricted to 1D. Then we
added other fields of research outwards, depending on the data-dimensionality these
sciences are used to. The content of this thesis is marked with a red cross which
is located approximately at the lower left outer green-to-purple border of ”Medical
sciences”.

Figure 2.3: This table provides and ordering concept for scientific visualization by
means of their underlying kind of data structure and the number of independent vari-
ables. The actions considered in this thesis are marked with the green and the turquoise
bar since the basic data structure for the measured flow data are multidimensional, re-
spectively three-dimensional vectors and the number of independent variables is four.
This table was taken from [Tory2004]
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2.1 Technical Visualization

Next a common concept known as visualization pipeline is introduced. Referring to

illustration 2.4, the data has to be acquired from an arbitrary device on the top of this

pipeline. This data and several other physical aspects of the modality will influence

necessary preprocessing steps depending on the desired and provided information of the

measurement task. The acquired solutions must deal with such processing steps since

the raw data is not implicitly suitable. The detailed description of the preprocessing is

given in chapter 4. Further down this pipeline a rendering process brings images to a

screen. Certainly, no (medical) measurement method is capable of telling the graphics

hardware directly where to render polygons or pixels, so the data parts which are used

for displaying desired information are in most cases completely different from the raw

ones. Figure 2.4 provides an overview of these described steps. Visualizing during or

short after data acquisition will enable to optimize a measurement based on the given

visualization results. This is even one of the great goals for workflows like the one

presented here. Consequently this would then provide a user-steerable data acquisition

and visualization process.

Figure 2.4: The traditional visualization pipeline containing steps as presented in a lot
of publications like [Upson1989; Kalkusch2005]. Depending on the data properties and
its recoring modalities, several preprocessing steps will be performed in the most cases
before a visualization rendering can take place.

Applying these general considerations will require a deeper insight into the spe-
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2.1 Technical Visualization

cial needs of medical image data and physiological flow data. The upcoming sections

identify dedicated visualization techniques for both.

2.1.1.1 Representation Techniques for Volumetric Morphological Data

To be able to perform medical volumetric data visualization one first has to consider the

underlying two dimensional images which build-up an image stack for further volumetric

approaches together. The following considerations refer predominantly to morpholog-

ical data which means images presenting an accurate representation for the shape of

different tissues.

Displaying even two dimensional medical image data is in general not as trivial as de-

coding and presenting an image in a common format. Unlike a picture taken with an or-

dinary picturing device providing red, green and blue components R[0...255], G[0...255],

B[0...255], structural projection or scanning techniques deliver only gray values (R =

G = B) but with a greater range. In a commonly known medical imaging format called

Digital Imaging and Communications in Medicine (DICOM), [DICOM2007], the in-

tensity values are encoded with 12 bits, which allows to encode more information in

one pixel. The problem hereby is the limitation of all display devices to 256 values and

the constraints on the human visual system. [Barlow1956; Lu1999; Barten1992] have

identified these constraints by estimating the required signal stimulus energy required

for an observer to maintain a perception and found that the perception is dependent

on a non-linear function. Due to these limitations a windowing mechanism has been

developed among others by [NEMA2003] to provide a mapping from the measured 12-

bit data to a 256 gray value gradient. Such a mapping is called windowing and briefly

outlined in figure 2.5.

This constraint of pixel value mapping has to be kept in mind when working on

medical data, especially when using them with some special volumetric rendering tech-

niques for image stacks as they are appearing next. Later used techniques, which are

described in more detail, use transfer functions which implicate the windowing in their

parameters. The remaining rendering techniques are itemized in the end of this section

along with the definition of volume rendering transfer functions.
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2.1 Technical Visualization

Figure 2.5: The mapping of 12 bit medical data can be performed by choosing a transfer
window centered at a certain position. The range of values covered by this window can
then be linear converted to 256 gray values.

2D texture planes define probably the simplest but also the most common tech-

nique to represent medical data. Even today a radiologist will not use sophisticated

volume rendering techniques for diagnostic purposes. He will prefer to scroll through

the image stack and has consequently to build up a 3D-imagination of the structures

mentally. For a wide range of medical applications, like these analyzed in the presented

workflow, another image based approach is used which is more related to a 3D visual-

ization. The measured images of a slice are rendered on top of each other with different

transparency values and a slidable main focused/brightest image. The distance of the

rendered image planes are in this case defined by the selected slice distance during the

measurement itself. For spatial good resolved volumes, arbitrary additional planes can

be interpolated perpendicular or in any direction to the actual measured slices. This

rendering technique is as powerful as simple because it does not produce any interpola-

tion related artifacts and only a few but easily comprehensible occlusions, in contrast to

research done on multi-planar-reconstruction [Shekhar2003; Rothman2004] and sam-

pling techniques for arbitrary cutting planes. Due to figure 2.6 we have found, that

physicians favor real measured slices over interpolated ones. That means that we had

to keep in mind this approach for further visualizations of morphological data, even if

it is not a classical volume rendering technique.

11



2.1 Technical Visualization

Figure 2.6: The left image illustrates a spare measured volume which can be rendered
with different transparency values on top of each other (in the middle). If the dataset
is dense enough, which means that there are enough slices available in one direction,
additional arbitrary reconstructed slices can be displayed as suggested on the right.
We have found, that physicians favor real measured slices over interpolated ones so the
approach in the middle would be the mean of the choice for an accurate presentation
to them with this technique.

Transfer Functions The concept of transfer functions as described by [Pfister2001;

Engel2006] defines the way of mapping arbitrary data from a volumetric element (voxel)

to a RGB-color-space. For the following, concerning direct volume rendering techniques,

a transfer function is the crucial part for the final result and representation of the

underlying data.

In general, transfer functions define the opacity of a certain data point and further

a color which can help to distinguish features in the volume. This implies that such

a function can implicitly enable the above described medical data windowing and an

additional segmentation in one step. The actual difficulty is to generate a function

which fits exactly to the desired structures and features and suppresses the unwanted

details. Several simple one-dimensional functions are distinguished by [Hauser2003] in

the following way:

• taking the maximum occurring data value is called Maximum Intensity Projection

(MIP),

• accumulation of the occurring values on a ray is called Compositing which results

a semi-transparency of the volume,

12



2.1 Technical Visualization

• averaging of all volume elements on a ray produces an image similar to an X-

Ray-image,

• taking the first occurring value on a ray is called first hit and renders the first

pixels above a certain threshold. In the optimal case this technique would result

in the same as extracting a surface from the volume but the estimation of the

threshold can be time-consuming as well.

An one-dimensional transfer function may be applicable only to adjust the opacity

of the volume. Multidimensional functions can also be used to color certain parts of

the volume, despite the increasing complexity the design of the function may get ac-

complished by trial and error. [He1996] identified a parameter optimization problem

and proposed user driven algorithms to optimize transfer functions. [Kniss2001] de-

noted furthermore that the complexity of defining a transfer function is based in the

enormous number of degrees of freedom in which the user may get lost.

The automatic adjustment of adequate parameters is still a topic of research. The

currently best ways to define a multidimensional transfer function for arbitrary datasets

are mostly interactively driven as proposed by [Kniss2001], who defined manipulation

widgets for 3D transfer functions. They defined the axis of the 3D function space with

the data value, the gradient magnitude and the second derivative. To underline their

results they demonstrated their work for multivariate data in a case study [Kniss2002a].

Recently new and more powerful kinds of transfer function designs are developed.

[Bruckner2007] presented a technique for illustrative volume visualization to enhance

important features without rendering uninteresting ones. They introduced the concept

of style transfer functions by using the data values and eye-space normals, so thick-

ness controlled contours are possible by approximating the normal curvature along the

viewing direction.

In later chapters we concentrate on on one-dimensional transfer functions since

the focus of this work lies in the visualization of flow patterns, where direct volume

rendering approaches with opacity mapping serve for a spatial localization of these

patterns in the volume. In our opinion additionally mis-colored rendered morphological

data would lead to a confusion with the painted flow visualizations. Nevertheless,

these techniques will have to be kept in mind for a meaningful combination with flow

visualizations in future work.
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2.1 Technical Visualization

(a) One-dimensional transfer
function for mapping of data
values to opacity from section
4.4.1.1.

(b) Manipulating a three-
dimensional transfer function
with control widgets as pre-
sented by [Kniss2001]

(c) Segmented Volume data
rendered with style-transfer
functions as introduced by
[Bruckner2007]

Figure 2.7: Comparison of different direct volume rendering approaches using transfer
functions.

3D texture slicing Another technique is the well known rendering of 2D textures

intersecting a 3D volume texture. The main difference is that independent of the

number of measured slices, a constant number of planes are cut through a 3D texture

which contains the actual volumetric data. These slices are always directed towards the

viewer and perpendicular to the viewing direction. Rotation around this volume will

then only affect the mapping of these slices - with the constraints of aliasing artifacts -

whereas the 3D volume texture is placed fix. Consequently, different viewing directions

will result in different data mapped onto the 2D texture planes. Hence, a constant

transparency value of a slice or a special function related to them will then provide the

impression of a semi-transparent volume as shown with transfer function in paragraph

2.1.1.1. For example a constant transparency value

α =
1

numslices

for each slice - will result in the same as the projection of the averages from the

occurring values found on a ray starting from the eye point as described in the next para-

graph. Other transparency functions will allow arbitrary combinations of the evenly
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2.1 Technical Visualization

spaced sampling points of the volumetric texture. Figure 2.8 from [Engel2006, page 49]

illustrates these principles.

Figure 2.8: Generating semi-transparent slices always perpendicular to the viewing di-
rection leads to a evenly spaced sampling of a fixed 3D-texture volume. This will provide
the impression of a semi-transparent volume depending on the transparency distribu-
tion or more complex mapping functions. This illustration is taken from [Engel2006,
page 49]

Ray casting is based on the idea of sampling a the three dimensional scene along

perspective arranged lines in viewing direction. This concept was first introduced by

[Roth1982] and results in a two dimensional projection of the observed volume parts.

With this algorithm a more fruitful usage of transfer functions as described in paragraph

2.1.1.1 is possible but sampling the volume is time consuming and the problem of possi-

ble aliasing artifacts is evident. Nelson L. Max has identified in his work [Max1995] the

vital coherences of absorption, emission and the combination of them with additional

scattering considerations for direct volume rendering. Ray casting is in this section an

absorption only process.

Many work was done on this topic, so only the main idea can be presented in figure

2.9. Early ray termination [Levoy1988], octree decomposition [Levoy1990; Levoy1990a],

or color cube techniques, adaptive sampling and empty space skipping [Scharsach2005;

Rottger2003] would be vital for the performance and an interactively usable application.

The usage of even multidimensional transfer functions as presented by [Kniss2002]

adapted to the desired highlighted tissues will already give a very good impression of

the actual appearance of the scanned area. As an example given for a simple transfer

function, the popular maximum intensity projection (MIP) approach which produces

15
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Figure 2.9: Perspectively arranged rays sampled through a volumetric dataset and
evaluated by a transfer function are commonly known as Ray casting. Several smart
sampling techniques and ray termination assumptions have to be made to guaran-
tee interactive handling abilities. The ray-casted image of the heart is taken from
[Kerwin2007]; a related illustration can be found in [Engel2006].

images in the style of X-Ray angiography images can be denoted here referring to

[Heidrich1995]. This function simply projects the value with the highest intensity value

found on the given ray. Actually this algorithm is commonly used with angiography

methods since for these applications the vessels and the contained blood will produce

the highest signal. Projecting this maximum intensities will result in a almost clear

sight on the arteries or veins, depending on the time between the injection and the

scan. Additionally a two pass rendering was presented by [Hauser2001] which makes

it possible to combine a MIP with another volume rendering transfer function to show

additional interesting features. Nevertheless, figure 2.10 taken from [ClincalMRI2006]

points out, that the pure MIP rendering method can proof its value only with an either

interactive or permanent rotation of the volume.

The remaining direct volume rendering approaches were not described in this section

due to the following reasons:

• 2D texture slicing, even performed with graphics hardware implementations as

16



2.1 Technical Visualization

Figure 2.10: Frontal MIP of an gadolinium contrast-enhanced abdominal MRA scan
taken as an example for a basic but effective transfer function. Image taken from
[ClincalMRI2006].

presented in [Engel2006], is based on axis parallel 2D texture planes but was

neglected in this section due to its complex texture switching mechanism.

• Splatting as technique for high detailed visualizations and refinements was intro-

duced by [Laur1991] as an idea to send the information from to object to the

screen. It is not used in this work since we had not the necessary capability of

parallel graphics processing for an interactive usage of this technique.

• Shear Warp as described in [Lacroute1994; Engel2002] simplifies the projection

of voxels by first shearing, then projecting and finally warping the viewed points

to a 2D plane. This algorithm is mostly performed on special hardware cards

which we could not obtain.

• The Fourier reconstruction method stores the volume in a 3D-Fourier space and

performed the projections by a 2D inverse Fourier transform of a cutting plane

through the Fourier volume. This technique was presented by [Dunne1990] and

[Malzbender1993; Moeller1996] but is restricted to gray values and was therefore

not used.

Extraction of surface meshes Beside several global representations of a given vol-

ume, certain patterns of a dataset can be extracted and presented for example as mesh
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relatively easy.

The term ”iso”, from the greek word ισoζ which means ”similar”, is used in this

context to underline what the visualiztion is actually doing: It tries to produce a

triangle mesh by computing an iso-surface with a certain iso-value representing the

same property of the volume. A very popular method to extract a certain property in

a given volume is the so called marching cubes algorithm [Lorensen1987].

The underlying voxel grid is divided into small cubes where always four corners are

built up of four pixels in adjacent slices. The goal is to determine how this cube is

intersected by the desired object’s surface and thus the adjacent slices are intersected.

Choosing an iso-value will result rarely in one of the cubes corners directly; in most cases

the positions of the desired value will not be found without an interpolation along the

intersected edges of the cube. In the majority of cases a surface will intersect three or

more edges of these cubes consisting of vertices with values greater and smaller than the

iso-value. A connection of these intersections will lead to one or at most three triangles

of the desired iso-surface and subsequent processing of all cubes in the volumetric

dataset (”marching”) consequently unfolds the whole surface. Then the algorithm tries

to find the edges which are intersected. This reduces the intersection problem for eight

vertices to 28 = 256 cases which can be further generalized by rotations and symmetries

to 15 cases. Finding these intersected edges is rather easy. Every cube’s corner with a

value greater or equal the iso-value will be assigned to one and the others to zero. In

the first case the vertex is behind or on the surface and in the latter it is in front of it.

The creation of a lookup table for these cases enables an efficient build-up; the table

can be accessed via an adopted notation referring to each case by an index created from

a binary eight bit interpretation of the corner’s state. The exact surface intersection on

the edges can then be linear interpolated with the real image values where the vertices

are placed.

Finally the vertex normals for correct shading have to be investigated. These com-

ponents can be estimated along the tree coordinate axis by the gradient vectors at the

cube vertices and linearly interpolated depending on the light model.

Two ambiguous cases and certain incompatible triangulated cube-types in the above

described approach have been resolved by introducing new types of intersecting families

[Nielson1991; Montani1994; Chernyaev1995, and others]. Based on this idea many
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2.1 Technical Visualization

improvements have been developed. For Example using tetrahedrons instead of cubes

overcomes topological inconsistencies [Treece1999].

Obviously especially in this case the quality of the constructed surface depends

on the number of measured slices of the considered volume. Using one of the former

described direct volume rendering approaches would be more advisable for a dataset

containing only a few image planes.

2.1.1.2 Flow Visualization

The data acquired for this work can be defined in the following way:

• time dependent, which means that the discreet field values can change over time,

• organized on a regular grid which implies that the field values are evenly spaced

inside a three-dimensional coordinate system,

• discretized by three dimensional velocity vectors for each position in space.

• Additionally the morphological information is provided by separate images in the

dataset which can be treated with the techniques described in section 2.1.1.1.

The complete definition of the available datasets is done in section 3 and will not

be further discussed here. However, for the following considerations of flow sensitive

visualization algorithms, noise-less and consistent flow vector fields are assumed.

Color mapping According to the definitions given below a first information trans-

porting issue has to be discussed: the use of color. Color may be mapped in an arbitrary

way to an arbitrary visualization technique. It will always be necessary to define a cer-

tain kind of color-gradient as shown in figure 2.11 to allow a mapping between values of

the desired color for the minimum parameter and the maximum parameter. Color has

the benefit that it can reduce visual clutter and that the human visual system is rather

designed to identify homogeneous colored regions quickly [Barten1992] and a mental

clustering is possible. The most popular parameter to map is for flow fields the absolute

magnitude of the underlying velocity. Nevertheless other parameters may be used, like

the absolute value of variation, vorticity/rotor, attributes of tensors and many more or

the combination of them by giving the observer additional meta-knowledge.
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2.1 Technical Visualization

Figure 2.11: An exemplary color gradient for arbitrary parameter value mapping. A
gradient like this can even be used to suppress certain flow properties if for example an
appropriate transparency-value definition can be performed.

The main visualization techniques for any kind of flow data can be divided into four

main classes. A related taxonomy can be found in [Weiskopf2007] which we summarized

in figure 2.12. Furthermore some of these techniques are only valid or behave differently

for steady or unsteady flow and can thus be subdivided again. Steady flow refers in

this context to unchangeable vector fields and unsteady flow to changeable fields over

time.

• point-based direct flow visualization

implies that some fixed geometry is rendered for each velocity vector. A large

viewport showing enough of these representatives enables the observer to interpret

the whole vector field. The problem of visual clutter and occlusion is evident for

volumetric datasets.

• sparse particle tracing techniques

relies on calculations done based on the movement of massless particles injected

into the field and envelop everything from concrete particle effects to complex

trajectory integrations.

• dense particle tracing techniques

mostly rely on a specialized convolution of a texture with an even volumetric

flow field. Again, strategies to cope with visual clutter and occlusions have to be

investigated.

• feature based visualization approaches
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2.1 Technical Visualization

try to extract desired patterns like vortices from the raw vector field to provide

an abstract representation of the contained important information. These are

the most complex methods since almost a kind of artificial intelligence has to be

developed to find out the important parts of the data. Similar algorithms can be

found in the field of computer vision.
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2.1 Technical Visualization

Visualizing glyphs, arrows and color maps are based on rendering of simple geo-

metrical structures at each point of the grid. Therefore these techniques do not need

further explanations. The next step will be to make a definition of particle movements

in steady or unsteady flows. Related trajectories can be calculated by different ap-

proaches. This thesis concentrates on discrete particle injection methods and finite

differences approximations. Texture based advection techniques which are based on

Lagrangian approaches were not implemented.

∂x

∂t
= v(x(t), τ), x(t0) = x0, x : R → Rn (2.1)

denotes the continuous movement of a massless particle under the influence of a even

varying vector field, [Kipfer2004; Krueger2005; Weiskopf2007]. v describes a sampled

vector field whose sampled values depend on the current position of an particle x(t).

In the case of a time varying vector field, which equals unsteady flow, τ serves as

parameterization of the time. Together with the initial condition x(t0) this differential

equation is complete. Keeping in mind that the measurement method from chapter 3

produces a vector field defined on a regular spaced lattice and that general programming

approaches cannot solve differential equations in complete form, numerical integration

methods have to be used.

The simplest form to solve the initial value problem 2.1 numerically is the standard

explicit Euler-approach [Euler1768]. Choosing a discretization step size ∆t = h > 0 for

tk+1 = tk + h, (2.2)

leads to an approximation for the exact solution of

xk+1 = xk + hv(xk, tk, τ). (2.3)

The accuracy depends on the selected step size ∆t which is indirect proportional to the

computational costs for the same length of a certain trajectory.

To reduce the integration error or the computation effort of the former described nu-

merical solution, several correction mechanisms can be added. One example is the well

known Runge-Kutta method [Runge1895; Kutta1901] of a certain order [Albrecht1996;
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2.1 Technical Visualization

Arnold1998]. The order defines the number of pre-integration steps before they are

averaged added to the previous step xk. Equation 2.3 can be amplified to

xk+1 = xk + h
n∑

j=1

bjcj , (2.4)

with procedure depending coefficients bj and the intermediate steps cj . Each cj is

calculated per step with a basic Euler integration step. Defining a concrete n, for

example n = 4, will lead to the popular Runge-Kutta method of fourth oder or denoted

by RK4. An approximated integration with four intermediate steps will then be defined

by

xk+1 = xk +
h

6
(c1 + 2c2 + 2c3 + c4), where (2.5)

c1 = v(xk, tk, τ),

c2 = v(xk +
h

2
c1, tk +

h

2
, τ),

c3 = v(xk +
h

2
c2, tk +

h

2
, τ) and

c4 = v(xk + hc3, tk + h, τ).

Compared to the former described explicit Euler method the benefits of this technique

are shown in figure 2.13. Consequently, it can be denoted, that the Runge-Kutta

method will produce more accurate results with less sampled supporting points of the

desired trajectory. This technique will be favored later on.

Storing the supporting points as a result of the calculation of a certain amount of

particles will produce a n ×m-array with all sampled trajectory points depending on

the step sizes ∆t and the time parametrization τ .

This array can be utilized for the further presented visualization techniques except

of a concrete particle system effect itself. Visualizing particles in a flow field directly will

only require the calculation of the next position of the particle, so previous trajectory

points need not to be stored. Line based visualizations, or similar approaches must not

discard these ”older” positions.

Based on simple particle calculations a vast number of trajectory based flow visu-

alization techniques have been investigated. Referring to [Weiskopf2007] the following
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Figure 2.13: The benefits of the Runge-Kutta method compared to the explicit Eu-
ler method are summarized in this image. Obviously, the Runge-Kutta method will
produce more accurate results with less sampled supporting points of the desired tra-
jectory. Vice versa a numerical integration with the Euler method will always need
much more steps to obtain a related result. This image is similar to one presented in
[GrabnerKalkusch2006] which is originally based on [Hauser2005-2006].

enumeration briefly describes methods that generate sparse representations of a velocity

field.

• Stream lines are based on the abstract idea of a completely relaxed line with

diameter zero representing the trajectory of a particle in a steady flow. Relaxed

means that the velocity component perpendicular to the tangents in the sup-

porting points are zero and a steady flow can be defined by a constant value for

τ .

• Path lines are basically composed in the same way as stream lines whereas

path lines are built-up piecewise with varying value for τ . This states that path

lines are the same as streamlines for steady flows and a constant τ . Path lines

can be observed in unsteady flows in nature whereas stream lines only occur in

non-natural steady flows.

• Streak lines, time lines are in general the same as a direct particle visualization

but with different seed-point strategies. These two techniques are based on the

classical (physical) flow illustration methods which mostly utilized some kind of

25



2.1 Technical Visualization

dye in a flowing fluid or air. The first type of line uses evenly spaced points for

a persistent injection of particles and the second approach defines a continuous

line of seed points with evenly spaced injection times. Hence streak lines can be

compared with the commonly known technique of smoke in a wind tunnel and

time lines with a permanent dunking of a dye plate in a streaming fluid. Following

[Kalkusch2005] they are defined for a varying τ only.

• Stream ribbons, stream tubes and stream balls can be generated by ad-

ditional considerations of the rotational effect of a flow field along a trajectory.

Stream ribbons will behave similar to completely elastic strips brought into an

unsteady flow. Stream tubes are the same as stream lines but with a constant

diameter or an elliptic diameter to get information of the rotation component

as well and balls are geometries placed at supporting point positions with vari-

able defined elongation depending on the flow’s direction and strength at these

positions.

For the sake of completeness, another non-particle trace based approach for spare

flow field representations can be mentioned. With the principles described in section

2.1.1.1, iso-surfaces can be used to show flow characteristics as well. Surfaces may

be extracted, for example from positions with the same velocity magnitude or related

parameters as shown in figure 2.14(e).

Even illumination of structures like massless lines or particles can be very important

for depth perception as compared in figure 2.14(b) . Stream ribbons, stream tubes and

stream balls consist of connected geometry parts, which allows a classical Gouraud

shading or Phong shading due to well defined normal vectors of the surfaces. In the

case of massless particles and lines illumination is not as trivial because of arbitrary

direction of the normal vector within a tangential perpendicular plane according to the

line. These inconveniences have been resolved by [Zockler1996] with a reformulation of

the Phong lightning model. The light intensity at a point on a surface is given by

I = ka + kd(~L · ~N) + ks(~V · ~R)n (2.6)

with the ambient, diffuse and specular coefficients ka, kd, ks and n. The unit length

vectors ~N for the normal of a surface, ~L and ~V pointing toward the light source and the

eye-position and ~R referring to the reflection of ~L and ~N . These are all defined except
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of ~N . ~N can be approximated by choosing it in a plane perpendicular to the tangent
~T so that (~L · ~N) and (~V · ~R) are maximized. Following [Banks1994; Stalling1997;

Peeters2006] ~T is given so that (~L · ~N) and (~V · ~R) can be approximated by

~L · ~N =
√

1− (~L · ~T )2

~V · ~R = (~L · ~N)
√

1− (~V · ~T )2 − (~L · ~T )(~V · ~T ). (2.7)

With these considerations an illumination of even diameter-less lines or particles can be

implemented directly. Figure 2.14 gives an overview of the above described techniques

on certain examples from different publications.

Accordingly a view onto dense vector field representations will be taken next. Since

these techniques are not as exploited as particle traces in this work, only the main

representatives are presented but none of them have been implemented.

The class of dense flow visualization attempts to provide a complete, dense repre-

sentation of the flow field. This may be achieved by influencing an arbitrary texture

with an underlying velocity field, which is commonly known as convolution. For ex-

ample, facilitating a filter kernel to smooth and convolute a given vector field with a

white noise texture leads to the first and popular method of Line Integral Convolution

(LIC).

LIC, as defined by [Cabral1993], is basically capable of 2D vector fields, steady flows

and computational expensive. Figure 2.15(a) shows an example for a LIC based visu-

alization with additional velocity magnitude coloring. Due to these deficiencies several

extensions to LIC have been developed. Pseudo LIC (PLIC) [Vivek1999] figure 2.15(b),

for example uses template textures mapped onto a spares streamline representation of

a field which reduces the calculation work. Subsequent updating of the LIC-texture

for unsteady flow has been resolved reasonably efficient by Accelerated Unsteady Flow

LIC (AUFLIC) by [Liu2002] which is an extension on UFLIC [Shen1998].

However, extending LIC to 3D may seem to be straightforward from an algorithmic

point of view but the crux of this idea is the problem of occlusion in a three dimensional

space. As always for volumetric data several approaches try to deal with these problems.

Firstly an interactive approach with cutting planes can be chosen to either show a

2D-LIC texture on the cutting plane or only the volumetric rendered 3D-LIC texture

behind the cutting plane [Rezk-Salama1999]. Secondly more complex algorithms can be
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(a) Comparison of color plane, stream lines, arrows
and stream ribbons in a wind tunnel simulation
from [Schulz1999].

(b) Comparison of stream lines without and with
illumination from [Peeters2006]. Compare to illu-
mination techniques from [Banks1994].

(c) Stream tubes from section 5.3.3.5 (d) Stream balls from [Brill1994].

(e) Stream surfaces from [Pascucci2004].

Figure 2.14: A comparison between examples of different sparse flow vector field rep-
resentations.
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applied to bring out or suppress several important or fewer interesting areas of the 3D

texture. Volume rendering techniques as describes in section 2.1.1.1 can here be applied

as well, for example setting a transfer function. Figure 2.15(c) shows an applicatory

example of such an approach from [Interrante1998].

(a) A LIC texture from
[Cabral1993] of a fluid dynam-
ics field multiplied by a color
image.

(b) A PLIC evaluated dataset
colored by the underlying
velocity magnitude from
[Vivek1999].

(c) Flow simulation with
interactive settable transfer
function and clipping plane
[Interrante1998].

Figure 2.15: A comparison between examples of different dense flow vector field repre-
sentations.

The algorithms introduced so far can be directly implemented on graphics hard-

ware. Depending on the complexity such an approach will provide a certain speedup

in contrast to implementations on a CPU. How graphics hardware can be programmed

to execute algorithms which are actually intended to be used on a CPU is described in

the next section.

2.2 Advanced Graphics Processing

Today’s personal computers are, even without 3D-acceleration cards, high-end graphics

work stations compared to specialized hardware from 1982. The next sections will

illuminate the newest available Graphics Processing Unit (GPU) and the principals

of performing general purpose computations using this hardware unit. The reader is

referred to [GbR2007]1 for a deeper insight into hardware issues. [GLSL2004; Cg2007;

Pharr2005; FernGPU2004] will provide hints and definitions for programming on a

GPU.
1and to http://en.wikipedia.org/wiki/Graphics card
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2.2.1 The Latest Available Graphics Hardware

After more than 15 years of usage, the basic vertex processing pipeline has been super-

seded by a new architecture. The classic programmable pipeline has several disadvan-

tages. An unbalanced processor load for example will be an effect of much more pixel

shader instructions than vertex shader instructions. Building one Arithmetic-Logic

Unit (ALU) per vertex and fragment processing will result in an overloaded and an un-

challenged unit. Furthermore it was nearly impossible to reprocess already calculated

results in the pipeline. These drawbacks have been resolved by the G8x processor

used on GeForce 8x cards. In this architecture at most 128 stream processors (GeForce

8800 GTX1) are able to process both vertex and fragment geometry instructions. The-

oretically, employing a ”Thread-Processor” for this should enable each ALU to operate

at full capacity.

(a) Block diagram of the GeForce 8x architecture. (b) Block diagram of the GeForece 6x architecture.

Figure 2.16: Comparison of Nvidia’s G8x (a) and G6x (b) processor architecture from
[Nvidia2006] and [Pharr2005]. Remarkable is that the G8x stream processors are now
able to do both, which was still separated on the G6x series.

Due to increasing programmable requirements of graphics hardware, Nvidia de-

cided to design the architecture around the processor as illustrated in figure 2.16(a).

Consequently, it is now possible to overcome the two main drawbacks described above

- ”real loops” and ”balanced load”. However, although the implementation of this

work in chapter 5 has been performed on a GeForce 8800 system, mainly the hardware
1released in November 2006,
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programming features available since Shader Model 3.01 and the increased processing

speed have been used. This is because of the desired compatibility to currently avail-

able systems in clinical routine. The next section outlines only the basic concepts of

shader programming since Shader Model 3.0.

Currently three main shader languages exist:

• Cg which stands for ”C for graphics” and is developed by Nvidia,

• GLSL stands for ”Graphics Library Shader Language” and is provided for

OpenGL,

• HLSL stands for ”High Level Shader Language” and applies to DirectX2 based

applications.

They are all C-like programming languages and are of the same value. The implemen-

tation in chapter 5 concentrates on GLSL. However the following techniques can be

implemented with all other languages as well.

In general two types of shader programs can be distinguished. Firstly a so-called

vertex program executed by the vertex processing unit is at least able to define a new

position for each given vertex position processed for each frame with any parameters as

input. Secondly a so-called fragment program processes all pixel candidates which were

produced between the vertices by a rasterization unit. The output of a fragment shader

will always be a RGBA color value. The output of such shader does not necessarily need

to be rendered to a display device. Instead it can be written into a buffer or texture

for further use. Furthermore the implicit float arithmetic of graphic microprocessors

allows calculations for general purposes. A benefit - in contrast to CPU processing

- will be achieved if graphics operations are performed on multiple input data and

vectors data types. Since graphics hardware matches these constraints it is also called

a Single Instruction Multiple Data (SIMD) Processor. A perfect example for such a

SIMD operation will be the update mechanisms on millions of particles moving through

a flow velocity field as described in section 2.1.1.2.
1Shader Model 3.0 (SM 3.0) was developed by Nvidia with the GeForce 6x-series in 2004.
2http://www.gamesforwindows.com/en-US/AboutGFW/Pages/DirectX10.aspx
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2.2.2 GPGPU - General-Purpose Computation on the GPU

Programming the GPU for general purposes has several constraints. The techniques to

handle them are presented in this section and much more in detail in [Thompson2002;

Pharr2005; Nvidia2005].

2.2.2.1 Graphics Card/GPU Memory

The access to memory on GPUs is restricted to various kinds of indexed texture memory

lookups into one, two or three-dimensional banks of fast accessible texture memory.

The amount of memory has to be defined in advance through a texture of a certain

size. Each of its ”memory” element (texel) gets processed during one iteration. First

and foremost this means that the programmer has no opportunity to allocate memory

during the shader program’s execution or to use pointers. Nevertheless, these concepts

are generally not necessary since the complete data is represented by a stream and

interpreted by a stream-processor. Consequently, using memory on graphics hardware

in both, vertex and fragment shader will mostly look like the following algorithm:

1. define a texture of a certain size with the main application,

2. pass the texture-ID to the desired shader program,

3. define in the shader program what to do with each texture’s element,

4. tell the hardware when to use the shader in each rendered frame.

Using memory is always accompanied by two basic concepts:

• Gathering describes an operation which takes values from different memory

addresses to obtain one result.

• Scattering is the opposite an operation which stores several results in different

memory addresses at once.

On a GPU only the first concept is available because of the fixed defined output

address of the process data stream. However, it is possible to store a result in multiple

render targets at this predefined position. This implies that graphics hardware is able

to render calculated pixel values not only on screen but also in a dedicated buffer in the
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2.2 Advanced Graphics Processing

texture memory. Multi-target rendering has therefore available on common graphics

hardware for a long time.

2.2.2.2 Execution concepts

Due to the stream architecture of GPUs some well known concepts which are common

with CPUs have to be refined. Table 2.1 provides an overview of these refinements

and proposes the relative complements of these two architectures. To evaluate if it is

fruitful to implement a certain algorithm on the GPU the

arithmetic intensity =
operations

words transferred
. (2.8)

of this algorithm has to be considered. If the arithmetic intensity is high enough,

the algorithm may be parallelized and therefore executed on a stream processor. Also

the pipelined data-flow and a sequential graphics memory access have to be consid-

ered. Consequently, the algorithm should use the data in a sequential order as well

to guarantee an efficient traversal. For example such algorithms are applicable for

solving complex linear systems of equations, physics simulations, shortest-path and

finite-differences calculations.

CPU GPU
Array Texture
Loop Fragment processing
Feedback Render-to-Texture
Memory address Texture coordinate
Memory allocation Texture generation
Branch Branch or Conditional write
Invocation Frame update

Table 2.1: Analogies between basic CPU concepts and their possible implementation
on a GPU. This analogy can akin be found in [Pharr2005, page 500-503] and a related
table was presented in [GrabnerKalkusch2006].

The inconveniences with a fixed stream have already been mentioned. An iterative

calculation or the ability to update the desired results will only be possible if the actual

result can get passed back. The work around on previous graphics cards was to render

into a buffer with the first pass and use the buffer or texture as input for a second render
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2.2 Advanced Graphics Processing

pass. Since passing back the results in the same render pass is currently only available

on late-breaking Nvidia G8x architectures, the programmer will have to by-pass this in

a way called multi-pass rendering .

• multi-pass rendering uses the output buffer or texture which was generated in on

render pass in the next render pass as input.

• single-pass rendering, in contrast, generates the final result in one render pass.

Additional to multi-pass rendering a technique called double buffering has to be used

due to most hardware’s disability to read and write to the same texture. This technique

switches two identical textures in each render pass. Depending on the frame rate of

the application these textures are subsequently exchanged and updated. Subsequently,

only one iteration step can be performed each frame but this for millions of parallel

iterations at once. Depending on the settling time of the system or an abort criterion,

such calculation updates of parallel systems can be performed much faster on nearly

all currently available graphics hardware cards than on a CPU with this method.

Despite these shortcomings there are also several comforts when programming

graphics hardware. For example a bilinear or trilinear interpolation, not only for a

texture, can be performed with hardware implemented units. This interpolation tends

to be really fast. Furthermore all in hardware implemented clipping mechanisms can

be used for many parts of standard algorithms which can imply another speedup.

Concluding, it must be noted that shader programs can not replace conventional

application programs due to the lack of high level languages but for problems with a high

arithmetic intensity as defined by equation 2.8. For sequential data access, GPU stream

processors can increase the performance remarkable. Since complex visualizations are

commonly linked to highly parallel costly calculations a programmable graphics card

is rather predestined for both: Calculation of the desired simulations and a subsequent

direct rendering of them.
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Chapter 3

Magnetic Resonance Imaging for
Flow Sensitive Data

This chapter is directed towards physicists and readers interested in medical imaging.

This chapter is not exhaustive a basic understanding of the MRI is assumed.

Since the late 1970’s, Nuclear Magnetic Resonance Imaging (NMRI) is one of the

most important diagnostic imaging technologies besides Ultrasound-Imaging (US), in-

vasive X-Ray and Computed Tomography Imaging (CT) . Bloch and Purcell could

potentially not anticipate in 1946 how fruitful their experiments on NMR would be

for future developments in medicine, [Bloch1946; Purcell1946]. They showed indepen-

dently how nuclei with an odd atomic number absorb and pass back high energy radio

frequency impulses within a certain spectrum. To measure this property of matter they

placed samples in a strong homogeneous directional magnetic field. This fact builds

the core of a MRI-System to this day. To circumvent a historic time line of the MRI

development, the number of earned Nobel-prizes directly linked to NMR related topics

should announce the significance of this technique. It were not less then six to date. 1

This chapter will give a brief introduction from the basics of NMR signal recov-

ery to the principles of phase contrast flow measurement. More details on mag-

netic resonance imaging can be found in the compendiums of MRI techniques from

[ClincalMRI2006, Section I, pages 23-248 and Section II, pages 693-740 and pages 843-

860], [Scott1962; Abragam1989] and more summarized in [Hornak2006; Jakob2006;

Slichter1990; Liang1999; Edelstein1987; Haase1986; MR-TIP; Stollberger2007]. Flow
1Stern (1943), Rabi (1944), Bloch & Purcell (1952), Ernst (1991), Wuethrich (2002), Lauterbur &

Mansfield (2003) - http://en.wikipedia.org/wiki/List of Nobel laureates
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3.1 Magnetic Field and Magnetization

measurements have additional been described in detail by [Hinshaw1983; Laub1998;

Markl2006; Markl2003; Mostbeck1992].

Section 3.1 to 3.5.1 will describe MRI-Signal formation and localization via gradient-

echo methods up to parallel imaging with cardiac phase contrast angiography techniques

based on [Stollberger2007]. Finally the sequences we used to acquire the flow sensitive

datasets are introduced briefly in section 3.5.2.

3.1 Magnetic Field and Magnetization

The MR signal itself is based on the well known spin based view on quantum mechanical

particles. According to this concept all particle in elementary systems own a certain

intrinsic angular momentum ~J . Since a combination of neutrons and/or protons within

a nucleus is only stable with different spin directions the net spin of a nucleus with

an even number of elementary particles is zero. Consequently only nuclei with an odd

atomic number will provide a net nuclear spin which leads to a magnetic momentum

~µ, related with the gyromagnetic ratio γ to ~J .

~µ = γ ~J (3.1)

The gyromagnetic ratio γ depends on the observed nucleus and describes the mag-

netic dipole moment to its angular momentum or in classical physics the ratio of the

charge of the particle considered as circuit current to two times its mass, valid as long

as its charge and mass are identically distributed.

γ =
q

2m

[Hz]
[Tesla]

(3.2)

For MR imaging typically hydrogen (H1) is used. One the one hand γ can be

specified relatively easy since the hydrogen nucleus consists of only one proton and on

the other hand this is the most frequent nucleus in the human body. Its gyromagnetic

ratio is γ = 2.675× 108[rad/sec/Tesla] or γ = γ
2π = 42.58 [MHz]

[Tesla]

From a quantum mechanical point of view the net spin ~J of a nucleus can occupy

only two discrete energy states. The magnitude of ~µ is therefore given as

|~µ| = µ = γ · ~
√

I(I + 1) (3.3)
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3.1 Magnetic Field and Magnetization

with a general spin quantum number I = 0, 1
2 , 1, 3

2 , 2, ... and the Planck’s constant

~ = h(6.6× 10−34Js)/2π. Considering H1, I is defined by I = ±1
2 .

If there is no external magnetic field in equilibrium the orientations of the magnetic

dipole moments are uniformly distributed due to of thermo-dynamics and other energy

transfer effects. Hence there is no measurable magnetization of a sample containing a

large number nuclei as shown in figure 3.1(a) . In an external magnetic field ~B0 the

bulk magnetization of the sample accommodates with this field for spin 1
2 with

cos Θ =
µz

µ
=

mI√
I(I + 1)

= ±54◦44′ (3.4)

µz = γ ·mI~

mI = ±1
2

where mI is the magnetic quantum number. Figure 3.1(b) illustrates this behavior

rudimentarily.

(a) The magnetic moments of
the nuclei of a sample without
the influence of an outer mag-
netic field.

(b) The magnetic moments ac-
commodate with an outer mag-
netic field.

Figure 3.1: Influence of an outer magnetic field on the nuclei with odd atomic number
in a sample.

In the classical mechanic approach, after solving the Euclidean movement equation
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3.1 Magnetic Field and Magnetization

of the magnetic moments

∂~µ

∂t
= γ~µ× ~B0 (3.5)

the complete magnetization is then given by

µxy = µxy(0) · e−iγB0t (3.6)

µz = µz(0),

assuming that ~B0 points along the z-direction. This magnetization is called bulk mag-

netization.

Consequently, only the magnetization in z-direction is fixed whereas the magne-

tization in xy-direction relates with the angular frequency γB0. A common term to

say is that the magnetization precesses with the Larmor-frequency around the mag-

netic field-vector B0. This precession frequency, also known as the natural resonance

frequency of a spin system, is given by the Larmor equation and illustrated in figure

3.2:

ω0 = γB0 (3.7)

f0 = γB0 (3.8)

The remaining part to think about is, how much of this directional magnetization

can be used for experiments. The following considerations will lead to a possible bulk

magnetization

~M =
Ns∑
n=1

~µn (3.9)

of a given huge number of H1 nuclei, such as contained for example in a small part of

tissue.

Since the magnetic moments can set up both parallel and anti-parallel to B0, most

of them will be nullified.

The energy of a spin state is given by

E = −~µ · ~B0 = −µzB0 = −γ~mIB0 (3.10)

38



3.1 Magnetic Field and Magnetization

Figure 3.2: Precession of the magnetic moment µ of an isolated spin around a magnetic
field B0 with the Larmor-frequency ω0.

and especially considering the two states for a hydrogen nucleus by

E↑(mI = −1/2) =
1
2
γ~B0 (3.11)

E↓(mI = 1/2 = −1
2
γ~B0.

The energy difference between these two states adds up to

∆E = E↓ − E↑ = ~γB0 = ~ω0 (3.12)

with the Larmor-frequency ω0. For the number of spins per unit volume can be assumed

with the two and all possible states N = N↑+N↓ and therefore the distribution of these

states is given by a Bolzman distribution. That means if N↑ refers to the spins parallel

to ~B0 and N↓ define the spins anti-parallel the distribution is given by:

N↑
N↓

= exp(
∆E

kT
= exp(

~γB0

kT
). (3.13)

with the Bolzman constant k = 1.38 × 10−23J/K and T as the absolute temperature

of the spin system.

With a net-magnetization of M0 = µ · (N↑ − N↓) and assuming that ∆E << kT

the approximation of 3.12, which is with the approximation ∆E
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3.2 Excitation of Magnetized Matter

exp(
∆E

kT
) ≈ 1 +

γ~B0

kT
⇒ ∆E << kTN↑ −N↓ ≈ N · γ~B0

2kT
(3.14)

The total magnetization M0 = µ(N↑ −N↓) results then from

M0 = N · γ2~2B0

4kT
. (3.15)

Equation 3.13 shows that the energy state of a few more spins is parallel - actually

the z-component of the magnetization vector - to B0. Consequently, there is a small

magnetization to experiment with left but a decaying transverse (xy) component.

3.2 Excitation of Magnetized Matter

Without excitation magnetization cannot be used to get material-dependent signals

from a certain volume unit. The generated magnetization has to be rotated to get

measurable signals in a way that the available circuit current and the resulting magnetic

field, can be detected by a coil. This rotation of a equilibrium set magnetization can be

achieved with the influence of a time-varying circular polarized high-frequency magnetic

field1.

Choosing ωhf , so that it satisfies the on-resonance condition ω0 = ωhf , a rotation of

the magnetization can be achieved. Such an additional magnetic field is called RF-pulse

because ω is situated in the range of radio-frequencies and the duration of the pulse τp

takes some milliseconds.

Since further considerations would be rather difficult if one remains in a constant

laboratory coordinate frame, the upcoming ones will be done in a rotation reference

frame (x′, y′, z′), in which the xy-plane is oscillating with ω0. This frame provides three

main advantages:

• circular signals are represented by their encasing curve

• rotation of a magnetization vector can be adopted as tilting toward y′, instead as

a circular movement on a spheric curve

• B1 seems to be a static field along the x′ axis
1A birdcage resonator produces a pure circular polarized field without any counter-components.

All modern MRI-Systems provide this type of resonator.
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3.2 Excitation of Magnetized Matter

With these assumptions the flip angle produced by a certain RF-pulse for a given

magnetization vector results in

α = ω1τp = γB1τp (3.16)

with ω1 referring to the spin’s precession frequency. Figure 3.3 shows this coherences

in the rotating and the stationary coordinate frame.

Figure 3.3: The rotation of the magnetization vector in the rotation (left) and the
stationary coordinate frame (right). Image taken from [Liang1999]

Accordingly the magnetization vector rotates toward the y′-axis. In the laboratory

coordinate system (x, y, z) the movement describes a precession around the z-axis.

After τp a signal called Free Induction Decay (FID) is detected with in ~B0 placed coils

and characterized by an exponential relaxation processes towards the equilibrium as

described in section 3.2.1.

3.2.1 Precession and Relaxation

The signal of a spin system which has been excited with a RF-pulse can only be de-

tected for some milli-seconds. The reason is that the spins are influenced by other

magnetic fields from their neighborhood as well. In short terms, the excitation energy

can be transferred to surrounding spins, which causes a dephasing of the magnetization

vector within the x′y′-plane referred as Spin-Spin-Relaxation or transversal relaxation

and additionally the rotated magnetization vector will tip backwards to its station-

ary position parallel to the direction of the field B0 which influences the amount of

signal for each repetition of the measurement. This is called longitudinal relaxation

or Spin-Grid-Relaxation. The latter can be phenomenologically interpreted as the

41



3.2 Excitation of Magnetized Matter

strive for thermo-dynamic equilibrium and the first one as an annoyance (in example

an additional excitation of a coincidentally with ω1 precessing magnetic moment) of

surrounding fields. [Abragam1989] provides an insight into the complete quantum me-

chanical processes and their classical interpretation on these relaxation processes. The

upcoming considerations are based on these assumptions, because a detailed derivation

of these coherences would go beyond the scope of this thesis.

The description of the relaxational movement of the magnetization vector and hence

the amount of detectable magnetization after an excitation pulse can be approximated

with a first order process in the rotation coordinate frame

∂Mx′y′

∂t
= −

Mx′y′

T2
(3.17)

for transversal relaxation during time T2 and

∂Mz′

∂t
= −

Mz′ −M0
z′

T1
z′ = z (3.18)

for longitudinal relaxation processes during a longer time T1. M0
z′ describes the available

rotatable magnetization in z′-direction before any RF-pulse.

The solution of this system of differential equations leads to

Mxy = Mxy(0+) · e−t/T2 · e−iω0t and (3.19)

Mz = M0
z (1− e−t/T1) + Mz(0+) · e−t/T2 (3.20)

in the laboratory system at a time t after RF-excitation. Figure 3.2.1 illustrates these

coherences explicitly.

3.2.2 Nuclear Magnetic Resonance Signal

As a result of inevitable inhomogeneities of the magnetic field B0 the purly material

specific reachable time for T2 is actually not the relevant time for transversal relaxation.

Instead the transversal relaxation happens much faster than T2 during the so called

time T ∗
2 where

1
T ∗

2

=
1
T2

+ γ∆B0. (3.21)

This circumstance is not necessarily unfavorable since the dephasing caused by field

inhomogeneities can be compensated - in contrast to the irreversible T2 decay. Two
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3.2 Excitation of Magnetized Matter

(a) The time T1 is defined as the time in which
63% of the primary magnetization M0 has
been restored through the relaxation process
in z-direction because the signal comes from
induction.

(b) The time T2 is defined as the time in which
37% of the transversal magnetization is left,
which correlates with the time after which 63%
of the signal got lost.

Figure 3.4: The coherences between signal intensity, loss of magnetization in transversal
direction and the relaxation back to a longitudinal magnetization.

major techniques exists to restore the signal after time T ∗
2 . A signal produced by the

restoration of such a decay of the FID is commonly called an echo.

The dephasing of the stimulated spins can be envisaged as slowing or increasing the

rotational speed of the magnetization vectors caused by the fields of neighboring spins1.

That means that some magnetization vectors will run faster and some slower until all

of them populate a uniformly distributed direction so that they compensate each other.

One way to rebuild the signal is the very popular Spin-Echo technique, which will not

be described in detail here. The interested reader is referred to references given in

section 3.

A Spin-Echo technique for example utilizes another RF-pulse, which turns all mag-

netization vectors around 180 or less degrees. This forces the dephased spins to rephase

again, because faster vectors are then behind the aspired magnetization and slower ones

in front. In a manner of speaking the vectors gain on each other. The signal will then

arise as a Hermitian echo weighted with T2. Weighted means in this sense that the

main contrast mechanism is caused by that certain material specific time.
1quantum mechanical: stimulated emission and absorption of energy quantums within the atomic

union.
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3.3 Signal localization

The same effect of rephasing the magnetization vectors can be achieved by applying

an additional gradient field after an α-degree RF-pulse in one direction. This additional

pulse causes an early dephasing of the magnetization vectors which can be canceled out

by applying another gradient field with opposite sign. The effect is a rephasing of the

spins and a measurable Hermitian signal but weighted with T ∗
2 . Figure 3.6 shows the

pulse sequence diagram of a fundamental gradient-echo sequence called FLASH (Fast

Low-Angle Shot). The time at which the echo reaches its maximum is called echo

time TE.

In the rotating coordinate frame it can be easily shown that an additional magnetic

gradient will force different spin vectors to change their phase according to

φ(x, t) = γ

∫ t

0
−Gxxdτ = −γGxxt, 0 ≤ t ≤ τ Gx = const., (3.22)

The time until the signal decays is called T ∗∗
2 and after τ > 3T ∗∗

2 the signal is close

to zero. The reappearance of the signal as Hermitian echo can be induced by an inverse

gradient. For the specialized case of a gradient of the same strength as the dephasing

one the spin phases are characterized by

φ(x, t) = −γGxxτ + γ

∫ t

τ
Gxxdt = −γGxxτ + γGxx(t− τ), τ ≤ t ≤ 2τ,Gx = const.

(3.23)

After time τ the spin’s phases are again zero for that direction and an echo is

formed. This echo time TE can be influenced by the strength of the refocusing pulse

as well. A stronger gradient will drive the spins to get in phase faster, so TE will be

shortened and vice versa.

Typical ranges of the above described relaxation times are for biological tissues:

• T1bio ≈ 300− 3000[ms],

• T2bio ≈ 30− 2000[ms],

• T ∗
2bio ≈ 10− 100[ms].

3.3 Signal localization

The provoked signal is meaningless without a reasonable localization of the signals’

origin. A spatial mapping of a signal is mainly done in two steps:
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3.3 Signal localization

1. A gradient field modulates B0, so that only one slice can be excited by a certain

RF-pulse with a certain bandwidth.

2. Two other gradients modulate the resulting signal, so that the lines of an excited

slice are phase encoded and the contained frequencies can be discriminative split

up.

Section 3.3.1 and 3.3.2 describes this mechanism more precisely.

3.3.1 Slice Selection

Modern medical imaging requires the formation of an arbitrary cross section through

the body. In MRI such a slice or section1 can be spatially selective excited by using

a linear gradient field augmenting the field B0 and a ’shaped’ RF-pulse of a certain

bandwidth. Both the slope of the gradient and the bandwidth of the RF-pulse will

influence the thickness of the selected slice and its shape. The lateral profile of a slice is

for small flip angles approximately the Fourier-transformed of the RF-pulse itself. The

slope of the used gradient affects how many spins will be addressable and how much of

the volume will be excited by the RF-pulse. Figure 3.5 shows the relationship between

slope and bandwidth and their effects on the segment’s profile and dilatation.

Figure 3.5: The slice-profile depends on the RF-excitation pulse and the slope of the
slice selection gradient.

Direct transcription of the former assumption would require using a sinc pulse with

a finite frequency bandwidth of ωhf = ω0. The Fourier transformation of such a pulse

1’slice’ and ’section’ refers to the same in the following context.
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would result in an ideal square slice profile. In practice the frequency range is higher

since on the one hand a perfect sinc pulse is technically not possible and on the other

hand a sharper desired slice profile requires a higher energy of the RF-pulse. Applying

too much energy to a human body per time unit would lead to a warming of the

tissue by more than 1◦C, which can be harmful for living cells. This absorbed energy

amount is called Specific Absorption Rate (SAR) and restricts the slope and the speed

of switching gradients, the energy of the RF-pulses and the sharpness of the slice profile.

The fact that the profiles are not ideal square cause a slice distance of more than

zero or a doubled measurement time with interleaved slice measurement. Elsewhere

partial volume effects would garble the resulting images depending on the sequence.

Figure 3.7 shows the selection of a segment, placed perpendicular in the xy-plane

by a linear gradient Gz in z-direction. However, slice-selection in arbitrary direction

and location needs a combination of gradients in three directions

Gss = (Gx, Gy, Gz) =


Gx = Gsssinθ cos φ
Gy = Gsssinθ sinφ
Gz = Gsscosθ

(3.24)

and a RF-pulse

ωhf = ω0 + γGssc0, ∆ω = γGss∆c (3.25)

with the excitation frequency ωhf , bandwidth ∆ω, the center of the segment c0 and its

thickness ∆c.

A frequency response of all spins situated in the selected segment will be detectable

after an excitation done as described in this section. Obviously further dispartment of

the signal will be necessary to locate a certain volume element’s response within the

activated segment.

3.3.2 Voxel Selection

During the precession period the second step of spatial localization is called frequency-

and phase encoding. Frequency encoding makes the oscillating frequency of the complex

MR-signal dependent on its spatial origin which can be utilized to locate a column of

the activated slice. How to impose different Larmor frequencies on different locations

has already been described in the previous sections. We need to apply another gradient
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3.3 Signal localization

in one direction of the responding slice after the selective excitation of a segment. Then

the frequencies of the spins will be modulated with

ω(x) = γ(B0 + Gxx) (3.26)

for a chosen gradient in x-direction. When neglecting the proportionality relationship

to the flip angle and a notional spin density distribution ρ(x) the received signal of a

sample with simultaneously activated frequency encoding gradient Gx follows from

S(t) =
∫ ∞

−∞
ρ(x)e−iγ(B0+Gxx)tdx =

∫ ∞

−∞
ρ(x)e−iγGxxtdxe−iω0t (3.27)

and after the removal of the carrier signal e−iω0t (demodulation), a signal

S(t) =
∫ ∞

−∞
ρ(x)e−iγGxxtdx (3.28)

results.

Encoding the phase angle of a collection of spins can be performed similarly. Ap-

plying a gradient Gy
1 with a certain strength between the RF-pulse excitation and the

former described gradient will provoke a preparatory frequency encoding depending on

the time T the gradient is applied. In combination with the following frequency encod-

ing gradient2 each row of the responding segment will accumulate different phase-angles

φ(y) = −γGyyT, Gy = const. (3.29)

which leads to the term phase-encoding gradient for this special type of frequency-

encoding gradient. Figure 3.6 shows the resulting pulse sequence diagram to obtain a

sampled signal spectrum of one arbitrary line inside the activated slice. Such a sequence

has to be repeated to get all voxel signals of a slice.

3.3.3 Image Formation

With the substitutions

kx = −γGxt, (3.30)

ky = −γGyT (3.31)

1Gy is not necessarily different from Gx. The notation Gy is only used to distinguish from frequency
and phase encoding gradients.

2This frequency encoding gradient is also called read-out gradient and notated as Gx
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3.3 Signal localization

Figure 3.6: This is a complete pulse-sequence diagram of a FLASH gradient echo
sequence. After the slice selection gradient and the RF-pulse, an inversed slice-gradient
is turned on to rephase the slice. The phase-encoding gradient and the dephasing
read-out gradient are turned on simultaneously. Subsequently the read-out dephasing
gradient is compensated by the inverse read-out gradient. This provokes an echo which
gets sampled with a certain rate. To destroy cohesive magnetization before the sequence
is repeated, a gradient spoiling table is applied for the volume.
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3.3 Signal localization

a commonly known (2D) Fourier relationship can be established

S(kx, ky) =
∫ ∞

−∞

∫ ∞

−∞
ρ(x, y)e−i2π(kxx+kyy)dxdy (3.32)

In case of phase encoding, ky is a function of the strength of the gradient Gy and in

case of frequency encoding, kx is a continuous function over time which should has been

clarified in figure 3.7. kx, ky encoded measurement values can now be placed in a two

dimensional space called k-space. Accordingly to equation 3.32 this two dimensional

space is the Fourier-transformed of the desired intensity image of the excited cross

section.

Figure 3.7: A pulse sequence is applied subsequently to obtain each line of k-space.
The line position is determinated by the amplitude of the phase-encoding gradient Gy.
An inverse Fourier-transformation of the filled k-space produces the desired intensity
image.

It has to be mentioned that these coherences are not as smooth as they are described

here. Each of the two encoding directions is especially vulnerable to one of two major

artifact origins of MRI.

1. In frequency encoding direction the chemical shift artifact is recognizable. Small

differences in the resonance frequencies due to the chemical bindings of the hy-

drogen form the basis of the chemical shift effect. Some tissues - like fat - seems

then to be at a different position because of a shift in their responded frequencies.
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3.4 Image Contrast

This causes a spacial shift in frequency encoding direction which is noticeable as

black gaps or overlays at tissue borders in the resulting intensity image.

2. Phase encoding may show ghost images superposed over the desired image. This

artifact results from a moving object which causes different spectral maxima at

different positions in k-space. Depending on the positions of the corrupted lines

in k-space the resulting ghost-images will be blurred or edge based.

3.4 Image Contrast

The intensity of the responded signal - and consequently the brightness of a pixel in the

resulting image - of a certain tissue depends on its specific T1, T2, or T ∗
2 decay and the

proton density. The time TE when the echo is received and the repetition time TR in

which the different phase encoded echoes are measured when the sequence is repeated.

Because of the usage of special contrast mechanisms for the data described in section 3.5

the standard contrast mechanisms for morphological data are explained here. Figure

3.4 will give a basic understanding of T1 and T2 contrast mechanisms. For more infor-

mation about the classic image contrast mechanisms, the interested reader is referred

to the references. These considerations mainly apply for Spin-Echo sequences and only

truncated for the sequences used for this work. Nevertheless, for the understanding of

the imaging itself they are essential.
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3.5 Cine Cardiac Fast Low-Angle Shot with Parallel-Imaging Technique

3.5 Cine Cardiac Fast Low-Angle Shot with Parallel-Imaging
Technique

With the basics from section 3.1 to 3.4, the sequences used for flow sensitive cardiac

imaging can be specified. The data generated as described below will build the starting

point for the workflow presented in chapter 4 and the following.

A pulse sequence has to meet several demands for a continuous flow sensitive

measurement of the cardiac movement of blood inside a breathing, even moving living

organism:

1. The movement of the chest and the myocardium has to be compensated or sup-

pressed. Otherwise moving artifacts would corrupt the data.

2. The duration of one heartbeat can be assumed to be one second. Within this

second all images of all slices and all aspired temporal steps are ideally acquired.

This implies that such a sequence has to be faster than basic MRI imaging se-

quences.

3. Additional to morphological data, comprehensible movement of the blood (for

example) has to be encoded in all three spacial directions. This multiplies the

number of necessary images by four.

4. Since the human ECG is not necessarily constant, a gating mechanism has to be

used, which triggers a set of images or parts of them always at the same state of

the heart-cycle.

Due to the fact that these requirements cannot all be met within one heart-cycle

the virtual sequence utilize the beneficial properties of the k-space, a very fast imag-

ing sequence with parallel imaging and a retrospective gating technique based on the

patient’s ECG.

A sequence which is fast enough to acquire at least a few lines in k-space of each

temporal image is the so called Fast Low-Angle Shot or FLASH. FLASH uses the

sequence described in image 3.6.

To accomplish a continuous measurement of the heart-cycle, segmented Flash is

performed. This means, that only a few lines of the k-space are measured for one image

in the cycle during one heartbeat. This implies that not all images of a cine series can
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3.5 Cine Cardiac Fast Low-Angle Shot with Parallel-Imaging Technique

be measured at once. The images itself result from a combination of more than one

heartbeat with the assumption that the heart-cycle is perfectly periodical and that an

image taken at a certain time point of the cycle will always look the same.

To trigger the same point for some lines of a certain image’s k-space, the patients

ECG is recorded simultaneously for detection of the silhouetted R-wave. The images

are then attempted to be equal spaced between the R-waves. Depending on the heart

rate and the desired time-steps as many k-space lines as possible are measured for

the morphological and the flow-sensitive images. This sounds simple but can be very

difficult. Gathering a mV-signal of the human heart in the center of a KW transmitter

demands special ECG-electrodes and electrode arrangements so that on the one hand

the magneto-hydrodynamic effect1 of the large vessels can be neglected and on the other

hand, dependent on the used wires and their length, as less interferences as possible are

absorbed. However, it is enough to have a detectable R-wave in the resulting signal.

The signal-conduction is done as shown in figure 3.52 and submitted via Bluetooth®

to the pulse sequence control unit. Figure 3.9 underlines this measurement process.

Figure 3.9: Triggered retrospective data acquisition. The phase encoding steps are
incremented when the trigger signal is detected. Each line of data is timestamped and
retrospectively sorted to reconstruct a series of images covering the entire cardiac cycle.
Image taken from [Siemens2003].

As a result of the periodicity of the 2D Fourier k-space an image would be completed

if enough lines are gathered after some heart-cycles.
1The magneto-hydrodynamic effect is is an additional electrical charge generated by ions in blood

(loaded particles) moving perpendicular to the magnetic field. see [MR-TIP]
2Product (b): Invivo Research Inc., Quadtrode® 3, MRI ECG Electrode Pad, REF 9369N
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(a) (b)

Figure 3.10: Figure (a) shows one of the possible interference-less positions for the
three ECG gating electrodes and a Bluetooth® transmitter. Figure (b) shows the
electrode-triplet itself carried out with fixed distances as electrode pad.

Using a rectangular Field of View (FOV) through larger but fewer phase-encoding

steps fastens the acquisition at the same resolution but with a reduced signal to noise

ratio. A drawback of this method are back-folding artifacts.

These artifacts would also occur while examining images recorded from the same

region with different coils at once. This technique, using multiple coils is called parallel

imaging.

Parallel imaging uses arrays of detector coils to acquire multiple data points simul-

taneously rather than one after the other. This technique is combined with certain

k-space based reconstruction algorithms like GRAPPA1 which is frequently used in

today’s cardiac MRI and contributes much to a reduction of scan time. To avoid a di-

gression to the fundamentals of signal reconstruction from multiple coils, the interested

reader is referred to [ClincalMRI2006, Section I-8, pages 231-248]. Figure 3.5 shows a

typical body coil array as employed for the data used for this thesis.

The movement of the chest as a result of respiration can be suppressed in a rather

easy way: The patient has to stop breathing during the time of acquisition. As a matter

of fact, that even cardiac insufficient patients have to be examined, the measurement

time is restricted to about 20 seconds. Since not all slices of a volume can be measured

in that time, only all temporal encoded images of one slice are measured at once. This

implies that the patient has to take a breath and hold it for each desired slice.
1GRAPPA = GeneRalized Autocalibrating Partially Parallel Acquisitions
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(a) (b)

Figure 3.11: A typical body coil for thorax parallel image acquisition (a). This array-coil
fits to the Siemens Magnetom Espree Tim [76 x 18] system, situated at Diagnostikzen-
trum Graz (b).

An alternative to the above described, are navigator triggered measurements with

continuous respiration. For this method the movement of the diaphragm is taken addi-

tionally and only images at the same state of breath are taken then. The combination

of this method with ECG gating will result in a longer measurement time and more

produced images. Nowadays both methods are used whereas the first one does not

apply to cine series so the former one is slightly more popular because of its easier

application.

3.5.1 Phase-Contrast Imaging

The last untreated requirement from section 3.5 is the measurement of velocity of mov-

ing matter like blood. At the moment phase-contrast magnetic resonance angiography

(PC-MRA) is one of the most reliable techniques to divide steady from moving spins.

Additionally the quantitative velocity value and direction of a voxel can be retrieved

by using this method as an add-on to the sequence outlined in section 3.5.

The PC-MRA is a well known angiography method. It relies on the fact that

a bipolar gradient results in a zero signal for fixed spins. Moving spins will have a

complex phase component as shown in figure 3.13.

Flow encoding contrast requires a supplementary complex reference signal acquired

from a flow compensated. The amount of flow sensitivity is controlled by the strength
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of the gradient pulse pair which is incorporated into the sequence. Figure 3.5.1 and

Figure 3.13, show the remaining phase components of moving spins for the case of a

certain bipolar gradient field in one direction.

(a) Measuring a flow compensated data requires
to compensate an arbitrary bipolar pulse Gbp1 so
that out-of-phase spins are brought back to the
same phase of the stationary spins. The result is a
phase image with flow-sensitivity zero.

(b) Applying a self-compensating bipo-
lar gradient in one direction leads to a
phase-related flow sensitivity in that di-
rection. Computing the complex differ-
ence of this signal with the complex ref-
erence signal from (a) produces an in-
tensity value proportional to the quan-
titative flow value of this voxel in the
gradient’s direction.

Figure 3.12: Comparing a flow-compensated complex reference signal measurement (a)
with a flow-sensitive one (b). Both use a bipolar gradient but in different fashion.

The complex subtraction of two of these data points produces an image with signal

intensities depending on local flow velocities. A complex differentiation ∆S performed

for one direction is shown in Figure 3.14. The length of the difference ∆S depends on

the phase shift ΦV for each pixel. The amount of phase shifts,

ΦV = γ ·A · τ · v (3.33)

depends on the area of each gradient pulse and distance between the pulses, with

γ [Hz/T ] ... gyro magnetic ratio

A [m2] ... area of each gradient pulse

τ [s] ... time between the pulses
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Figure 3.13: Flow sensitive images require a mapping in two directions, so stationary
tissue will not appear as minimum gray value in the resulting image. This illustration
shows that stationary spins will always see the same strength of the gradient fields but
with different sign. For moving spins the gradient field will be too weak or too strong
at different positions to compensate the shift, so that a net phase shift remains.

v [m/s] .. velocity of the spins

An image which shows ∆S as signal intensity represents the velocity of spins at

each point within the field of view for one direction, whereas the phase shift ΦV is

proportional to the spins velocity v(x).

The phase-interval −π to π refers to the gray-value range of gmin to gmax and even

this again the velocity range vmin to vmax. The mapping velocity- to gray-value is given

by

v(g) = vblood
min +

2vblood
max

gmax − gmin + 1
· (g − gmin). (3.34)

A complex phase component is always 2π-periodic. So it is very important to

set the expected maximum velocity vmax called velocity encoding in advance. The

maximum signal for ∆S is given for reverse directions of S1 and S2. This velocity is

commonly called venc
1 and dependent on the type of sequence. A reverse direction

means a phase difference of π. For velocities according to an amount larger than venc

the difference signal is decreased constantly until it gets zero for a phase difference

of 2π. Values occurring during the measurement which are larger than venc result in

pixels suggesting blood or tissue moving towards the opposite direction. Such aliasing
1venc stands for Velocity ENCoding value
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Figure 3.14: Computing the complex difference of a flow compensated and flow sensitive
signal produces a complex difference vector for moving signals and zero for stationary
spin signals. The image implies that one of the major defiances is the 2π-periodicity
of a complex signal. The phase shift has to be mapped precisely between −π and π
which means that the maximum expected velocity has to be known in advance.

artifacts may occur from time to time because venc has to be defined empirically. On

the other hand a venc value defined too high will result in a low contrast velocity coding

image. That is one of the reasons some further post processing steps are required or

the usage of a sequence with pre-measured venc. Since sequences with automatically

estimated venc were experimental during writing this thesis, further data post processing

steps are described in section 4.2 due to empirical defined venc-values. Figure 3.15 shows

examples for v(xijk) > venc and venc << vmax and the 2π periodic phase-angle mapping

as illustrated in Figure 3.16.

Since the previous method only applies for one spatial direction, two additional

orthogonal flow sensitive images, each with its own venc value, have to be measured.

Four images result consequently:

1. flow compensated image Im1

2. flow sensitive along x image Im2

3. flow sensitive along y image Im3

4. flow sensitive along z image Im4
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Figure 3.15: Left: Anatomical image of the scanned area. Middle: An example for
aliasing artifacts as a result of a too small chosen venc value, venc > v(xmax). The
black pixels within the white homogeneous area suggest an opposite flow direction (red
arrow). Right: Low contrast if venc << vmax. (The images show the Left Ventricular
Outflow Tract (LVOT), in plane x velocity encoded with sagittal main direction.)

Figure 3.16: venc has to be set to the expected maximum velocity vmax otherwise
measured values v(xijk) > venc suggest a flow in the opposite direction or for venc <<
vmax the velocity contrast will get too low.

Then, the spatial discrete velocity field result from

xi = Im1i − Im2i,

yj = Im1j − Im3j ,

zk = Im1k − Im4k, (3.35)

and

v(xijk) = v(xi, yj , zk) =

(vx(xi, yj , zk), vy(xi, yj , zk), vz(xi, yj , zk)).

(3.36)

To acquire the whole dataset tn (ECG triggered) time steps for all slices of the
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volume have to be measured. Hence equation 3.36 amplifies to

v(xijk, sm, tn) = v(xi, yj , zk, sm, tn) =

(vx(xi, yj , zk, sm, tn), vy(xi, yj , zk, sm, tn), vz(xi, yj , zk, sm, tn)),

(3.37)

for a spacial localization xijk, a slice indicator sm and a time step tn.

3.5.2 Data Acquisition

The datasets used for experiments in section 6 were acquired from healthy subjects,

figure 3.5 with two 1.5 Tesla MRI systems (Magnetom Sonanta, Siemens, at the radi-

ology department at the Landesklinikum Graz and Magnetom Espree, Siemens at the

Diagnostikzentrum Graz).

Measuring a complete exam, as described in the previous sections takes between

10 and 35 minutes with temporarily given instructions to the subject to suspend res-

piration. The resulting image set is outlined in figure 3.17. The data can be accessed

directly via the installed PACS 1 or exported and stored on various data carriers in the

well known DICOM 2 file format.

1PACS = Picture Archiving and Communications System
2DICOM = Digital Imaging and Communications in Medicine
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Figure 3.17: An overview of a volumetric time-dependent velocity-encoded dataset.
The phase-contrast velocity encoded images contain one spacial direction component
each. This part describes one slice for one certain volume. One volume consists of
several of these slices, so the number of recorded images for one volume is given by the
four images which are required for one slice, times the number of slices itself. Since we
handle four dimensional data, there is even one volume per time step. Consequently
the final number of raw images results by #images = 4 ·#slices ·#timesteps.
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Chapter 4

Work-Flow and System
Architecture

This chapter introduces the necessary preprocessing steps before a visualization of PC-

MRI datasets can be performed. Section 4.1 gives an overview of the requirements

for an accurate visualization and the already available tools. Furthermore the desired

software integrations ad combinations are proposed there. Subsequently, section 4.2

outlines the abilities of the Siemens Med 4D-Flow Toolbox [Reiter2006] which produces

an intermediate result file for further processing. The parts of this file format which

are necessary for this work are described in section 4.3 and appendix A. With these

definitions a data reader can be implemented.

The second part of this chapter, starting from section 4.4, deals with utilized tools

and libraries. Finally, the programming environment and the medical image viewer

iMEDgine are presented. iMEDgine was extended with hardware accelerated, visual-

ization algorithms in this thesis.

4.1 Requirements

Visualization of raw PC-MRI data, as they are described in chapter 3, requires prepro-

cessing for aliasing corrections, baseline corrections and noise corrections. Therefore

we used a toolkit (4D-Flow Toolbox) which we have developed for Siemens Medical So-

lutions in a previous project. The correction mechanisms of this toolkit are described

in detail in section 4.2. For the resulting intermediate files, which are defined in sec-

tion 4.3, we could subsequently elaborate the following requirements for a high-level
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visualization of corrected four-dimensional velocity fields with additional medical image

data.

1. After a measurement sequence, all resulting images are stored in the PACS1 in

the DICOM2 format. Since only medical staff at facilities with PACS can access

them, we decided to export them to DVD’s or CD’s. However, this implies that we

need access to medical DICOM images and to the correlated DICOM-directories

which are generated for exported datasets. An suitable interface is therefore the

first requirement.

2. As already mentioned, most of the datasets need some preprocessing steps before

a visualization can be done. With the 4D-Flow Toolbox it is possible to correct

aliasing and baseline effects, to suppress noise and to draw segmentation contours.

The resulting velocity field is not stored in the DICOM format but in a couple

of its own files. Therefore we need to define a reader to access velocity fields in

these 4D-Flow Toolbox intermediate format files.

3. Subsequently an efficient intern administration of the available medical image

volumes and the associated velocity fields is crucial. We have to consider that

some of the data may be of interest in different parts of the resulting software but

that resources are limited on a personal computer. Furthermore most of the data

is transformed to GPU-readable 3D-textures, so we have to consider an efficient

way to administer data in GPU memory too.

4. The main objectives are interactive and highly efficient visualizations of inter-

esting flow patterns with a concurrent rendering of morphological background

information. The rendering of medical image volumes can be costly, so we have

to consider fast algorithms for a concurrent calculation and visualization of flow

patterns without a high CPU-load. Programs executed on the graphics unit of a

PC seem to be ideal, so we need additional support for such kinds of algorithms.

5. To provide an overview of different flow patterns for comparison reasons we have

to provide possibilities for a concurrent arrangement of different visualizations.

The same data should be presented in different ways of representation.
1PACS = Picture Archiving and Communications System
2DICOM = Digital Imaging and Communications in Medicine
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6. For concurrent views of the same or different datasets configuration mechanisms

for each visualization are required during run-time. This can be achieved by using

scripts or configuration widgets.

7. To explore the datasets we need interactive usable visualizations and therefore

suitable control mechanisms. In particular, efficient global control of the time-

variate volume is required.

8. Overall, extensibility and reusability of resulting visualization algorithms, in par-

ticular for other kinds of velocity fields should be considered. A general interface

for velocity fields is therefore required.

9. To provide a comfortable exploration of the data, exporting of view and camera

parameter of each visualization is necessary. Re-importing of this data to the

application leads to a reconstruction of an arbitrary previous session.

10. Even if most of the computational work is done on the GPU, low-cost volume ren-

dering techniques for morphological image data should be available. It must not

happen that rendering of background information thwarts the whole application.

We decided to implement several extensions to the medical volume viewer iMEDGine.

iMEDgine supports free arrangeable perspectives of the same or different datasets with

scene graph based view widgets. Consequently, iMEDgine is the main part of the system

architecture so this package already specifies most of the further software requirements

as they are the Insight Segmentation and Registration Toolkit for medical data, Qt and

SoQt as windowing system, Coin3D as scene graph library and SIMVoleon for volume

rendering and the boost library for convenience. We added the Cash-Flow library to

the iMEDgine framework to provide a scene-graph based data flow library and thus to

meet the third requirement from above.

For high-performance visualizations we decided to heavily use general purpose com-

putation shader which are executed on graphics hardware. For this purpose we added

the Shallows library to the iMEDgine framework which abstracts the GPU as single

stream processor. This makes the subsequent use of shader feasible and encapsulatable

in special scene graph nodes.
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4.2 Data Preprocessing

4.2 Data Preprocessing

The data gathered with a technique as described in chapter 3 cannot be directly pro-

cessed with algorithms as presented in chapter 2. Several major correction mechanisms

have to be applied before a visualization can produce a comprehensible and accurate

representation of the measured scenes.

On the one hand the image data itself in DICOM format has to be reorganized to

packages of one single measurement series and the velocity data has to be extracted.

These basic series-selection mechanisms are not described in detail since all medical

image processing libraries [ITK2006; UserLib2004] provide rather easy handling mech-

anisms for them.

On the other hand it is not guaranteed that every data point has been measured with

accurate parameters. Hence the following sections describe a supplementary adjustment

of the predefined venc values and some simple noise, registration and baseline correction

mechanisms before the data gets packed into several intermediate files.

Image 4.1 shows a screenshot of the GUI of the required calculation tool from

the Siemens Med 4D-Flow Toolbox. Figure 4.2 illustrates the main structure of the

4D-Flow calculation toolbox. According to this illustration further implementations

plug-in at the binary intermediate result files.

4.2.1 Venc Adjustment

To adjust the mapping range for the phase differences given by PC-MRI’s phase shifts

to velocity values, a maximum velocity value to be expected has to be defined before the

measurement starts. Since this definition relies on guessing educated (see section 3.5.1),

the velocity mapping can be modified with the 4D-Flow Toolbox calculation tool.

Assuming a constant velocity range of [−venc, venc) within an interval of [−2venc, 2venc)

the user can adjust a new velocity range by defining new vmin and vmax values. The

centered interval [−venc, venc) is then shifted with ∆vadj = vmax − venc = venc + vmin.

Consequently, the velocity values acquired from gray values are modified as follows:

If ∆vadj ≥ 0

vadj =v for v ≥ vmin

vadj =v + 2venc for v < vmin
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4.2 Data Preprocessing

Figure 4.1: A screenshot of the 4D-Flow Toolbox calculation tool. Additional to special-
ized correction mechanisms several basic contouring and manipulation tools as common
for medical datasets are available.

Figure 4.2: This figure refers to the actual 4D-Flow Toolbox [Reiter2006], where a
simple visualization tool is already integrated. This tool is able to render hedgehog
arrow plots and making screenshots of them. Even a Matlab export is possible. Matlab
is a product of The MathWorks and can be found at ”http://www.mathworks.com/”.
The visualization environment described in this work uses the intermediate files in the
middle and performs visualizations for higher grades.
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and if ∆vadj < 0

vadj =v for v < vmax

vadj =v − 2venc for v ≥ vmax (4.1)

If a venc adjustment was done, the value vadj is stored in the intermediate file as

well.

An automatic venc correction is possible as well. This assumes a temporal field,

since this correction analyzes the temporal course of the velocity values. Figure 4.3

illustrates the typical temporal course of a velocity value with aliasing.

Figure 4.3: A typical temporal course of a velocity value with aliasing effect from
[Reiter2007]

By definition aliasing in vi(tn) is present if

vi(tr)− vi(tr+1) > venc

vi(ts)− vi(ts+1) < −venc

(4.2)

which applies exactly once. Then a replacement for

vi(tn) → vi(tn) + 2venc for n = r + 1, ..., s and r > s

vi(tn) → vi(tn)− 2venc for n = s + 1, ..., r and r < s

(4.3)
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can be performed. In recent developments, better mechanisms for an automated aliasing

correction have been invented [Reiter2007]. However, currently the above described

algorithm for automatic venc adjustment is sufficient for our needs and was therefore

used for further data processing.

4.2.2 Noise Suppression

The gray-value intensity of additionally produced morphological images (rephased im-

ages) correlates with the amount of entropy in the velocity encoding images (phase-

contrast images). Defining a global gray-value threshold produces a binary mask which

is used to suppress noisy velocity values. Due to ill defined tissue borders and varying

gray-value and noise coherences different combinations of thresholds and conditional

thresholds for majority decisions from different images are possible. With these ambigu-

ities a threshold mask can be defined with additional neighboring velocity considerations

as

Noise Mask =


0 for pixels with I ≤ Tabs

c for pixels with Tabs < I ≤ Tcon

1 else
(4.4)

I defines the actual signal intensity and Tabs and Tcon adjustable threshold values which

refer in this case to the pixel intensity value of the morphological images. The value c

stands for ”conditional” and is defined as uncertainty whose value is given by

c =
{

0 for velocity difference to neighborhood pixels > V max
diff

1 for velocity difference to neighborhood pixels ≤ V max
diff

(4.5)

with V max
diff as additional adjustable parameter, defining the maximal allowable velocity

difference in a certain neighborhood.

4.2.3 Image Registration and Baseline Correction

The four measured images of one slice at a certain time can differ in three to four

pixels at an average, dependent on the sequence and the patient. Hence a correction

with a 100x100 ROI image-cross correlation is performed after loading an image series.

Certainly these calculated pixel offsets are stored in the 4D-Flow Toolbox intermediate

result file. For one slice the pixel translation offset can be estimated as identical for

every image So the translational offset has to be calculated only for one image each

time. Because of the small prospective translation (about +/- 5 pixel per direction),
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a simple subsequent rigid registration is sufficient provided that the 100x100 ROI was

set reasonable.

Moreover, the PC-MRI method shows two systematic errors. Additional phase

shifts occur because of

• Eddy currents and

• Concomitant gradient fields.

Concomitant gradient fields can be corrected in a low order during image recon-

struction with known gradient pulses [Bernstein1998], so they can be neglected further

on.

For the remaining error a software based baseline correction can be performed with

the 4D Flow Toolbox calculation tool using two different operating modes. A standard

derivation correction can be performed in the case of ”enough” 1 images and a user

defined ROI correction in the other case. Details for these kinds of corrections can be

learned from [Kouwenhoven1995; Reiter2006; Partanen1995].

4.3 Intermediate File Format

As so far defined the intermediate result files are an essential part of this work since

further visualizations utilize this information. These files are arranged as follows: One,

rather small, central information file (master file) can be used to find all other related

files and the DICOM database (most likely a DICOMDIR file on a CD or harddisk).

For every image slice there is one file containing headers and meta data for all image

types of all times followed by drawings and all the vector data (data files).

Example: 3D parallel mode, 20 slices, 42 times per slice. Assuming that

three rephased images per slice and time exist, there is one central infor-

mation file and 20 slice files. In every slice file there is one general header

containing information about the contained data, followed by 42*6 image

headers (3 rephased and 3 phase-contrast images per time step) containing

image meta data. After that header section there is one section contain-

ing the vector data related to those images, followed by the drawings and
1”enough” is experientially determinated with three to four images
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masks. In the final section size-varying strings, for example image-paths

are stored.

A master file always contains global information and values of the complete four-

dimensional velocity field in a fixed-length part. Information of the underlying image

data and paths to the data files are stored in a string section with variable length.

These lengths, and offsets to the strings, are stored in a second part of the master

file, which size depends on the number of images and number of slices contained in an

examined dataset. The file extension of a master file is ”.4dm”.

Data files contain information about the slice and meta information for every image

of the slice. After a successful calculation of the velocity field the file also contains the

corrected vector data of the velocity field. The file extension for data files is ”.4dd”.

A header of such a data file consists of a fixed length part with global values for one

image slice, followed by a header for each measured image and its correction values.

Subsequently, a small header introduces the calculated velocity fields. After each field

the key data for all segmentation regions and noise correction regions are stored.

The detailed binary file definitions are shown in appendix A. The header of the

master file is summarized there from table A.1 to table A.2. Subsequently, the data

files are defined from table A.3 to table A.8 With these information a reader for this

file format can be defined.

4.4 Visualization Framework

The in section 4.2 described data can now be imported and used with different visu-

alization applications. The 4D-Flow Toolbox already provides a tool for that purpose

but its capabilities for extension and performance are absolutely restricted. It allows

only an arrow plot visualization on separate slices of a volume by scrolling through the

time. Even the delay when switching between a volume’s slices is rather high. Based

on the fact that this viewer was written from scratch without the usage of modern

software paradigms, performance considerations or hardware acceleration led to the

decision to apply existent powerful visualization libraries with a solid multi-platform

medical viewer solution called iMEDgine [iMedgine2006] instead.

The next sections will provide an overview of the used libraries and tools and how

they were adapted. Finally the extensions of iMEDgine are defined at a glance. Their
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implementation and the developed visualization algorithms are described in chapter 5

in detail.

4.4.1 Tools

Numerous libraries have been used to provide an easy handling of otherwise time-

consuming graphics development. Based on an Open Inventor compatible Scene-Graph

library called Coin3D (in section 4.4.1.1 and [SystemsInMotion2007]) all visualizations

are performed with nodes. Hardware accelerated algorithms were implemented with

a shader control library called Shallows (in section 4.4.1.2 and [Shallows2007]) The

medical data handling and I/O is done by the popular Insight Segmentation and Reg-

istration Toolkit [ITK2006] and some data flow issues are treated with a Scene-Graph

based data flow library called Cash-Flow (section 4.4.1.3 and [Kalkusch2006]).

4.4.1.1 Coin3D

As written the Coin3D home page, this library defines ”a high-level 3D graphics toolkit

for developing cross-platform real-time 3D visualization and visual simulation soft-

ware”. Based on the well known graphics library OpenGL, rendering, interaction and

import functions are encapsulated in graph-nodes. The visualization itself is therefore

depending on the arrangement of these nodes in a graph. The interested reader is

referred to [Hartley1998] for deeper insight into programming with an Open Inventor

compatible library like Coin3D. The core data-driven design of Coin3D is illustrated in

figure 4.4 and should afford a basic understanding for further definitions.

The power of this library lies in its expandability through the development of own

nodes and nodekits and their easy application in scene-describing graph structures with

even the use of a specialized scripting language. Since each node provides an interface

to basic OpenGL commands and graphics traversal, recently introduced hardware ac-

celerations, volume rendering techniques and data flow abilities can be encapsulated in

such nodes and easily utilized in a basic scene graph as provided by each iMEDgine

rendering area. Figure 4.6 shows such a scene graph in a descriptive way. The scene

graph used for visualizations of cardiac flow data is in parts more similar to the tax-

onomy shown in figure 2.12 from chapter 2 since always a separate scene graph for

morphological data and one for flow visualization algorithms can be assumed.
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Figure 4.4: The general Coin3D architecture similar to [SystemsInMotion2007]. For
compatibility reasons the implementation (chapter 5) uses the parts of Coin3D which
are based on Open Inventor Files for I/O, SoQt and Qt for the window system and
OpenGL as graphics library.

Volume Rendering

Three approaches for a representation of the morphological data are available.

Firstly a classical slice based technique as described in section 2.1.1.1 in chapter 2

has been implemented as Inventor node. Its detailed properties are defined in section

5.3.1 in chapter 5. Secondly the Coin3D additional add-on SimVoleon package was

used to provide several advanced volume rendering approaches. SimVoleon will be

introduced next.

Third iMEDgine integrated a GPU Raycasting algorithm which is based on the

principals as described in section 2 in chapter 2.1.1.1. This visualization was tried

out and found to be slightly more efficent than the SimVoleon package and would be

interesting for future research.

SimVoleon can be used with specialized nodes in the scene graph as usual. Adding

a SoVolumeRender node subsequently to an optional SoTransferFunction node and a

SoVolumeData node will be the smooth way to render volumetric datasets. As the

names already suggest, a transfer function can be defined additionally for a SoTrans-

ferFunction node. The correct dimensioned volume data in a definable byte-order has

to be stored by a SoVolumeData node. The result of this simple approach will be a
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hardware assisted ”3D texture mapping” as described in section 2.1.1.1 in chapter 2.

If a transfer function is inserted and defined before the SoVolumeRender node, this

function will be used for the projection, else a Maximum Intensity Projection or Sum

Intensity Projection will result. An example for this approach is shown in figure 4.5,

where an empirically defined transfer function was used.

Figure 4.5: The raw image data is stored in a SimVoleon SoVolumeData node and
projected with an arbitrary transfer function defined in a SoTransferFunction node. A
SoVolumeRender node renders the projection; in this case the volume is slightly turned
backward for about 15 degree to provide a better impression for the image on the right
side.

4.4.1.2 Shallows

Shallows is a library intended to simplify the usage of GPU shader programs with a

special focus on general purpose applications. The requirement of an at least Shader

Model 3.0 graphics card was not seen as a reason against using Shallows because of a

wide spread of Nvidia 6xxx and ATI 7800 cards or higher. Written as a cross platform

C++ layer on top of OpenGL 2.0 this library supports both Open Graphics Library

Shader Language (GLSL) and Cg. The two kinds of shader can be written in one shader

file. All commonly known GPGPU programming concepts as described in section 2.2.1

in chapter 2 are defined by objects like the examples in the following list.

• shallows::OffScreenBuffer(unsigned int width, unsigned int height) and

RenderTexture2D defines an off-screen frame buffer. (Similar for an on-screen

render target: shallows::OnScreenBuffer.)
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• shallows::RenderTexture2D(texture_ptr tex) defines textures to store (shader/ren-

der) results off screen

• shallows::Program and the derived shallows::GLProgram define a GLSL shader

object. A shader object can be invoked by simple command functions like ...::run()

or ...::activate() and initialized with the file containing the shader (or an ap-

plication internal string) by ...::readFile(const char*) or similar functions.

• Additional input for each shader can be submitted by functions like

...::setParamx*(const char *name,...) 1 and for input textures

...::setInputTexture(const char *name, ...) where char* name always re-

fer to a string similar to the variable’s/texture’s name as defined in a shader as

uniform variable; see next paragraph 4.4.1.2 for ”uniform variables”.

Basically, these four kinds of objects are the main requirements for using any shader

instead of an implementation with direct OpenGL commands. Nevertheless, these

classes should always be instanced with boost shared pointers [Abrahams2007] to en-

sure a smart and correct memory management. Certainly there are also additionally

more complex functions available for special needs but with this basic equipment many

algorithms can be implemented.

GLSL

GLSL is a C-like high level language to perform even complex operation on graphics

hardware vertex or fragment processing units. In the next lists only the data types,

some important built-in functions and always available values and these values which

have to be set necessarily in each program are defined. For using more of GLSL’s

capabilities the interested reader is referred to [Fernandes2007; Tatarchuk2004]. First

of all, listing 4.1 shows the simplest possible shader. Actually, these GLSL-shader does

nothing else than passing through values.

Listing 4.1: A very simple vertex and fragment shader in Shallows notation. They will
do nothing else than passing through the given input vertices and colorize interpolated
fragments between with a given texture.

1 [Vertex shader]
2

1”x*” can refer to 1f, 1i, ... 4fv, 4iv, Matrix4fv as type qualifier.
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3 void main(void)
4 {
5 // Texture coordinate of the vertex
6 gl_TexCoord [0] = gl_MultiTexCoord0;
7 // Position of the vertex
8 gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
9 }

10

11

12 [Fragment shader]
13 uniform sampler2D aTexture; //an arbitrary input texture
14

15 void main(void)
16 {
17 //read the RGBA color of the texture ’s pixel
18 //at an interpolated texture position
19 vec4 texVec = texture2D(aTexture , vec2(gl_TexCoord [0]));
20 //set the color of the rendered fragment
21 gl_FragColor = texVec;
22 }

Available data-types

• Standard types: Besides bool, int and float, also vector types like vec2, vec3

or vec4 and matrix types like mat2, mat3 or mat4 and similar are available.

• Textures: defined with sampler1D, sampler2D or sampler3D (and even some

more for cube- or shadow maps) and accessed via the built-in functions texture1D, texture2D

or texture3D...

• Arrays: defined in the same way as in C with square brackets.

• Type qualifiers: Referring to the two most frequently used, uniform defines a

variable set by the OpenGL API and varying a variable which is interpolated

between vertex and fragment shader and therefore accessible in both.

built-in functions and values

• Vector and matrix types can be accessed element wise via a swizzle operator.

For example a four dimensional vector accessed with vector.xyz or vector.rgb

will result in the first three elements. (w or a refers to the fourth component).
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The order is arbitrary and recurrences are allowed. (for example vector.xxwy).

{s,t,p,q}-letters are allowed for indexing as well.

• All basic matrix and vector operations are available for the according types.

• Many standard geometric, trigonometric and exponential functions are available

as described in [Fernandes2007]

built-in variables, attributes and constants

The most important of them are listed below. A complete list of them is given in

[Tatarchuk2004]

• vertex shader writable variables

– vec4 gl_Position: equals to the homogeneous coordinate position of the

vertex and must be written.

• vertex shader readable attributes:

– vec4 gl_Color: color value of the vertex;

– vec4 gl_Normal: normal vector of the vertex;

– vec4 gl_Vertex: coordinate of the vertex;

– vec4 gl_MultiTexCoord0..7: texture coordinates on texture units 0...7.

• fragment shader writable variables:

– vec4 gl_FragColor: must be written and defines the color of the output

fragment;

– vec4 gl_FragData[0..15]: refers to the same as vec4 gl_FragColor but

for multiple render targets.

• fragment shader readable attributes:

– vec4 gl_FragCoord: reads the position of the fragment relative to the win-

dow position (x,y,z,1/w);

– bool gl_FrontFacing: reads if the fragment belongs to a front facing prim-

itive.
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• fragment shader built-in varyings:

– vec4 gl_FrontColor: interpolated front color set by the surrounding ver-

tices (cp. vec4 gl_BackColor; vec4 gl_Color is an alias for both and its

value depends on the fragments’ facing direction.);

– vec4 gl_TexCoord[x]: refers to the interpolated texture coordinate on tex-

ture unit x.

4.4.1.3 CashFlow

Cash Flow is based on the scene graph library Coin3D [SystemsInMotion2007] as de-

scribed in [Kalkusch2005]. The scene graph is extended with data-flow abilities. All

attributes used to parametrize the data flow and the visualization pipeline are part

of the scene graph as nodes and fields. Thus these attributes can be manipulated

interactively inside the scene graph, influencing the dataflow graph [Kalkusch2006].

This framework consists of four types of nodes:

• DataNodes storing the raw data. Node symbol:

• SelectionNodes defines access patterns to the raw data. Node symbol:

• GridNode define topological interpretations of the raw data, storing the positions

of velocity values. Node symbol:

• RenderNode creating renderings. Node symbol:

In contrast to [Kalkusch2006] this work does not perform direct visualization of

grids. In the PC-MRI measurements, one dataset is composed of changing velocity

data on a static rectangular grid. Hence, one static GridNode for the grid and one

DataNode containing the velocity values for all time steps can be used. Decoupling the

data for a certain time can be done via flexible Selection nodes.

4.4.2 The Visualization Backbone: iMEDgine

[iMedgine2006] is a medical image viewer and its pure features are mainly 2D visualiza-

tion with different perspectives, free grouping of perspectives, fading between datasets

and 3D visualization. Since this software is intended as viewer for medical volumetric
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datasets, the required features to support them - such as slice navigation, zooming,

panning, window / level adjustment - are implemented as well. Medical image pro-

cessing, respectively the administration of morphological data is done with the Insight

Segmentation and Registration Toolkit (ITK) [ITK2006] in the background. Figure 4.7

illustrates the isolated iMEDgine viewer GUI with two anatomical example datasets.

Each view renders a scene-graph implemented with Coin [SystemsInMotion2007] whose

main structure is shown in figure 4.6.

Figure 4.6: The basic scene-graph of iMedgine views. Below the ”Dynamic Separator”
all the image related nodes (plane, texture, volume rendering...) can be added. The
”Static Separator” allows to add an additional information overlay like slice counters,
cross hair, DICOM-entries etc. Image from [Streit2006].

In this thesis this basic scene graph is extended with special-purpose separator

nodes such as the ”Flow-Volume Separator”. This allows to separate the pure gray-

valued image data visualization from overlaid and embedded flow visualizations. These

separators combine both Cash-Flow scene-graphs (see section 4.4.1.3) and further flow

visualization nodes, i.e. hardware accelerated ones.

The use of design patterns and the well known library Qt [Trolltech2007] allows

to define new datasets and corresponding views and view controlling widgets fast and

comfortably. Using Coin3D scene graphs eases the development of new views through

the possible scripting of a good portion of new code.

Augmenting the iMEDgine viewer with new dataset classes (DICOM and 4D-Flow

Toolbox intermediate file) allowes to handle the 4D-Flow intermediate result file which

is described in section 4.2. A new correlated configuration widget enables the user to

choose the current temporal position and some other time-depenent adjustments for

each dataset for some views. Others can be controlled directly inside the render area.
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Figure 4.7: This is the standard usage configuration for the iMEDgine viewer. In this
example two datasets are loaded. The different combination of views can be arranged
by a view configuration dialog and will get organized in tabs. Here are three slice
views (axial, sagittal and coronal at upper left, upper right and lower right positions)
arranged with a volume rendered view of the dataset. The slice views are built-on two
layers. In the foreground there is a green cross hair placed, which indicates the current
slices shown in the other views. A dragger below the image controls the current slice
and additional information is rendered as text. The latter parts are situated below the
”Static Separator” in the iMEDgine basic scene graph. The slice image, respectively the
volume renderer is situated below the ”Dynamic Separator”. Each view accommodates
its own scene graph.
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In addition to fixed views, an Inventor script-able view for more flexibility has been

developed. Furthermore a loading, saving or configuration of view parameters and ar-

rangements has been enabled by a xml-file format definition. Hardware accelerated or

Cash-Flow supported views and morphological data representation get strictly sepa-

rated and therefore completely modular in that way. New views or view-arrangements

can be invented on-the-fly due to the scripting abilities of Inventor script files 1 , xml-

files and GLSL-shader files. The next chapter (5) will go into detail of these iMEDgine

extensions. Figure 4.4.2 gives an overview of the two simplest extended viewer scene

graphs, one global Cash-Flow supported visualization and on the other local visual-

ization with GPGPU calculations. Both can be arbitrarily extended, even during the

application’s run-time.

(a) The basic scene graph for Cash Flow views
in iMEDgine. The iMEDgine specific separators
remain for image data visualization. CashFlow
nodes are arranged below a Flow-Volume Separa-
tor.

(b) In this example a Coin3D built-in ”Center-
ball dragger” controls the zone from which a hard-
ware shader starts its calculations (for example a
seed region for a particel effect).

Figure 4.8: Two fundamentally extended scene graphs for iMEDgine viewer. (b) is
in any order extendable by modifying the underlying Inventor script. Figure (a)’s
visualization can be modified by varying the used render node.

1Inventor script files are usually denoted with an ”*.iv” extension.
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Implementation

This chapter provides an insight into the implementation details of this work. In sec-

tion 5.1 the used software packages and libraries are presented to meet the requirements

from section 4.1. Therefore, figure 5.1 outlines the compilation process of our framework

and summarizes all dependencies.

Subsequently, section 5.2 defines the extensions we made for the iMEDgine medical

image viewer. The interfaces and structures which are necessary to access DICOM

medical data and 4D-Flow Toolbox intermediate files are defined there. Furthermore,

the configuration mechanisms and implemented features for different iMEDgine views

are explained. In general we present UML-diagrams in these chapter with omitted

methods. The corresponding full diagrams are shown in appendix B.

All developed visualization algorithms are defined in section 5.3. There we separate

global visualization approaches and morphological background information visualiza-

tion from hardware accelerated algorithms.

5.1 Software Environment

The main parts of the multi platform Software Development Kit (SDK) which accrued

due to the presented requirements is outlined in figure 5.1. This illustration also indi-

cates the whole compilation process with Microsoft Visual Studio 2005 for Microsoft

Windows of iMEDgine and our extensions. We used the following software packages

and libraries for our visualization framework:

• CMake 2.4.7: software configuration to provide multi-platform support,

81



5.2 iMEDgine extensions

• iMEDgine: medical image volume viewer for analyze and DICOM data [iMedgine2006],

• Insight Segmentation and Registration Toolkit 2.8.1: library for medical

image data [ITK2006],

• Qt 4.2: cross-platform rich client widget development framework [Qt42],

• OpenGL 2.1: immediate mode 3D graphics library [SGI2007],

• Coin3D 2.4.6: scene graph library [SystemsInMotion2007],

• SIMVoleon 2.0.2a: volume rendering extension of Coin3D [SystemsInMotion2007],

• SoQt 1.4.1: interface between the Coin3D visualization library and the Qt user

interface library [SoQt2007],

• boost C++ libraries: consistency libraries ,

• Shallows 0.97: GPGPU shader utility library [Shallows2007],

• Cash-Flow 0.9: data flow driven scene graph library [Kalkusch2005],

• Visual Studio 2005: Windows IDL [VisualStudio2005],

We chose the main programming languages C++ and GLSL. The used operating

system is currently Microsoft Windows XP, SP2.

5.2 iMEDgine extensions

In this section, extensions added to the basic iMEDgine viewer and developed shader

are described. The following short descriptions reflect the module’s main tasks. The

new iMEDgine modules at a glance are:

• Datasets for 4 dimensional flow- and DICOM-image data; inevitably also an in-

terface for DICOM volumetric and flow data I/O;

• two new viewer-types; one for Cash-Flow based scene-graphs and one free defin-

able, mainly designed for hardware accelerated visualization nodes;

• a node which serves as interface between independent viewer scene graphs and

the data holded by iMEDgine;
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Figure 5.1: This figure gives and overview of the iMEDgine Software Development Kit
(iMEDgine-SDK). The cross platform development tool CMake generates all necessary
build files for the Insight Segmentation and Registration Toolkit and the iMEDgine
framework which are required for compiling the framework with Microsoft Visual Studio
2005. Compiled with the required software libraries: boost, Qt and SoQt, Coin3D and
SIMVoleon, OpenGL, Cash-Flow and Shallows, the resulting iMEDgine executable is
able to process Siemens 4D-Flow Toolbox intermediate files and our own configuration
and shader program files.

• several GUI extensions like controls for the dataset’s I/O and a dialog for editing

a color gradient. Furthermore, saving and loading abilities for view parameters

are implemented.

5.2.1 Datasets

Supplying an iMEDgine-design conform reading of flow data files and additional mor-

phological DICOM data requires new datasets and corresponding data interfaces. The

simplified UML diagram in figure 5.2 shows these datasets and its inheritances. The

complete class diagram can be found in appendix B.

This dataset uses a file reader related to one used in the 4D-flow toolbox. It rep-

resents the main interface to *.4dm and *.4dd files, which does not mean, that it can

read them automatically. The actual reading and organizing of the files in adequate

data structures has to be done separately with a flow data I/O interface. The scheme
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Figure 5.2: A dataset for flow data and its interfaces and inheritances as simplified
UML class diagram. For the sake of clarity, all methods are cut in this representation.
The full diagram can be found in figure B.1.

as presented in tables A.1 to A.9 in chapter 4 will be traversed with this class. Un-

fortunately, the flow data and related images are organized in temporal order instead

of a required volumetric order. Thus a reorganization before storing them in a dataset

class is unavoidable and may take some time. The DICOM image processing is done

with the help of given paths to the images in the *.4dd files 1. For each volume image

stack a new iMEDgine DICOM volume image dataset will be read by its own DICOM

volume I/O and made available by the flow field volume dataset in a dataset vector-

based structure. Note that this effort only applies for anatomical (rephased) volumetric

image stacks; the flow data itself is, as already described, preprocessed and numerically

stored in *.4dd files. The reorganization to a volumetric order can be already done

by the read strings containing the paths to the images. Since each temporal volume

consists of exactly the same number of slice images in the same order, this task can be

solved accordingly. The first image paths in the image file section (table A.4 ) of each

*.4dd file refers always to the first volume and so on. The DICOM volume I/O itself

utilizes the Insight Segmentation and Registration Toolkit’s [ITK2006] GDCM library
1If the data cease to exist at the given lo6cation, an alternative path but containing the same data

will be asked for.
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which eases the access of the image data itself with variable window and level settings.

Consequently, the image volumes returned by these datasets will already be mapped

correctly by passing the related values continuously.

The flow vector field volumes are finally stored in a number of time steps sized

vector structure as an array of float values. Each field is of constant size and organized

as all rows of a slice subsequently stored for the whole volume. This enables both

libraries, Cash-Flow and Shallows, to deal with this data according to the additionally

available field width, height and depth information.

5.2.2 Viewer

Viewers represent an essential part of iMEDgine. These are render area widgets which

can be arranged arbitrarily inside tabs and equipped with any kind of visualization.

However, after experimenting with several configurations utilizing even one view (class)

for one visualization a better solution turned out: The development of only two different

kinds of iMEDgine-views was adequate. The first one uses Cash-Flow, supports its

data-flow architecture and provides its classes (and nodes). The drawback with this

view is, that an intern data-flow between the iMEDgine architecture and the Cash-Flow

data nodes is only possible within the view itself. That means, that the dataset class

has to prepare all Cash-Flow ”Virtual Arrays” 1 in advance before Cash-Flow is able

to deal with them. Furthermore, Cash-Flow is rather designed for the visualization

of different grids than of flow data, so this view class has to administer a parallel

data flow of grid-positions and flow-data positions at the same time. Nevertheless, the

Cash-Flow library proved its value, with some adjustments for global field overview

visualizations and grid supporting views due to its abilities for reconfigurable data

access with configurable selection nodes.

A view to administer different independent hardware accelerated visualization nodes

or arbitrary scene graphs is additional available. The goal is to enable a configuration

not only with c++ code and inevitably recompiling the whole application but with a

separate Open Inventor .iv-file. This allows changes of the scene even during run-time

and arbitrary combinations of visualizations in concurrent views. Moreover handling,
1”virtual arrays” are specialized Cash-Flow arrays which define arrays within an actual array in

memory. The interface to these arrays are provided by data access nodes respectively selection nodes.
[Kalkusch2005]
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debugging and testing of new visualization nodes becomes rather fast with these abili-

ties. By the additional development of a ”ControlDragger”’ node-kit, which is actually

nothing more than an 1D Dragger, definable for a certain range (for example discreet

movement of the dragger between 0 and 5 in steps of 0.1), the complete controlling

requirements can be defined within a view and its corresponding .iv-file. Nonetheless,

this feature gets first important for a full screen or stereo projection of the scene. The

thinned out UML diagram for these implemented viewer classes is presented in figure

5.3.

Figure 5.3: UML class diagram for viewer classes with special interest in flow script-
ing views and Cash-Flow views. For the sake of clarity, all methods are cut in this
representation. The complete class diagram can be found in figure B.2.

Flow data viewer provide an interface between their scene graphs and the iMEDgine

datasets. Each of them add a so called ”View Parameter” node to the scene graph in

advance, so that the flow and DICOM data can be accessed via this node by other nodes

defined for example in an .iv-script. While initially this was thought as a temporary
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solution further development showed, that this kind of data access is one of the most

beneficial because of its speed. Section 5.2.2.2 provides a more detailed insight into

this node.

5.2.2.1 Scriptable View

Since the view class for GPGPU nodes and arbitrary scripting is used more frequently

than the Cash-Flow view its features will be outlined here. The view itself, following

the iMEDgine design conventions, is a widget contained by an iMEDgine-viewer. This

enables a division between rendering parts and Qt-GUI parts. However, the user will

not distinguish between them when using a view. Consequently the view(er)s behavior

can be summarized as follows:

• 3D-Navigation: The navigation inside a viewer (zoom, pan, manipulating)

is the same as used with standard [SystemsInMotion2007] examiner viewer (So-

QtExaminerViewer). ’ESC’ toggles between the manipulation and view mode,

so that active objects like draggers can be moved. All additional features of a

context menu can be accessed via a right click into the viewer.

• view-arrangement: Arranging different views side-by-side can be done as with

all other iMEDgine views. Figure 4.7 shows such an order for standard morpho-

logical data and the usage of these concurrent views. For stereo environments

the usage of only one view but divided into different tabs is recommended. Cer-

tainly, combinations of existing iMEDgine morphological data viewer and flow

visualizations were particularly intended.

• color mapping adjustment: The mapping of color to an arbitrary view pa-

rameter can be performed by using a built-in color gradient editor. The resulting

color gradient is stored in the always present view-parameter node and then be

accessed by any other node. The detailed description of this dialog can be found

in section 5.2.3.2.

• altering the scene graph: The desired scene graph (.iv-file) can be chosen with

a file-selection dialog which can be found in the viewer’s context menu.

• fullscreen mode: This feature toggles the selected view in full screen mode.
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• stereo mode: In the case of an available Quad-Buffer graphics card, this feature

enables a pure stereo view with the according equipment (for example shutter-

glasses). Since there are no head-tracking interfaces implemented yet this feature

can be seen as a preparation for future work as described in chapter 7.

• control draggers: To provide an interface for a possible use of the application in

a stereo viewing environment and in full screen mode special control draggers have

been developed. Figure 5.4 illustrates their application. The reason to relocate

the controls into a view itself is to avoid interferences from the Qt-Interface in

these view nodes.

Nevertheless, the main controlling and rendering part of a view is the selection of an

applicable scene graph. Such a scene graph script has to fulfill some few constraints to

be iMEDgine compliant. A script code example for such an applicable .iv-file is given

in listing 5.1.

Listing 5.1: A simple .iv-file containing an applicable scene graph for a Flow-scripting-
view. This example shows the usage of a stream-tube renderer with additional slice-wise
rendering of the anatomical image data. Several control units are described inside. The
result of this configuration is shown in figure 5.4. In general all GPGPU visualization
nodes provide the same configuration fields as the one used in this listing.

1 #// This camera shows the 3D content of the scene
2 #// and is therefore movable and rotateable.
3 DEF dynamicCam SoPerspectiveCamera {
4 viewportMapping ADJUST_CAMERA
5 position 0 0 506.639
6 orientation 0 0 1 0
7 nearDistance 1
8 farDistance 1000
9 aspectRatio 1

10 focalDistance 549.737
11 heightAngle 0.78539819
12 }
13

14 #// This defines the interface to the iMEDgine dataset
15 #// and enables an easy loading and saving of view paramter.
16 #// SoViewParamter has to be defined correctly if the
17 #// visualization nodes are marked as iMEDgine view related.
18 #// This node gets filled by the iMEDgine framework.
19 DEF params SoViewParameter
20 {
21 name "ViewParameter"

22 cam_focal_distance = USE dynamicCam.focalDistance
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23 cam_position = USE dynamicCam.position
24 cam_rotation = USE dynamicCam.orientation
25 }
26

27 #// This camera shows the controlling parts of the scene.
28 DEF staticCam SoOrthographicCamera {
29 focalDistance 10
30 nearDistance 0.5
31 farDistance 10
32 viewportMapping LEAVE_ALONE
33 }
34

35 #// This subgraph is respensable for all controlling
36 #// parts of the scene
37 SoSeparator {
38 USE params
39 USE staticCam
40

41 SoSeparator {
42 SoTransform {
43 scaleFactor 0.1 0.1 0.1
44 translation 0 -0.90 0.3
45 }
46

47 DEF volume_control SoControlDragger {
48 minmax 6.0
49 range = USE params.num_volumes
50 translation -6 0 0
51 }
52

53 #// [...] following some more SoControlDragger
54

55 #// This shows a custumized color gradient if available.
56 SoSeparator {
57 Transform{
58 translation -0.98 0.77 0.3
59 #scaleFactor 1.0 10.0 1.0
60 rotation 0.0 1.0 0.0 1.57
61 }
62 SoImage{
63 image = USE params.color_mapping_image
64 height 80
65 width 15
66 }
67 }
68 }
69

70 #// The main scene graph contains the complete scene.
71 SoSeparator {
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72

73 USE params
74

75 USE dynamicCam
76

77 #// A Centerball Dragger defines the seed -region
78 #// for the visualization
79 SoSeparator {
80 Transform{scaleFactor 50.0 50.0 50.0}
81 DEF genZone SoCenterballDragger {}
82 }
83

84 #// A GPGPU node which takes the former defined controlling
85 #// input. Note that this node is defined as iMEDgine node
86 #// since it is used with an iMEDgine dataset interface.
87 SoPPTubletStreamlineNode
88 {
89 shader_directory = USE params.shader_path
90 field_dimensions = USE params.field_dimensions
91 color_mapping_tex = USE params.color_mapping_texture
92 field_data = USE params.field_data
93 show_debug_tex 0
94 line_length 1024
95 num_lines 1024
96 iMEDgine_node 1
97 which_volume = Calculator {
98 a 0.0 = USE volume_control.int_position
99 expression [ "oa=a-1" ] } . oa

100 seat_region = USE genZone.center
101 seed_region_rotation = USE genZone.rotation
102 cam_position = USE dynamicCam.position
103 seed_region_width = USE width_control.float_position
104 seed_region_height = USE height_control.float_position
105 seed_region_depth = USE depth_control.float_position
106 cam_rotation = USE dynamicCam.orientation
107 }
108

109 #// Finally the simple anatomical slice renderer defined
110 #// in a separate file. Note that defining control units
111 #// with the names slice_control window_control ,
112 #// volume_control , level_control and
113 #// alpha_control is necessary to use
114 #// that renderer in such a way.
115 Separator{
116 File { name "slice_renderer.iv" }
117 }
118 }
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Figure 5.4: A example for the usage of control draggers. From the top clockwise the
draggers around the actual image are: (a) two sliders to adjust the window and the
level of the basic DICOM morphologic data which is rendered in the background. (b)
Two sliders to adjust the alpha-blending of the slice-planes. (c) a slider for switching
through the different volumes (time-steps). (d) another three slider to adjust the size
of the seed-region of particles or lines in each direction.
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5.2.2.2 View Parameter Node

This node represents an essential interface to the iMEDgine framework, so it is described
separately in this section. Values are set after loading a flow dataset, so for a new view
only a reference to this node has to be passed. This node can even be exported in a
later described xml-format. Consequently, it is possible to restore a former workspace
completely for each view, see section 5.2.3.1. The available parameters are listed and
described below.

• SoSFInt32 view_type: Indicates the (iMEDgine) type of view. For example a
scripting view is associated with ”10”. (These numbers are internal mapped to
iMEDgine enum values).

• SoSFVec3f cam_position, SoSFRotation cam_rotation,

SoSFFloat cam_focal_distance: stores the position, rotation and distance from
the origin of the scene to the camera. These values are necessary to store a current
perspective.

• SoMFInt32 manipulator_positions: a list of positions for certain seed regions.
...

• SoSFInt32 time_position, SoSFInt32 num_volumes: stores current temporal
position and the overall available number of volumes.

• SoSFString primary_dataset_path, SoSFString primary_dataset_key: restor-
ing a former used dataset in the case of loading a view configuration require these
values. The key value equals the file name of the 4DFlow Toolbox master file.

• SoMFFloat color_mapping_texture, SoSFImage color_mapping_image,

SoMFVec4f gradient_editor_points, SoMFFloat gradient_points: are all nec-
essary parameter for color mapping: the 1D gradient texture, an image for con-
venience and all parameter to restore the gradient editor.

• SoSFString field_path: is the path to the original used field data. This is only
needed for reloading a viewer configuration.

• SoSFDataset field_data: the interface to the raw velocity field data. The field
SoSFDataset was developed to provide the data both as SoMFFloat and as refer-
ence to shallows GPGPU textures if they once have been generated. Storing the
references in this node is necessary and efficient because otherwise the velocity
field textures would have to be reassembled with each new view or visualization.
The SoMFFloat field on the other hand can be accessed by Cash-Flow virtual
arrays and further libraries directly. Since each view only gets a shallow copy of
the data and this node, memory requirements are optimized.

• SoSFVec3s field_dimensions: a 3D vector, storing the field’s width, height and
depth.
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• SoSFString shader_path: the path to a directory containing the shader files.
This is necessary since only iMEDgine initially knows where they are, Coin3D
does not. This directory is defined among others at the very first start of the
application and stored in a global ini-file.

• SoSFString scene_graph_path: the path to the scene-graph Open Inventor
script if the accessing view type is defined as script-able one.

5.2.3 User Interface Extensions

Figure 5.5 gives an overview of additional buttons and behaviors of the iMEDgine
framework. The following section (5.2.3.1) defines the xml-file format for the saving
and loading of view configurations. Finally section 5.2.3.2 outlines the implementation
details of the developted color gradient editor.

5.2.3.1 Exporting/Importing of View Parameter

The export of a current workspace and all set parameter, view points and modifications
is technically simple but powerful in routine. Even marking interesting features of the
dataset by simple saving the view best showing them enables a hypothetic operator
to explore and explain the data quickly. In general the most important configuration
parameters for each view are the position of the camera viewing the scene, possible seed
region positions and rotations, an optional defined color mapping gradient and several
additional view-specific values. Since the resulting configuration file of such a snapshot
is generated in XML (DOM), new view configurations can be scripted by hand. The
code in 5.2 shows for example the configuration exported from figure 5.5. To keep the
XML-code short no further manipulation have been applied after arranging the views.
Hence all of the parameters show default values except the camera positions and time
positions.

To simplify the behavior of iMEDgine directly after loading a dataset a default
xml view configuration is loaded for the first overview. This provides the possibility
to customize the dataset overview tab and enables a fast development of new datasets
with initial overviews meeting exactly their requirements.

Listing 5.2: A viewer configuration file exported from the view arrangement from figure
5.5. Only the camera positions and time positions were varied so most parameter show
default values. Note that not all parameter from the view parameter node 5.2.2.2 have
to be exported to restore a complete view configuration tab. The remaining ones can
be restored by using the here defined.

1 <!DOCTYPE ViewConfiguration >
2 <Views >
3 <View ViewType="10" > <!--// Scripting view -->
4 <Camera RA="2.98906" X="142.953"
5 Y="146.915"
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Figure 5.5: The additional implemented GUI features of iMEDgine. The image shows
on the left side a scripting view with several control dragger and one seed region dragger
with a slice based rendering of the anatomical volume image data described in section
5.2.2.1. The view on the right side shows a Cash-Flow scene graph with thinned out
glyphs located at every tenth grid position. The current volume can be switched either
with a control dragger inside a view on the additional available volume control widget
on the right side. The context menu is activated with a right click in a render area of
a view.
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6 Z=" -238.124"
7 RX="0.998504"
8 RY=" -0.00809212"
9 RZ="0.0540836"

10 FD="272.991" />
11 <Manipulators count="1" >
12 <Manipulator X="0" Y="0" Z="0"
13 RX="0" RY="0" RZ="0" Type="0" />
14 </Manipulators >
15 <ViewData >
16 <TimePosition Time="2" />
17 <BaseDatasetKey Key="test_seg_Prob2" />
18 <BaseDatasetPath Path="/*long string */" />
19 <ScriptFile Path="/*long string */" />
20 <ColorMapping >
21 <GradientStops >
22 <GradientStop EditorPointR="0"
23 EditorPointA="1"
24 EditorPointB="1"
25 EditorPointG="0"
26 Point="0" />
27 <GradientStop EditorPointR="0"
28 EditorPointA="1"
29 EditorPointB="0"
30 EditorPointG="1"
31 Point="0.5" />
32 <GradientStop EditorPointR="1"
33 EditorPointA="1"
34 EditorPointB="0"
35 EditorPointG="0"
36 Point="1" />
37 </GradientStops >
38 </ColorMapping >
39 </ViewData >
40 </View >
41 <View ViewType="7" > <!-- //Cash -Flow glyph view -->
42 <Camera RA="3.14159" X="172.329"
43 Y="104.688"
44 Z=" -510.047"
45 RX="0.998504"
46 RY=" -0.00809212"
47 RZ="0.0540836"
48 FD="549.737" />
49 <Manipulators count="0" >
50 <Manipulator X="0" Y="0" Z="0"
51 RX="0" RY="0" RZ="0" Type="0" />
52 </Manipulators >
53 <ViewData >
54 <TimePosition Time="2" />
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55 <BaseDatasetKey Key="test_seg_Prob2" />
56 <BaseDatasetPath Path="/*long string */" />
57 <ScriptFile Path="" />
58 <ColorMapping >
59 <GradientStops >
60 <GradientStop EditorPointR="0"
61 EditorPointA="1"
62 EditorPointB="1"
63 EditorPointG="0"
64 Point="0" />
65 <GradientStop EditorPointR="0"
66 EditorPointA="1"
67 EditorPointB="0"
68 EditorPointG="1"
69 Point="0.5" />
70 <GradientStop EditorPointR="1"
71 EditorPointA="1"
72 EditorPointB="0"
73 EditorPointG="0"
74 Point="1" />
75 </GradientStops >
76 </ColorMapping >
77 </ViewData >
78 </View >
79 </Views >

5.2.3.2 Color Gradient Editor

As already mentioned in section 2.1.1.2 in chapter 2 the mapping of color to an ar-
bitrary flow parameter is an essential task for flow visualization. To define a color
gradient in an intuitive and easy way a Qt 4.2 demo application [QGradientDemo2007]
for gradient editing was adapted as modular dialog. The UML class diagram of the
underlying widgets is shown in figure 5.6. Figure 5.7 shows the dialog and describes its
usage in shortly. The output of the editor is an 1D-array of RGBA color values and cor-
responding supporting points for the resulting color-value function (QGradientStops).

5.3 Visualization nodes and subgraphs

Rather independent from the iMEDgine framework, several new shape nodes for visual-
izations and corresponding calculations are implemented or utilized from the Cash-Flow
library. These nodes and their visualization algorithms are described in this section in
detail. Section 5.3.1 and 5.3.2 implement visualizations providing a static overview of
a volume. Section 5.3.3 and the following subsections illuminate dynamic visualiza-
tions based on calculations done on graphics stream processors. Their algorithms are
illustrated in more detail since these methods offer a higher complexity.
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Figure 5.6: An thinned out UML class diagram showing the underlying widgets of
the Color gradient editor dialog. For the sake of clarity, all methods are cut in this
representation. The full diagram can be found in figure B.3.

All visualization nodes which are additionally implemented for this work can even
be used with or without iMEDgine. The difference makes a boolean field called
iMEDgineNode. If this field is defined as true a SoViewParameter has to be avail-
able in the scene graph so the node can get its field data, image data and other data
from this parameter-node. Otherwise the programmer will have to fill an additional
field fieldData with flow- or image data, depending on the desired visualization. An
overview of those nodes is given in figure 5.8.

5.3.1 Morphological image-volume rendering

In the focus of this thesis anatomical data is only a supporting but important visual-
ization to provide a spacial correlation of the presented flow visualizations. In general
all volume rendering algorithms described in chapter 2 are now available within the
iMEDgine framework, but as announced in section 2.1.1.1 the simplest method has
empirically prove to be best. This technique renders slices on top of each other with
different transparency values. However, without appropriate possibilities to adjust a
(blending) centered slice and the transparency values even this method is not feasible.
For that reason a SoShape node was implemented which does the rendering of the
slices but enables the adjustment of an alpha-blending function and the translation of
its peak.

The slices are shown each with different transparency values following a Gauss
distribution. The position of the peak can be adjusted with the µ-value of the Gauss
function, which refers to a movement of the brightest slice (or a single slice if the slope
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Figure 5.7: With the color gradient editor it is possible to define arbitrary support-
ing points for each color-component’s mapping function and an optional transparency
function. By applying a new gradient to a view, this gradient will serve as lookup table
for a defined parameter. Else a default gradient is used. Flexible supporting points
refer to the class ”HoverPoints” as denoted in figure 5.6.
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Figure 5.8: This UML class diagram gives an overview of the additional implemented
visualization nodes. The full diagram can be found in figure B.4 and B.5.

is high enough). The slope of the distribution can be modified with the σ-value of
the Gauss set phrase, which accords to the amount of neighboring slices seen. This
principle is outlined in figure 5.9. Figure 5.3.1 illustrates this behavior and figure 5.4
describes the modification of µ and σ with control draggers.

5.3.2 Cash-Flow View

The Cash-Flow views are essentially based on the scene graph shown in figure 4.4.2.
Since each volume field dataset is arranged on the same grid, a constant grid node can
be defined to organize the data. Consequently, a Cash-Flow virtual array used with the
data node is at the number of temporal volumes larger than the array of the grid node
itself. To provide four dimensional support only the offset of the responsible selection
has to be altered. Unfortunately, render nodes provided by the library, did not fit to
the presented data and were occasionally slow since all calculations were performed on
the CPU. That is the reason why only two rendering techniques performed well.

Firstly the rendering of the grid and subparts of the grid in arbitrary order is very
useful to evaluate the alignment of the flow data with the image data. The grid is
rendered with this technique as small green points. Subsequently visualizing subparts
with Cash-Flow is easy since only the increment (inc) value has to be modified. The
view supporting this technique got the name ”grid supporting overview”.

Secondly a velocity field overview with glyphs could be realized with small modifica-
tions of the Cash-Flow glyph render node. The right view rendered in figure 5.5 shows
such a glyph view, using every tenth grid position. The glyphs itself are lines which are
constantly colored from blue to red and a length corresponding to a tenth of the given
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Figure 5.9: Increasing or decreasing the µ-value will result in a movement of the peak
to the right or to the left. The σ-value determines the slope or the dilatation of
the curve. The area under the curve must remain constant while modifying these
parameters. The abscissa is defined by the measured slices. Consequently, with this
curve, corresponding alpha values can be mapped to each anatomical image so that the
transparency is decreasing from the focused slice outwards.

velocity value in the given direction. The constant color enables the user to get a fast
and clear overview of the currently segmented volume part’s flow conditions. Since no
further parameter or seed regions need to be defined for this view, it was asserted to
be the most intuitive usable flow-view of this work.

Due to the described inconveniences with dynamic visualizations and in some sense
unsuitable render nodes, the focus of the implementation turned subsequently to hard-
ware accelerated options as described in the next section 5.3.3. However more ideas how
to use a data flow driven scene graph library for cardiac MRI flow data are theoretically
presented in [Kainz2006] and may be partially seen as future work.

5.3.3 GPGPU Visualizations

As mentioned in the introduction to this section, all of the further described nodes can
either be used in a new application with additionally defined vector fields or within
the iMEDgine framework, utilizing the built-in interface node (SoViewParameter) as
already described for flow and image data. 2D textures are interpolated bilinear on
all hardware architectures per default whereas 3D-textures are interpolated trilinear
only on architectures with plenty of resources. On other hardware a standard nearest-
neighbor texture lookup is performed.

5.3.3.1 Integration methods

Section 2.1.1.2 in chapter 2 describes two common known integration methods. They
can be anticipated here since all of the following nodes and their shader make use
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(a) A default view and adjustment of the slice
renderer.

(b) A 90◦ turned view of the default settings.

(c) A high σ - more neighboring slices are shown
with increasing transparency - and a lower µ -
the brightest slice is placed in the lower part of
the volume.

(d) The same µ as (c) but a very small σ makes
the slope very high, so only one nearly opaque
slice is shown.

Figure 5.10: Influence of the µ and σ values on a volumetric slice rendering node with
Gauss distributed transparency values.
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of them. Since the Runge-Kutta method uses several Euler steps for a numerical
integration, the actual implementation can be adapted rather easy to a simple Euler
integration i.e. for performance reasons. However, a Runge-Kutta integration of fourth
order is performed per default for all following nodes. Listing 5.3 provides the two
functions for Euler and RK4 methods shared by all calculation-shader. They are suited
for fragment shader.

Listing 5.3: The Runge-Kutta numerical integration implemented with two functions.
For the use of the ’updatePosition’ function with the uncommented modifications, a
pure Euler integration will result. Otherwise the function ’RK4’ implements exactly
the in section 2.1.1.2, chapter 2 defined Runge-Kutta integration of fourth order with a
given step size and time delay. This function applies for one Runge-Kutta integration
step only.

1

2 vec3 updatePosition(float time , vec3 oldPos)
3 {
4 //vec3 velVec = time*interpolate(oldPos ); //x = v*t
5 // TRILINEAR INTERPOLATION is done with
6 // GL_LINEAR on 8800 HW!!
7 // Nearest neighbor is unfortunatly slightly
8 // faster on smaller graphics hardware
9 //x = v*t => the distance

10 // use oldPos +... *for Euler only
11 vec3 velVec = texture3D(fieldTex3D ,oldPos );
12 vec3 newPos = normalize(velVec )*( time*length(velVec ));
13

14 // ignore probable noise*
15 if(abs(velVec.x) < 0.1 && abs(velVec.y) < 0.1 &&
16 abs(velVec.z) < 0.1)
17 {
18 // return oldPos for Euler only
19 newPos = (0.0 ,0.0 ,0.0);;
20 }
21 return newPos;
22 }
23

24 // perform Runge -Kutta integration fourth order
25 vec3 RK4(vec3 y, float h, float tn)
26 {
27 vec3 k1 = updatePosition(tn ,y);
28 vec3 k2 = updatePosition(tn+h/2.0,y + (h/2.0)* k1);
29 vec3 k3 = updatePosition(tn+h/2.0,y + (h/2.0)* k2);
30 vec3 k4 = updatePosition(tn+h+h,k3);
31

32 vec3 newPos = y + h*(k1 +2.0*( k2+k3)+k4 )/6.0;
33

34 // if the position is outside of the volume
35 if((abs(newPos.x) > 1.0 ||
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36 abs(newPos.y) > 1.0 ||
37 abs(newPos.z) > 1.0) ||
38 (abs(newPos.x) <= 0.0 ||
39 abs(newPos.y) <= 0.0 ||
40 abs(newPos.z) <= 0.0))
41 {
42 newPos = y; //=oldPos
43 }
44 return newPos;
45 }
46

47 //[...]
48 void main(void)
49 {
50 //[...]
51 //for example:
52 gl_FragColor.xyz = RK4(posVec.xyz , 0.02, 10.0/ textureDimensionY );
53 //[...]
54 }

5.3.3.2 Particles

A particle system with predefined velocity fields can be implemented on GPU-hardware
with two double buffered textures for position and attribute storage and a 3D Texture
for the current flow volume. An additional predefined and constant texture is used to
store the random initial positions within [−1+ε, 1−ε], where ε defines the initial scatter
of the particles around a given coordinate point. Listing 5.4 outlines the algorithm in
pseudo code.

Three subsequent shader are used to provide an iterative traversal of the algorithm.
The first one looks up the current position of a particle in a velocity field-texture and
updates its position depending on the found velocity value. The result is stored in a
temporal texture. The second shader calculates a color for the particles with a given
color-map and the particle’s speeds and stores that in another temporal texture. The
third shader sets as much particles to the desired positions as positions have been
calculated.

Due to the iterative process of the integration of particle trajectories, one step (or
position update) is performed per rendered frame. This so called multi-pass approach
has already been outlined in section 2.2.2.2 in chapter 2. To complete this idea figure
5.11 illustrates this approach for the special case of a particle effect.

The shader themselves are written in shallows notation, so vertex shader and frag-
ment shader are located in the same file. They are controlled by the GLRender function
of a Coin3D node derived from SoShape, as shown in figure 5.8. The initialization of
this node is the most time consuming part, since all textures have to be sent to the
graphics hardware initially. However, this part is even the most crucial for the over all
performance. For example sending particles - which all refer to a single vertex - for each
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Figure 5.11: A double buffered ”Position Texture” stores the current position of each
particle and ”Attribute Texture” the color assigned to a certain velocity or the particle.
The ”Reset Texture” is used if no velocity value has been found of the particle left the
volume or if it exceeded its maximum lifetime. The initial positions which are stored in
this texture are predefined randomly but they can even be arranged so that for example
some kind of streak-line will result. The ”Field Texture” stores the current flow volume
for texture lookup and can be changed during rendering in case of 4D-volumes.

frame via the OpenGL API to the stream processors would cost over 50% of the frame-
rate. Consequently, they get stored in a display list during the initialization step. Over
all this simple particle effect performes - assuming a buffer-size of 1024x1024, which
refers to over one million particles - with a frame-rate between 100 and 150 frames per
second on the hardware described in section 6.1. The frame rate was evaluated with
an artificial flow dataset.

Listing 5.4: Pseudo shader code for the simplest form of a GPGPU particle system
applicable to a predefined 3D velocity texture.

1 init arbitrary positions in init=reset texture
2 init ages randomly in attribute texture
3

4 [Fragment shader] // output: attribute texture
5 uniform attribute_texture;
6 uniform position_texture;
7 uniform color_mapping_1D_texture;
8

9 if age of particle <= MAX_LIFETIME
10 gl_FragColor.xyz =
11 color_mapping_1D_texture(position_texture(u,v).a);
12 gl_FragColor.a = attribute_texture.a + 1.0;
13

14 else
15 gl_FragColor.a = (0.0, 0.0, 1.0, 0.0); // init blue and
16 // age = 0
17 //end if
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18 //End of fragment shader
19

20

21 [Fragment shader] // output: position texture
22 uniform seed_point_coordinates;
23 uniform attribute_texture;
24 uniform initial_pos_texure;
25 uniform position_texture;
26 uniform velocity_3D_texture;
27 uniform maximum_velocity;
28

29 if attribute_texture(u,v).a == 0.0
30 gl_FragColor = seed_point_coordinates +
31 // + seed area rotation assumtions +
32 initial_pos_texure(u,v);
33

34 else
35 velocity_vector =
36 velocity_3D_texture ((vec3)position_texture(u,v));
37

38 // simplified. RK4 with step -size normally used:
39 gl_FragColor.xyz =
40 position_texture(u,v) + velocity_vector;
41 //for the color mapping save the speed
42 gl_FragColor.a =
43 length(velocity_vector )/ maximum_velocity;
44

45 //end if
46 //End of fragment shader
47

48

49 [Vertex shader] // input: as many vertices as texels
50 // in the position texture.
51 // Correct assignment of the points
52 // to texture coordinates is required.
53 // These vertices must be stored in a
54 // display list , to guarantee the
55 // performance!
56 uniform position_texture;
57 uniform attribute_texture;
58

59 // all vertices initially are placed on (0.0 ,0.0 ,0.0)
60 // but have texture coordinates related to the
61 // position texels.
62 new position = gl_Vertex +
63 position_texture(gl_MultiTexCoord0.xy);
64

65 gl_Position = gl_ModelViewProjectionMatrix * new position;
66 gl_FrontColor = gl_BackColor = attribute_texture.xyz;
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67 //End of vertex shader

Such an efficient particle effect can be easily applied for the visualization of streak
lines and time lines as they are described in section 2.1.1.2 in chapter 2. The only
things to modify would be in the first case the initialization of the initial positions to
evenly spaced seed points placed within a plane or line and in the latter case the initial
ages in the attribute textures so that all particles are always being released at the same
time.

5.3.3.3 Stream lines

Streamlines show - as described in section 2.1.1.2 in chapter 2 - the trajectories of a
particle influenced by a static velocity field. Consequently these lines are only valid for
one separate temporal volume and will completely change when changing to another
field in time. However, local structures of the flow may be explored very well by these
lines.

Two approaches have been implemented to calculate particle trajectories. First a
single pass shader was evaluated which subsequently updates to the lines in the first
render pass with a for-loop. Since only with the GeForce 8x Series, a shader may be
used recursively in one render pass with its output as input. This solution was chosen to
guarantee a compatibility to reference systems as defined in section 6.1. The one-pass
implementation on other architectures is extremely inefficient for dynamic manipulation
of the scene due to a necessary recalculation of already calculated positions. In this case
the access to the output texture is not possible in one pass! However, this rudimentary
algorithm is not suitable for a dynamic definition of the seed region, for example by
a dragger since every (complete) recalculation of the trajectory texture takes about
one second up to 5 seconds. Nevertheless, this approach is for randomly but fixed
distributed seed points in the volume as feasible as the multi-pass approach.

Due the focus on interactive usable flow visualization, the further line based algo-
rithms uses a multi-pass algorithm.

The multi-pass approach utilizes a double buffered texture for the calculation of
results and a vertex displacement for the actual line rendering. The main differences
are that in the sample points position texture each column corresponds to the sup-
porting points of one line and that the displaced vertices in the vertex list belong to
line strips1. Consequently, a position initialization texture would be reduced to one
dimension defining the first row of a vertex position texture. Considering that not all
lines will be of an equal length and that some parts of the supporting position texture
will remain empty, several other memory management approaches for exploiting the
available texture memory have been considered. Finally the simplest approach was
used because of the fact that each other, even texture reorganizing algorithms need as
much time for the memory management as the calculation itself. Additionally, the used
GF 8x architecture provides plenty of texture memory, so the position texture can be

1in OpenGL: GL LINE STRIP vertex order.
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chosen large enough to provide sufficient texture columns for adequate lines. Listing
5.5 gives an insight into two of the used shader; one for the calculation which is only
invoked if this is necessary and one to display the results.

Listing 5.5: Pseudo shader code for the simplest form of a GPGPU stream line calcu-
lation.

1 init arbitrary positions in init_1D_texture
2

3 [Fragment shader] // output: position texture
4 uniform init_1D_texture;
5 uniform seed region parameters;
6 uniform positon_texture;
7 uniform moving; // indicates if the seed region moves
8 uniform velocity_3D_texture;
9

10 texCoord = gl_TexCoord [0].xy
11 initVec = init_1D_texture(u,v);
12 // + considerations for the rotation and dilation
13 // of the seed reagion
14

15 if texCoord.y < 1.0 //the start point of the line
16

17 gl_FragColor.xyz = initVec.xyz;
18 gl_FragColor.a = 0.0;
19

20 else
21

22 texCoord.y -= 1.0; //get the previous supporting point
23 posVec = positon_texture(texCoord.xy)
24

25 //end if
26

27

28 if moving > 0 // seed region is moving
29 // no calculations are necessary
30

31 gl_FragColor.xyz = initVec.xyz;
32 gl_FragColor.a = 0.0;
33 else
34

35 // perform one integration step.
36 // field texture is accessed in RK4
37 gl_FragColor = RK4(posVec.xyz , step -size , time);
38

39 //end if
40 }
41 //End of fragment shader
42

43 [Vertex shader] // input: as many vertices organized in

107



5.3 Visualization nodes and subgraphs

44 // line strips as available in the
45 // position texture on position (0,0,0).
46 // Correct assignment of the points
47 // to texture coordinates is required.
48 // These lines must be stored in a
49 // display list , to guarantee the performance!
50

51 uniform positon_texture;
52

53 void main(void)
54 {
55 //[...]
56 gl_Position = gl_ModelViewProjectionMatrix *
57 positon_texture(gl_MultiTexCoord0.xy)
58

59 }
60 //End of vertex shader
61

62

63 [Fragment shader] // arbitrary input and algorithms
64 // for coloring the lines
65 //[...]
66 //End of fragment shader

Either mapping of color to an arbitrary parameter of the lines or an illumination
as described in section 2.1.1.2 and figure 2.14(b) in chapter 2 or both is possible for
the remaining fragment shader from listing 5.5. To give an example, listing 5.6 shows
the fragment shader implementation of the equations 2.6 and 2.7 from the just referred
section to illuminate actual diameter-less lines.

Listing 5.6: Pseudo fragment shader code for the additional ”illumination” of arbitrary
diameter-less lines. This approach would even work for a particle effect.

1 [Fragment shader]
2 uniform positon_texture;
3 uniform V; // norm. camera direction
4 uniform L; // norm. light direction
5

6 void main(void)
7 {
8 prev_position = positon_texture(u-1.0,v);
9 next_position = positon_texture(u+1.0,v);

10 T = normalize ((next -prev )); // tangent
11

12 LN = sqrt (1.0-pow(dot(L,T) ,2.0));
13 VR = LN*sqrt (1.0-pow(dot(V,T),2.0))-dot(L,T)*dot(V,T);
14 I = 0.1 + 0.1*LN + 0.8* pow(VR ,64.0);
15

16 // a color may be set within the vertex shader ,
17 // so the fixed function pipeline will iterpolate
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18 // between different ones.
19 // This color can now be illuminated per fragment with I.
20 gl_FragColor = gl_Color * I;
21 }
22 //End of fragment shader

5.3.3.4 Path lines

Calculation of path lines is built upon the calculation of streamlines. This line type
has to consider the fourth dimension as well since they represent a particle’s trajectory
over time. The simplest way to generate a path line is to assemble it with parts of
streamlines from each volume. This method is error-prone but efficient to implement
by simple changing the volumes over time during the calculation of streamlines as
described in section 5.3.3.3. Assuming that a given four dimensional dataset consists of
t volumes and the position buffer texture is of the size n×m the volume number has to
be incremented each floor(m

t ) frame. Since these lines are now constant when the user
for example changes the image volume, an additional indicator should be available for
convenience. Coloring parts of the lines with a signal color has proved to show the user
in which volume which part of the line was generated. Figure 5.12 shows that behavior
on an example.

Certainly all illumination and further coloring techniques can be used with these
lines in the same way as with streamlines. The remaining thing with this algorithm
is to evaluate whether an interpolation in temporal direction - which means an about
quadratic increase of computational costs - would produce a smaller error or not. These
considerations are intended for future work.

5.3.3.5 Stream tubes

When path lines and stream lines calculations are done even a more realistic visual-
ization, so called stream tubes are possible. The basic idea is described in detail in
section 2.1.1.2 in chapter 2.

Generating a real mesh of vertices around an actual calculated line would result
in a vast amount of vertex calculations and consequently in a very low performance.
To handle this problem a so called impostor rendering technique was used. This trick
allows to render reasonably realistic tubes with only twice as many vertices as used with
simple line visualizations. Instead of a line strip a quad strip1 is stored in a display list
and then subsequently displaced to the correct positions. The visualization algorithm
can be performed in one vertex shader and one fragment shader which is illustrated in
figure 5.13.

The main task for the vertex shader is to displace the two(!) vertices corresponding
to one supporting point position always perpendicular to the viewing direction. The
points of the quad strip itself can be distinguished by different initial positions so

1GL QUAD STRIP vertex definition for OpenGL)
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Figure 5.12: This Figure shows path lines with a red colored one-dimensional seed-
region and red-colored sections of the lines which are placed in this part related to the
volume currently shown in the background by the morphological slice renderer in the
background.

that always the same side of the strip is placed below the actual line and the other
above. Due to the fact that a line strip is not a tube when looking directly in line
direction a terminator at the start and the end of each tube has to be added. This
might be a pre-shaded circle rendered on an impostor-quad perpendicular to the line’s
tangent direction or a sphere or anything else. The start and the end point of each
line can be easily determinated since they always refer to the first, respectively the last
texture coordinate of each column in the already calculated supporting points texture.
Consequently, the terminator structures only have to be assigned to these coordinates.

For realistic lighting and coloring of the tube, the interpolations abilities of built in
shader varyings can be utilized. A smooth color course can be established by setting
the variable gl_FrontColor for each vertex to a value looked up in a former introduced
color gradient for some arbitrary parameter. Moreover the correct reflection of light
is important. To give an impression of a dilated tube an additional varying for the
vertex normals has to be defined. By setting the normals always in the same direction
as the vertices have been displaced relatively to the line, correct spherical interpolated
normals will result for each fragment between the borders of the strip. The blue arrows
in figure 5.13 try to explain these coherences. Phong-shading with a fragment shader is
consequently possible directly. Due to a well defined normal vector for each fragment,
equation 2.6 can now be solved directly without a maximization criterion as used for
the illumination of lines. This approach still performs with about 60 to 120 frames per
second on the reference systems. The line length and number were each defined with
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Figure 5.13: The development of stream tubes based on a pre-calculated line texture
with stream- or path line supporting points. A vertex shader places the pre-defined
vertices of a quad strip relative to available supporting points and defines an arbitrary
color and a normal vector perpendicular to the viewing direction. With the interpolated
color and normal vector values a fragment shader can perform a Phong based even
realistic illumination.

1024 and the frame rate was evaluated with one certain artificial flow dataset.
Some modifications of this algorithm would lead to stream ribbons (see section 2.1.1.2

and figure 2.14(a) in chapter 2). In this case the vertex displacement relative to the
line may not occur perpendicular to the viewing direction but dependent on the sur-
rounding field’s rotor. A vertex’ normal vector perpendicular to the ribbon itself would
complete this modification.

5.3.3.6 Cutting-Plane Techniques

A simple but effective technique to represent parts of the field is the insertion of different
kinds of planes in a volumetric velocity field. This plane can consist of many vertices
organized in a triangulated mesh quad (mesh-plane) or of a simple quad bordered by
four vertices (quad-plane). Both techniques can be used with different benefits.

An obvious parameter to map onto this plane would be the color coded magnitude of
the velocity value in perpendicular direction to the plane. The sampling of the volume
with mesh vertices would provide the advantage of an additional linear interpolation
within the plane if, for example, the complete linear interpolation of the velocity 3D
texture is not possible due to performance reasons and a nearest neighbor interpolation
is used for 3D textures instead. In this case the sampling of the volume is made with
a vertex shader directly with the vertices’ coordinates and the interpolation with the
built-in varying gl_Color. In the quad-plane based approach the sampling can be
done by mapping the processed texture coordinates between the four vertices into the
velocity volume texture.

The result will be in both cases the same at a first sight. The differences are given if
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more complex operations are performed for the plane. Such operations may be required
since with a simple mapping onto a 2D plane a third dimension and its information
gets lost. For example, the magnitude of the flow through a certain vessel can be
investigated but not the directional effects.

With a mesh-plane it is possible to displace its vertices in direction of the sampled
velocity value. The result will be a height profile, indicating the strength and direction
of the flow. A subsequent assignment of the direction of the flow to the vertex as normal
vector will even provide a Phong illumination of that crinkly plane.

The usage of the velocity direction as normal vector can also be applied to a new
approach for quad-planes. The drawback of the former vertex displacing algorithm is
that one the one hand the plane will occlude itself and on the other hand the vertex
processing of a mesh is more expensive than the processing of only four. Consequently,
a related algorithm but implemented with a fragment shader can use the flow directions
within the plane as normal map for the illumination. For computer games this technique
is called ”bump mapping” because it lets actual flat surface appear with a profile. If the
user knows that the velocity direction is used as normal vector, he can easily interpret a
three dimensional information in a two dimensional plane. The crib for example a head-
lighted scene will then be: ”The more it reflects, the more the flow indicates towards
me”. The drawback of this method is that it requires this crib as meta knowledge.

Certainly, with planes much more sophistical visualizations may be implemented
and some such ideas are outlined in chapter 7. However, the goal of them would go
farther than the focus of this work since most of them would suggest a plane as kind of
sensor array placed in a hemodynamic system. The results of such approaches would
rather all provide a measured quantity than an instructive visualization.

5.3.3.7 Concurrent Combinations

The benefit of a free definable view as presented is obvious. All visualization nodes can
be combined, even with different seed regions. Eventually the buffer sizes have to be
reduced due to performance. This may be also necessary to preserve the overview of the
visualizations since for example a million particles with ten-thousands of arbitrary lines
would only produce visual clutter. It was empirically found that at most two different
visualizations per seed region are meaningful. More than one dragger in a scene also
appears distracting. A combination of side by side views will be more satisfying for such
a concurrent visualization. More promising control approaches are therefore presented
in section 7.4 in chapter 7.
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Chapter 6

Experiments

Several attendant PC-MRI measurements have been accomplished. Gathered datasets
from humans and a phantom are described in section 6.2. Additionally the already
introduced libraries and iMEDgine which supports multiple development platforms,
a Windows and Visual Studio 2005 based environment as described in section 6.1
was built up. Finally section 6.3 will show screen-shots of different visualizations by
means of instructive parts of selected datasets and section 6.4 concludes with render
performance measurements.

6.1 Development and Test Systems

For development and demonstrations purposes a PC-system was assembled with the
following specifications:

• EVGA GF 8800GTS 640MB DDR3 320Bit PCIe 16x/ Nvidia graphics card,

• AMD Athlon64 X2 4200+ 2.2GHZ EE pI Socket AM2 @ 2.5Ghz,

• Western Digital S-ATA2 320GB 7200rpm 16MB cache, 3,5” hard-drive,

• ASUS M2N-E SAM2 HT2000 nForce 570 Main board,

• Corsair DDR2 3072MB 6400 PC800 64MX8 NON-ECC system memory,

• LG Flatron L194WT 19” wide screen monitor.

As reference system a Sony Vaio S5M/S, Pentium M740 with Nvidia GeForce Go
6400 and 1024MB system memory was used. The program Fraps v. 2.8.2[Fraps2007]
was used to benchmark frame rates and to take screen-shots and screen movies during
run time.
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(a) The flow is emulated with a
submersible pump and controlled
by a valve. The end of the tube
closes the circuit in the same tub.

(b) The narrowing is placed for
the measurements in the iso-
center of the magnetic field.

(c) Two bottles filled with water
enable for the body-coil an equal
distance to the tube.

Figure 6.1: The measurement setup at the radiology department of the Landesklinikum
Graz for a flow phantom with artificial narrowing.

6.2 Test Datasets

To evaluate the qualities of the proposed visualization algorithms ten datasets of real
human blood flow in different vessels and the human heart. In addition two artifi-
cial flow datasets from a phantom were measured at the radiology department of the
Landesklinikum Graz and at the Diagnostikzentum Graz.

First two datasets covering the whole heart were investigated. It turned out that
these dataset indeed produce beautiful visualizations but for a first evaluation they
were too complex. Furthermore, the effort to segment vessels in these datasets with
the 4D-Flow Toolbox was extraordinary high. Two additional datasets covering the left
ventricular outflow tract (LVOT) were found to be complex as well but the scenes were
more comprehensible. Unfortunately these datasets often provided to few measured
slices, so the examined voxels were rather anisotropic. Finally, six datasets containing
only one or two slices but showing significant vessel structures with dominant in-plane
flow behavior were studied. They turned out to be rather comprehensible and showed
clear results but the major context of the flow was only given by the underlying mor-
phological structures.

Second, a phantom which tries to emulate a constant flow through a flexible tube
with an artificial stenosis was measured. The flow was generated by a submersible
pump and a valve placed behind. An artificial narrowing was simulated by a drilled
screw cap placed on a cut off PVC-bottle in the middle of the tube and the magnetic
field’s iso-center. Figure 6.2 shows the measurement setup at the radiology department
of the Landesklinikum Graz.

However a complete evaluation of the visualization algorithms and their proof of
correctness will occur in future work. Section 7.5 in chapter 7 gives an outlook on that
issue. Section 6.3 shows some representative images from the resulting visualizations.
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6.3 Results

To complete this chapter some images resulting from the so far described algorithms
and datasets can be presented in this section. The following figures show several more
or less simple flow structures since more complex ones would not be feasible for these
static images due to missing interactivity. Referring to that, it can be underlined
that the more complexity a velocity field contains the more important interactivity
gets, even if it is only the ability to rotate, pan and zoom the scene. Due to these
inconveniences not always the same but the most instructive perspective was chosen
for similar datasets. The diagrams 6.8 to 6.9 in section 6.4 subsequently compares the
main techniques due to their performance in frames per seconds on the two reference
systems which were presented in section 6.1.

• Cash-Flow and glyph-based visualizations are shown in figure 6.2.

• Different applications for particles are shown in figure 6.3.

• Stream lines and path lines are shown in figure 6.4.

• Different types of cutting planes are shown in figure 6.5.

• Stream tubes are shown in figure 6.6.

• Examples for a combination of visualizations are shown in figure 6.7.

6.4 Scalability

Diagram 6.8 to 6.9 show that a glyph renderer is faster when less glyphs are rendered. In
this case we varied the render positions between rendering every fifth velocity value to
rendering every 20th position. Since this algorithms is mainly performed on the CPU
and every frame all positions are passed to the graphics cards, a frame rate higher
than 60 could not be expected and also a not so high difference between the reference
systems.

The performance of GPU based visualizations highly depends on the amount of
rendered elements and therefore on the used buffer sizes. The buffer size n×m deter-
minates in the case of a particle based visualization the number of possible rendered
particles by n∗m and in the case of lines n determinates the number of lines and m the
supporting-point count of each line. We tested quadratic buffer sizes from 256 to 1024
pixels in each direction. Rectangular buffer textures are possible as well, but perform
with the same results as quadratic ones until one size exceeds the next possible power
of 2 (for example 256, 512, 1024,...). Consequently, a quadratic buffer size leads to
an optimal result. Since all buffer positions are definitely processed each render pass,
techniques for an early line termination, for example when the line moves out of the
velocity field, would not increase the performance.
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(a) Viewing a human heart from above with the
pulmonary artery in the front and the vena cava
superior in the right handed background. Addi-
tionally the morphological data is rendered by a
SimVoleon sub-tree.

(b) The flow phantom dataset shows
the artificial stenosis viewed slightly
against the flow direction.

Figure 6.2: Point based glyph overview of the human heart of subject number two
(a) and a flow-phantom view (b) displayed with a Cash-Flow render node. Both are
containing 15 measured slices.

On the GeForce 8800 graphics card all algorithms showed that they are suitable for
real-time applications except a flexible cutting plane with 1024x1024 vertices. But this
visualization subjectively gives the same information with 512x512 vertices and a bigger
buffer size may not be necessary. Figure 6.9 additionally compares the performances
with concurrently used volume rendering utilizing a SimVoleon render node to a visu-
alization without any morphological data rendering. Figure 6.8, 6.10 and 6.11 compare
the pure flow visualizations with ones using the slice-rendering node as presented in
section 5.3.1. As expected a more advanced volume rendering approach decreases the
achievable frame rate. A cutting plane based on a bump mapping approach is in these
figures compared noncompetitive since this technique only needs four vertices and per-
forms a direct texture lookup in its fragment shader. The used dataset was always the
same - 256x104 pixels x 11 slices x 2 time steps - flow phantom with emulated ECG
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activity.
The highest possible frame rate without any rendering is 2050 fps on the GF 8800

architecture and 530 fps on the reference system. Referring to diagram 6.12 the frame
rate decreases for concurrently rendered GPU based visualizations nearly on an expo-
nential curve.

For stream line based visualizations the limit of switching through the time has to
be considered as well. All lines will need exactly m render frames to fully evaluate for
the use of a n ×m buffer for each time step. Due to our interactive implementation,
the user need not wait for a full line evaluation to get to a certain time position. The
course of the lines can be estimated even after the calculations of a few sampling points
and the time step can be changed independently from the line calculation.
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(a) Particles with overlaid SimVoleon volume ren-
dering.

(b) Particles with a slice based rendering.

(c) Details of the stenosis with volume rendering.
The seed region was moved to the border of the
tube.

(d) Details of the stenosis with slice based back-
ground and a different color-mapping gradient.
The seed region was moved to the border of the
tube.

(e) A particle effect applied to an one slice dataset
of the author’s carotid artery bifurcation.

(f) The same effect as in (e) applied to an one-slice
dataset of the author’s aortic arch.

Figure 6.3: Particle based sparse representation of the artificial stenosis dataset. The
left two images use a SimVoleon sub-tree for volume rendering, the right ones the slice
based rendering approach. Note the back-flow funnel in images (c) and (d). (e) and
(f) show an according effect applied to real blood flow.
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(a) Stream lines for the first time step. (b) Path lines.

(c) Concurrently rendered stream lines and path
lines for the last time step.

(d) Concurrently rendered stream lines and
path lines for the first time step.

(e) Arteria pulmonalis bifurcation with stream-
lines at time step six.

(f) Arteria pulmonalis bifurcation with path-
lines. The parts which refer to the time of figure
(e) are marked red.

Figure 6.4: Comparing illuminated stream lines and path lines. Note that figure (c)
and (d) illustrates that the artificial flow inside the flow phantom does not specify a
constant flow as expected in advance. (e) and (f) visualize the bifurcation of the arteria
pulmonalis of a human heart of subject number two.
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(a) A standard mapping of velocity magnitude to
a color gradient on the plane texture.

(b) A mesh-plane with vertex displacement tech-
nique and velocity magnitude to gradient mapping.
Note that the plane is occluding itself.

(c) A cutting plane with bump-mapping technique
where the velocity directions corresponds to the
normal vector of each texel of the plane.

(d) The same cutting plane as used with figure (c)
applied to an artificial stenosis dataset.

Figure 6.5: Comparing different cutting plane visualizations for the same dataset of the
whole human heart of subject number two. The positions of the planes were chosen in
a way to provide a good survey for the characteristics of the different approaches.
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(a) Stream tubes applied to an artificial stenosis
dataset.

(b) Stream tubes applied to the bifurcation of the
arteria pulmonalis of the human heart of subject
number two.

Figure 6.6: Stream tubes applied to calculated stream lines.

(a) Stream tubes and particles with the same seed
region applied to an artificial stenosis dataset mea-
sured transversal with a seed region near the actual
stenosis. The viewing direction is slightly opposed
to the flow direction.

(b) A combination of path lines and particles ap-
plied to the already presented bifurcation of an ar-
teria pulmonalis of subject number two.

Figure 6.7: Two examples for a concurrent combination of different visualizations. This
can be achieved by inserting the according nodes to a new Inventor script as described
in section 5.2.2.
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Figure 6.8: Comparing the frame rates of glyphs rendered at every fifth position with
GPU visualizations at a buffer size of 1024x1024 which equals 1.048.576 permanent
available particles or 1024 lines with each with 1024 sampling points. The last two are
cutting plane visualizations, where the first abbreviation DM stands for displacement
mapping and the second, BM, for bump mapping.

Figure 6.9: Comparing the frame rates of glyphs rendered at every fifth position with
GPU visualizations at a buffer size of 1024x1024. The last two are cutting plane
visualizations, where the first abbreviation DM stands for displacement mapping and
the second, BM, for bump mapping. Instead of the slice render approach for additional
morphological data rendering a SimVoleon volume render sub-tree was used.
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Figure 6.10: Comparing the frame rates of glyphs rendered at every tenth position with
GPU visualizations at a buffer size of 512x512 which equals 262.144 particles or 512
lines with each with 512 sampling points. The last two are cutting plane visualizations,
where the first abbreviation DM stands for displacement mapping and the second, BM,
for bump mapping.

Figure 6.11: Comparing the frame rates of glyphs rendered at every 20th position with
GPU visualizations at a buffer size of 256x256 which equals 65.536 particles or 256
lines with each with 256 sampling points. The last two are cutting plane visualizations,
where the first abbreviation DM stands for displacement mapping and the second, BM,
for bump mapping.
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Figure 6.12: Comparing the average frame rates from particles, illuminated stream
lines and path lines and stream tubes at a buffer size of 512x512. Due to the logaritmic
scale of the ordinate, the frame rates decrease related to an exponential curve.
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Chapter 7

Future Work

This chapter gives an overview of the vast possibilities for future work. Referring to fig-
ure 2.12 from chapter 2, section 7.2 itemizes some possible improvements of the already
implemented new visualizations. Some further derivable quantities of the measurement
method presented in chapter 3 are outlined in section 7.3. Usability and controllability
of the algorithms are treated in section 7.4 with a special focus on augmented and
virtual reality ideas. Finally section 7.5 deals with one of the most important questions
for future developments: ”Are the attempted efforts expedient for clinical routine at
all?”.

7.1 Measurement Method and Preprocessing

The measurement method itself provides much more than the quantification of velocity
in the blood. Theoretically all moving tissues and fluids in the human body can be
investigated. For example a measurement of the movement of the myocardium or the
flow of synovial fluid could be useful as well. As mentioned in chapter 3 a method to
pre-estimate the venc value and a sequence which can perform with respiration of the
patients would be desirable too.

The Siemens 4D-Flow Toolbox, respectively the calculation tool is currently a nice
and powerful tool to process the raw MRI image data fast and accurate. Neverthe-
less a segmentation of interesting or rather flow-undefined regions by hand is a quite
exhausting and time consuming task. Consequently, the following improvements are
proposed:

• An automatic segmentation of the myocardium respectively of these regions which
are definitely valid flow values. This would be a vision task, so these deficiencies
were not illuminated closer in this work on visualization. However, if such a
segmentation would perform accurate the segmentation borders itself could be
used for a direct visualization of the tissue as surface.

• Better algorithms for an automatic aliasing correction are available because the
course of the flow velocity values is not as linear as indicated in figure 4.3 in chap-
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7.2 Visualization Techniques

ter 4. The curve is actually much more hackly so that the currently implemented
algorithm does not perform well.

• The implemented baseline correction seems not to work correctly. Its algorithm
has to be investigated more closely.

• The calculated velocities have to be evaluated over all with concurrent performed
catheter based measurements or at least mathematically with calculations of a
stationary and well defined flow phantom.

7.2 Visualization Techniques

In this work two aspects of the visualization taxonomy presented in chapter 2 were
implemented as shown in figure 7.1. Certainly a complete evaluation of all known and
some new visualizations would be worthwhile but also very time consuming. Hence the
future features listed in this section give a short overview of some ideas which arose
during the development process.

Figure 7.1: The investigated areas of the in chapter 2 presented taxonomy are shown
on the left. The remaining parts for future work are shown on the right side.

First some possible improvements of the now available visualizations are mentioned.
Subsequently some preferences for new visualization algorithms are listed.

• In the case of line based visualizations simple arrows or glyphs could be placed at
the calculated supporting point positions to provide a hint for actual flow direction
even with a smart chosen distance. Due to the simplicity of this modification the
same performance should be reached.

• Currently, in most cases the velocity magnitude was color mapped onto the flow
visualization structures. Further quantities should be evaluated to prove their
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7.3 Derived Magnitudes

possibilities. For example the bend, rotor or a kind of clustering of lines which
developed in related streams could be appropriately colored.

• For path lines and other time dependent calculations an interpolation of the ve-
locity values between the time steps should be compared to the actual algorithm.
Such a smooth change over time should reduce the integration error of the tra-
jectories.

• A GPGPU 3D-UFLIC approach should be tried out to evaluate its performance
and usability for the representation of the given flow fields.

• Further clustering approaches can be invented to give a fast and accurate overview
of the important structures in the velocity field. Since this could theoretically be
applied to an arbitrary visualization, the focus for this task would be an algorithm
to filter these important areas. Further evaluations to show how an important
region is defined are required for that issue as well.

• With a calculation of the rotor of the surrounding field and an additional knowl-
edge of pressure differences as described in section 7.3, a visualization related
to diameter-changing and torsion-showing ”Hyperstreamlines” from [Reina2006]
could be considered.

• For future research the most important property of the measured flow may be the
identification and representation of vortices. Due to their still proved diagnostic
use for the cardiac efficiency a detailed investigation of algorithms which can
identify vortices would be important. Work has been done for the detection
of two dimensional flow vortices, so the major focus would be a detection and
tracking of vortices in four dimensional velocity fields.

7.3 Derived Magnitudes

Another task would be the mathematical extraction of further information from the
velocity field. These quantities could subsequently be used for further visualizations or
mapping strategies but with an increase of the required knowledge.

• Maybe the simplest quantity is to gather the cardiac output. One has to determine
the heart-beat-volume of at least the left ventricle and the heart rate. The heart
rate can be recorded during the MRI-measurement. The heart-beat-volume would
be easy to calculate if the maximum and minimum volume of the ventricle during
the series are known. The difficultly is to determine the volume of the ventricle.

• The calculation of relative pressure differences can theoretically be performed with
an evaluation of the Navier-Stokes equation along different paths. To guarantee
the performance the different paths approach furthermore offers an implementa-
tion on a SIMD architecture, consequently a GPU. The knowledge about these
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7.4 Virtual Reality Visualization Environments

pressure differences allows an evaluation of for example surface pressures and tis-
sue stress. The calculation could be performed locally with ”sensor planes” as
mentioned in chapter 5.3.3.6 or in a preprocessing step for the whole volume but
also with a certain support of a GPU. First experiments have been done based
on the work of [Ebbers2001; Buyens2003] but have not finished yet.

• In several sub-parts of the flow one could think about attending the viscosity and
the fringe effects of the blood for the movement of some special particles. Given
that the blood flow inside the heart is a laminar one, this challenge is feasible.
Since this part will be delicate, several closer studies about the physics of blood
flow will have to be done before.

7.4 Virtual Reality Visualization Environments

One of the most interesting findings is the fact that the control of the presented vi-
sualizations is a still inconvenient. Dealing with four dimensional data, controlled by
a two dimensional interface can be of course confusing. In previous work already an
augmented reality setup as shown in figure 7.4 was investigated to cope with these prob-
lems. In general this setup enabled an injection of particles in a simple head tracked
stereo representation of the left ventricle with an infrared 3D tracked pencil. At that
time the focus of this work done in the course of the lecture on ”Virtual Reality” at
the technical university of Graz, [Schmalstieg2006a], lied on the investigation of the
possibilities of a Studierstube [Schmalstieg2002] supported environment for this kind
of data. For future work a viewer with an interface to Studierstube should absolutely
be considered. A setup as shown in figure 7.4 may indeed be too large and expensive
for an use in clinical routine but Studierstube supports a vast amount of display de-
vices and tracking systems. Hence small and intuitive setups could be invented. A first
step in this direction has already be gone since iMEDgine script-able views (section
5.2.2.1) support a simple stereo rendering if the corresponding hardware is available.
Further ideas for an virtual reality control environment are summarized in the next
list. However, these techniques have to be evaluated permanently for their usability
and acceptance with medical staff.

• First of all several different control mechanisms of the perspectives itself have
to be investigated. For example flying through volumes instead of zooming and
panning could be useful to present the data to an audience.

• As already mentioned, controlling the seed regions of interactive visualizations
would be simpler with at least a kind of 3D interface. Due to the lack of tracking
systems at clinical work stations a first approach for that could be a space-mouse.
Later on more sophistical research and evaluations with for example different
”cheap tracked things” assigned to certain visualizations may be accomplished.

• The large amount of control options in a view may be addressed in a better way
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7.5 Clinical Evaluations

(a) Stereo projection with head tracking and a
wireless input device.

(b) A tablet PC as control unit.

Figure 7.2: A setup in the ICG Vis-Center with Studierstube augmented reality en-
vironment, stereo projection and a tablet PC as control device. The seed region was
moved by an ART tracked wireless pen device. This setup was developed in the course
of the lecture ”Virtual Reality” in summer term 2006 [Schmalstieg2006a].

than with control draggers in the views itself. Maybe an external control device
would be useful.

• Certainly, even larger setups with several display devices which give different in-
formation of the datasets can be tried out. However, it has to be considered that
large setups are expensive and the available space for diagnostics is always re-
stricted. Nonetheless, providing different information with different devices in an
intuitive and fast way should be one of the main focuses of further developments.

7.5 Clinical Evaluations

Finally most of the made assumptions for the measurement and further calculations are
not proved completly. To allow a use of this kind of measurement and its interpretations
in a clinical routine studies with healthy and probably diseased subjects should be
performed even with a comparing measurement of the flow and pressure states with
catheter based methods. A collateral evaluation of the most instructive and diagnostic
useful presentation of flow data for physicians should be accomplished as well.
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Chapter 8

Conclusions

We investigated the visualization capabilities of four-dimensional cardiovascular flow as
measurable by magnetic resonance phase-contrast imaging. This thesis summarizes the
steps from the measurement process to a preprocessing toolbox to a scene-graph based
medical image viewer which we extended with advanced GPU-accelerated visualization
techniques.

Due to an accurate and intuitive workflow we were able to present the flow data
and its corresponding morphological image data directly after the measurement with
fast configurable and combinable views. To give a possible usage of these visualizations
for diagnostics, we had to aim for interactive manipulations of the scenes and hence for
highly efficient rendering algorithms. Consequently, we tested programmable graphics
hardware with different performance and a data-flow scene-graph library called Cash-
Flow. Additionally, three volume rendering approaches to present the morphological
background data were discussed with our medical partners. To them, rendering the
measured images directly with a Gauss-distribution weighted transparency value on
top of each other appeared to be the most intuitive morphological visualization.

For flow visualizations we concentrated on sparse representations of the velocity
fields. These, mostly particle trajectory based approaches, appeared to be more in-
structive to our medical partners and were more suitable for acceleration techniques in
contrast to dense, texture based algorithms. We implemented glyph and color mapped
arrow plots, different kinds of direct particle rendering and stream lines and path lines,
both with illumination techniques and a stream tube impostor render upgrade, appli-
cable to particle trajectories. A color mapping gradient editor was developed to ease
the definition of transfer functions to characterize different flow parameter.

To evaluate the accuracy of the implemented flow visualization techniques we built a
flow phantom with an artificial narrowing to obtain a clear and concise steady flow over
time. We could demonstrate that all developed algorithms yield to a comprehensible
result. Due to a not achieved steady flow, a mathematical proof of the measured flow
values and resulting visualizations was not possible yet. This issue should get feasible
after several improvements of the flow phantom.
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Beside the improvement of known sparse flow visualizations, we developed a frame-
work with free arrangeable and runtime definable render areas. Commonly known
Inventor script files can be used to define a customized visualization using hardware
accelerated calculation and visualization algorithms. Furthermore, we can export all
parameter of a view arrangement to a XML-based configuration file so that a custom
workspace can be restored at any time.

Our medical partners preferred in the end a basic but new intersection plane vi-
sualization technique which uses the direction of the velocity values as normal vector
for a plane’s texels intersecting the flow volume. Onto the plane itself the magnitude
of the velocity value is color mapped. Consequently, it was possible to combine 3D
information in a 2D plane by using a headlight and the basic knowledge that ”The
more it reflects, the more it flows towards the observer.”. This visualization technique
was also the fastest we have implemented and is therefore combinable with all other
visualizations with nearly no decrease of performance.

Jarke J. Van Wijk wrote in [Wijk2005] that there is a growing gap between the
research community and its prospective users and that researchers have to search for
and enumerate possible actions of users after using their prospective tools. If such
actions cannot be found or defined the value of visualization is doubtful. Both was
kept in mind during the development of the presented application. A close collaboration
with the radiology department of the Landesklinikum Graz and the Diagnostikzentrum
Graz turned out the requirements for a usage of these visualizations in clinical routine.
Furthermore possible visualization supported diagnostic methods were discussed but
needs still to be evaluated with matching patient studies. A cooperation with the
Siemens Medical Solutions department enabled this project to result in a complete
workflow as shown in chapter 4. Especially for such a complex flowing system as
given in a human heart, no automated diagnostic systems exist so far. Hence, the
investigation of new algorithms to detect health-related flow patterns will be of special
interest in future work. An additional visualization of interesting parts can be of value
for faster diagnostics and would consequently reduce the diagnostic costs or could give
hints for more accurate measurement parameters.
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Appendix A

Intermediate File Format

Definition

In this chapter the detailed file format is defined for files which are generated by the
Siemens MED 4D-Flow Toolbox. These files contain all necessary information for a
visualization of PC-MRI datasets. Artifact corrected field data is stored in data files
as their headers are described in section A.2. Master files organize these data files as
shown in section A.1.

A.1 Master File

This central file consists of two sections, a header and a string section. The file extension
for master files is ”.4dm”. The structure of the header is given in table A.1.

The total length of this fixed-length part is 40 bytes. Directly after that part an
array with numSlices offset/length pairs is stored to indicate position and length of the
paths to the data files. Every pair looks like table A.2.

A.2 Data Files

Data files contain information about the slice and meta information for every image of
the slice. The file extension for data files is ”.4dd”. The header of each file looks like
the description of table A.3.

The header’s fixed-length part has a size of 60 bytes. After the header section the
image headers are stored.
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A.2 Data Files

Offset Name Type Description

0x00 magic int Magic word to recognize the file as master file. Always contains

the value 0x4df1c0de

0x04 headerLen short int Length of the fixed-length part of the header. In case the length

is larger than expected (for example when reading a newer file

version) the reader should skip the extra fields. Version 1 has a

headerLen of 40 bytes.

0x06 mode short int Mode of the DICOM data (PARALLEL 1D = 0, PARAL-

LEL 2D = 1, PARALLEL 3D = 2, GRID 3D = 3)

0x08 version unsigned char Version of this file format. This specification describes version

1

0x09 compatVersion unsigned char The version the reader at least has to understand to be able to

parse that archive. Set to 1 in this version.

0x0A dicomPathOffset short int The offset to the DICOM path string calculated from the be-

ginning of the string section (bytes)

0x0C dicomPathLen short int The length (in Unicode characters) of the DICOM path string.

0x0E numSlices short int The number of slices associated with this master file. Equivalent

to the number of data files.

0x10 stringSectionOffset int Offset to the start of the string section.

0x14 maxVelocity float The maximum velocity magnitude (in cm/s) in all the phase-

contrast data files. This field is used to calculate the proper

mapping from velocities to colors in the visualization part

0x18 preferredBlock short int Index to the preferred block. The images of this block are re-

lated to the vector field data. This field is set to 0 in all parallel

modes.

0x1A dicomPatientIndex unsigned short Index of the patient inside the DICOM archive

0x1C dicomNumStudies unsigned int Number of DICOM studies

0x20 dicomNumImages unsigned int Number of DICOM images

0x24 checksum int CRC32 checksum of this header (excluding the checksum, of

course)

Table A.1: The fixed-length part of the master file header.
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A.2 Data Files

Offset Name Type Description

0x00 offset short int Offset (in bytes) to the start of the path to a data file. Those paths are relative

to the location of the master file. Normally these strings will just contain the

filename, as the whole archive is stored inside a single directory. Note that those

offsets are stored relative to stringSectionOffset.

0x02 length short int Length of the path string in Unicode characters.

Table A.2: These are the offset/length pairs to indicate position and length of the paths

to the data files.

Depending on the measurment mode there will be up to six images (therefore also
up to six image headers) stored per time. Every single one will look like table A.4.

Subsequently, there are numVectorFields fields stored, every single one exactly
numRows∗numColumns∗ sizeof(vector) long. They are stored without any padding
bytes in between. A short header introduces each field as shown in table A.5.

All contours referenced from the images in this slice are stored in the drawings
section. It contains a set of contours. Due to the variable lengths of drawings the fixed-
length header of every drawing contains a length field to allow skipping of drawings.
Note that the start of all drawings is aligned to address divisible by 8 without remainder.
Table A.6 defines such an entry.

The regions are stored right after this header. Difference regions where two polygons
define one common region have to be considered as well. This slightly complicates the
matter of table A.7.

Following this region header the polygon vertices are stored (first the inside vertices,
then the outside vertices). In this case it is enough to store polygon vertices as floating
point row/column values, as the regions always lie in the image plane. Every vertex
will be stored as shown in table A.8. The last vertex in this list will be connected to
the first to close the polygon.

All noise correction masks referenced from the images in this slice are stored in the
masks section. Every mask field contains an unique mask key for the correct image-
association. The creation values (0x04 - 0x10) are stored to support the same settings
for the noise correction dialog by reloading in the calculation tool. The mask header
is 12 bytes long. Following the header from table A.9 the mask is stored. Due to
the binary character of the masks, the mask will exactly need the space of the image
size. (Each pixel one bit). If every image in a 3D-parallel mode was noise corrected,
there will be an Images/3 mask count. Otherwise the number of masks is equal to the
number of images.
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A.2 Data Files

Offset Name Type Description

0x00 magic int Magic word to recognize the file as data file. Always contains

the value 0x4df1da7a.

0x04 headerLen int Length of the fixed-length part of the header. In case the

length is larger than expected (for example when reading a

newer file version) the reader should skip the extra fields.

Version 1 has a headerLen of 52 bytes. The version of the

archive is stored in the master file.

0x08 imageSectionOffset int Offset to the start of the image section.

0x0C numImages int The number of image headers following this file header.

0x10 vectorFieldOffset int Offset to the start of the vector data section. Set to 0 if no

vector data is present.

0x14 numVectorFields unsigned short Number of vector fields stored in the vector field section.

Only != 0 if a vector field is stored.

0x16 numLoD unsigned short Number of LoD layers per field stored in the velocity field

section. Only != 0 if a vector field is stored.

0x18 numIntersections int Number of intersections stored in 3D grid mode. Only != 0

if a vector field is stored and we are in grid mode.

0x1C drawingSectionOffset int Offset to the start of the drawing section.

0x20 numDrawings int Number of drawings stored in the drawings section.

0x24 stringSectionOffset int Offset to the start of the string section.

0x28 masterFilePathOffset int Offset to the start of the path-string of the master file relative

to the start of the string section (bytes). The string always

contains a relative path, most likely just a filename, as the

master file is in the same directory.

0x2C masterFilePathLen int Length of this path string in Unicode characters.

0x30 maskSectionOffset int Offset to the start of the mask section

0x34 numMasks int Number of masks stored in the mask section

0x38 checksum int CRC 32 Checksum over this header (excluding the checksum,

of course).

Table A.3: The header of each data file.
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A.2 Data Files

Offset Name Type Description

0x00 headerLen int Length of the image header.

0x04 normalVecX float x Coordinate of the ImageKey’s normal vector

0x08 normalVecY float y Coordinate of the ImageKey’s normal vector

0x0C normalVecZ float z Coordinate of the ImageKey’s normal vector

0x10 positionX float x Coordinate of the ImageKey’s position vector (patient coordinate

system)

0x14 positionY float y Coordinate of the ImageKey’s position vector (patient coordinate

system)

0x18 positionZ float z Coordinate of the ImageKey’s position vector (patient coordinate

system)

0x1C triggerTime float Trigger time/index of the Image (also cached in the ImageKey). Note

that this doesn’t really correspond to the DICOM trigger time field.

It basically is an index calculated using the DICOM trigger time field.

0x20 imageType int Type of the image (REPHASED = 0, THROUGH PLANE = 1,

IN PLANE V FH = 2, IN PLANE V AP = 3, IN PLANE V RL =

4) acquisationTime float Image Acquisation Time, but decimal-cutted,

because of no need of the ms. (Image Type is already given)

0x24 windowCenter float Center of the Window

0x28 windowWidth float Width of the Window

0x2C zoomFactor float Current image zoom factor

0x30 xOffset float Current image x offset

0x34 yOffset float Current image y offset

0x38 venc float Encoding velocity (in cm/s)

0x3C vadj float Aliasing adjustment velocity (in cm/s)

0x40 c1 float Baseline correction parameter c1

0x44 c2 float Baseline correction parameter c2

0x48 c3 float Baseline correction parameter c3

0x4C c4 float Baseline correction parameter c4

0x50 c5 float Baseline correction parameter c5

0x54 c6 float Baseline correction parameter c6

0x58 vbl float Baseline correction parameter vbl

0x5C drawingKey unsigned int Key to the image’s drawing (unique)
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A.2 Data Files

0x60 xImOffset signed char Offset of the current image in pixels and x-direction for image

registration corresponding to the thp or rl Image.

0x62 yImOffset signed char Offset of the current image in pixels and y-direction for image

registration corresponding to the thp or rl Image.

0x64 ImageType int Determines the kind of REPHASED Image. 0 = PC, 1 = THP,

2 = AP, 3 = FH, 4 = RL

0x68 noiseLevel unsigned int The estimated noise level of the Image

0x6A maskKey unsigned int Key to the image’s mask.

0x6C registered Image bool If this is the registered base image, the flag is true

0x6D dicomFilenameOffset unsigned int Offset (in bytes) to the start of the DICOM filename of this

image relative to the start of the string section. Contains an

absolute path to the DICOM file.

0x71 dicomFilenameLen unsigned int Length of this path string in Unicode characters.

0x75 checksum int CRC 32 Checksum over this header (excluding the checksum, of

course).

Table A.4: The image header. The length of this header is 117 bytes.

Offset Name Type Description

0x00 numColumns unsigned short Number of columns for this layer

0x02 numRows unsigned short Number of rows for this layer

Table A.5: The velocity field header.

Offset Name Type Description

0x00 drawingKey int The key the images use to refer to this drawing. An unique integer to be

used as key in the drawing map.

0x04 drawingLength int Length of the whole drawing data structure (without trailing padding

bytes due to alignment!).

0x08 numRegions short int The number of regions stored in this drawing.

0x0A drawingShared short int Boolean flag. Any value != 0 means the drawing is shared.

Table A.6: The drawings entry.
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A.2 Data Files

Offset Name Type Description

0x00 type short int Region type (BASELINE = 0, SEGMENTATION = 1, SEGMENTA-

TION DIFF= 2)

0x02 numInVertices short int Number of vertices defining the inside polygon for difference regions.

This is also used to store the number of vertices for the other regions.

0x04 numOutVertices short int Number of vertices defining the outside polygon. Only used for difference

regions, in all other cases this should be set to 0.

0x06 padding short int Padding bytes, set to 0.

Table A.7: The regions entry.

Offset Name Type Description

0x00 columnCoordinate float Floating point column coordinate of this vertex.

0x04 rowCoordinate float Floating point row coordinate of this vertex.

Table A.8: The vertex entry.

Offset Name Type Description

0x00 maskKey int The key the images use to refer to this mask. An unique integer to be used as

key in the mask map.

0x04 xMaskSize int If in gird mode only between the outboard intersections is masked, this field stored

the size of the correction mask in x-direction. Else this value is equal to x-size of

one image.

0x08 yMaskSize int If in gird mode only between the outboard intersections is masked, this field stored

the size of the correction mask in y-direction. Else this value is equal to y-size of

one image.

0x0C padding short Padding bytes, set to 0

Table A.9: The noise correction mask header.
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Appendix B

UML Class Diagrams In Detail
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This chapter supplements chapter 5 with more or less complete UML class diagrams.

Figure B.1: A dataset for flow data and its interfaces and inheritances as part of an

UML class diagram.
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Figure B.4: The left side of figure B.5
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Figure B.5: This UML class diagram gives an overview of the additional implemented

visualization nodes. The left part of this diagram is given in figure B.4.
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Glossary

Notation Description
B0 A strong homogeneous magnetic field which

cause a small total magnetization of a spin-
system. The order of magnitude is about
0.5...3[Tesla] for clinical usage and up to
7[Tesla] in experimental setups.

42

venc Velocity ENCoding value. A reference veloc-
ity value which has to be determined in ad-
vance for flow-sensitive PC-MRA to acquire a
correct mapping from the phase angle of mov-
ing spins to the range of values.

58

3D texture In contrast to a 2D texture with coordinates
u, v a three dimensional texture consists of n-
2D textures providing a third index w. Mod-
ern graphics hardware support these types of
texture. Their Visualization is not trivial and
many approaches to that issue exist.

15

alpha value is a computer graphics expression for the
amount of transparency of a pixel.

10

ALU Arithmetic-Logic Unit. A part most micro-
processors.

30

146



Glossary

Notation Description
bipolar gradient pulse A bipolar gradient pulse is one in which the

gradient is turned on in one direction for a
period of time then turned on in the opposite
direction for an equivalent amount of time. A
positive bipolar gradient pulse has the posi-
tive lobe first and a negative bipolar gradient
pulse has the negative lobe first. The area un-
der the first lobe of the gradient pulse must
equal that of the second. A bipolar gradient
pulse has no net effect on stationary spins.
Spins which have a velocity component in the
direction of the gradient will be effected by
the bipolar gradient pulse.

56

cash flow a scientific visualization toolkit developed by
Michael Kalkusch [Kalkusch2006]

78

coronal medical direction; viewing from front or be-
hind

36

CPU Central Processing Unit. This is a pro-
grammable microprocessor device in a per-
sonal computer and others devices for general
purpose computations.

34

DICOM Digital Imaging and Communications in
Medicine. A file format to store medical im-
age data.

61

discharge flow-through The flow through a certain area during a cer-
tain time.

36

DoF Degrees of Freedom 36

ECG Electrocardiogram. A curve recorded from
the electrical activity of the heart over time.

53

endocardium is the innermost layer of cells in the heart 36
epicardium describes the outer layer of heart tissue 36

FID Free Induction Decay. Can be measured after
the disorganization of a magnetization vector
by a RF-pulse with parallel to B0 placed coils.

42

fragment A candidate for a pixel shown on screen after
passing the pixel-pipeline.

30
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Glossary

Notation Description
GPU Graphics Processing Unit. A dedicated mi-

croprocessor for computer graphics.
29

gradient field Basically a gradient field is a field which mod-
ulates a constant field B so that the magnetic
flux density is lowered in one direction and
raised in the opposite direction. The effect of
a gradient field in NMR is that the Larmor
frequency for magnetized matter is changed
depending on the slope of the gradient. In
Example a gradient is used to select a cer-
tain slice of a Volume. Applying a RF-pulse
with concurrently switched on gradient in z-
direction will only excite that slice for which
the resonance condition is fulfilled.

45

Hermitian A Hermitian signal is symmetric and can be
transformed to a Signal with Im = 0 with
the inverse flourier transformation. The latter
one is only one of the benefits of a Hermitian
signal.

45

I/O is a synonym for Input - Output behavior. 72
Iso-Surface A triangle mesh surface whose supporting

points are placed at identically intensity val-
ues (Iso-value) in a volumetric dataset. To ob-
tain these points the popular Marching Cubes
algorithm can be utilized for example.

19

Iso-value A threshold value, for example to find the bor-
der between two different tissues in a volu-
metric dataset. The popular Marching Cubes
algorithm, for example, can be utilized to en-
velop all positions with the defined Iso-value
with a surface triagle mesh.

19

LIC Line Integral Convolution. A Technique to
convolute a vector field with a noise texture.

27

LVOT Left Ventricular Outflow Tract 59

magnetization vector A helping construct to characterize the total
magnetization of a spin-system placed in a ho-
mogeneous magnetic field.

42
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Glossary

Notation Description
MIP Maximum Intensity Projection referrs to a

certain transfer function in direct volume ren-
dering techniques and concurrently to the
whole volume rendering process when used for
angiography. This transfer function returns
the maximum occurring value sampled from
a volumetric dataset along a certain ray and
is therefor especially suited for contrast en-
hanced vessel scans.

16

MR Magnetic Resonance 37
MRI Magnetic Resonance Imaging is based on the

principals of NMR. The method was called
’Magnetic Resonance Imaging’ instead of ’Nu-
clear Magnetic Resonance Imaging’ (NMRI)
because of the negative connotations associ-
ated with the word nuclear in the late 1970’s.

36

myocardium is the muscular tissue of the heart 36

NMR Nuclear Magnetic Resonance 36
NMRI Nuclear Magnetic Resonance Imaging 36
Nucleus The core of an atom, consisting of neutrons

and protons. plu.: Nuclei
36

Open Inventor Open Inventor, originally IRIS Inventor, is
a C++ object oriented retained mode 3D
graphics API designed by SG to provide a
higher layer of programming for OpenGL.
Its main goals are better programmer conve-
nience and efficiency.[Hartley1998]

72

PACS Picture Archiving and Communications
System. An image archiving- and commu-
nication system based on PCs and networks
used in many hospitals.

61
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Glossary

Notation Description
parallel mode This term is used for a special type of PC-

MRI measurement. In contrast to a grid-
mode acquisition, where three images with
each through plane components are measured
and subsequently intersected, a parallel mode
phase-contrast image triplet consists of two in
plane velocity encoding components and one
through plane for three dimensional datasets
(3D-parallel mode)

63

particle tracing Methods for calculations on further flow field
visualizations is based on the movement of
massless particles injected into a velocity field.

21

pathological Pathology is the study of the processes under-
lying disease and other forms of illness, harm-
ful abnormality, or dysfunction

36

pulse sequence A pulse sequence is a preselected set of de-
fined RF and gradient pulses, usually re-
peated many times during a scan, wherein
the time interval between pulses and the am-
plitude and shape of the gradient waveforms
will control NMR signal reception and affect
the characteristics of the MR images’. from
[MR-TIP]

45

Rendering is the process of generating an image from a
model, by means of computer programs.

34

Resonance Exchange of energy between two systems at a
certain frequency.

36

RF-pulse Radio-Fequency-Pulse. A time varying
magnetic field to excite magnetized matter -
or rotate a magnetization vector.

41

RGBA is the abbreviation for a Red-Green-Blue-
Alpha values quadruple.

95

saggital medical direction; viewing from the left or
right side

36

SAR Specific Absorption Rate. An integral mag-
nitude which refers to the absorbed energy of
tissue per time. SAR must not be higher than
a warming of tissue more than 1◦C would be
provoked.

46
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Glossary

Notation Description
shader A small program which is mostly compiled

during runtime of the main application and
executed on the GPU.

30

SIMD Single Instruction Multiple Data. Describes
a processor which is able to rapidly perform
a similar operation on multiple inputs.

31

spoiling table Rapidly applied gradients with different
strengths to destroy cohesive magnetization.

48

taxonomy is the practice and science of classification. 21
TE Echo Time. The Time at which an echo signal

reaches its maximum.
45

texel This term refers to a pixel in a texture with
certain texture coordinates in one-, two- or
three dimensions.

105

transfer function A function which influences the integration
along a ray through a volumetric dataset to
obtain a certain projection of the volume.
Depending on this function different tissues
in medical datasets can be completely sup-
pressed or highlighted during visualization.

16

transversal medical direction; viewing from above or be-
low

36
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