

The Future of Volume Graphics in Medical Virtual Reality
Judith K. Muehl, Bernhard Kainz, Alexander Bornik, Markus Grabner, Stefan Hauswiesner

and Dieter Schmalstieg

Technische Universität Graz

Abstract— A recent trends in medical virtual reality is to
include information from multiple sources, especially about
physiology, into one model and one single visualization.
Computer graphics must therefore deal with a huge amount of
information in real time. The latest developments in computer
graphics hardware allows not only to implement direct volume
rendering on the graphics processing unit (GPU), but the
emerging compute languages enable us to address volume
rendering problems of arbitrary complexity without being
limited to formulating visualization techniques in an arkward
fashion to match the GPU execution model. Utilizing the
arising new possibilities to meet next generation’s demands in
medical visualization

Keywords— volume rendering, raycasting, medical virtual
reality, visualization, CUDA

INTRODUCTION AND RELATED WORK

While techniques for visualization of anatomical 3D recon-
structions have been used in clinical practice for years, the
future of medical applications is no longer oriented on
showing images as acquired by medical technology. Added
value arises from combining information from different
sources as well as additional knowledge into one single
presentation. From this fact arise today’s challenges in med-
ical virtual reality (VR) research.

The fundamental tool for modern medical VR is volume
rendering, the process of visualizing data stored aligned to a
grid. The volume data can either be transformed into a set of
geometries and subsequently rendered conventionally, or
else the visualization is directly derived from the volume
data set, which leads to Direct Volume Rendering (DVR).
DVR offers higher quality images and a larger degree of
freedom, since no data is lost during a transformation
[Lev88].

Early attempts to interactively display volumes used tex-
ture mapped geometry [CN94], which is still very fast, but
suffers from distortions and limited flexibility [LHJ99].
More advanced GPUs allow to visualize volumes as sug-
gested by [Lev88] using raycasting at interactive frame rates
on consumer hardware [KW03, SSKE05].

A common approach to GPU-based raycasting is to ren-
der the front and back faces of the volume bounding box in
a way such that the color encodes the entry and exit points

of the rays in the volume [KW03]. The actual ray traversal
is then performed by a fragment shader, which reads the ray
coordinates from the two color buffers, fetches volume data
from a 3D texture at regular sampling intervals, and applies
the transfer function and color accumulation procedure.

DVR also allows efficient implementation data intermix-
ing, a posteriori image fusion [WFZ04] as well as focus and
context techniques [HMBG00]. Multi-dimensional transfer
functions are proposed in [KNKI02]. DVR can be combined
with geometric primitives like streamlines or additional pre-
computed volumes through in texture advection [LGSH06].

But the end of this development has not been reached
yet, and the ever increasing demand for high quality, highly
flexible volume imaging has increased also, especially in
the medical field. The volume visualization should correctly
intersect or blend with geometric parts of the scene, for ex-
ample to correctly show surgery tools [BPVR08].

The next generation of direct volume rendering tools
must be able to deal with multiple huge volumes and multi-
variate, high-dimensional data sets. This can hardly be
achieved by straight forward extensions of the conventional
CPU vertex/fragment shader model used in today’s imple-
mentations. While the fundamental technique for prodicing
the visualizations will still be based on raycasting, the use
of the emerging GPU compute languages (speficically,
CUDA) enable the use of a new class of optimized algo-
rithms. This paper gives an overview of the prototype of a
new CUDA-based visualization system currently under de-
velopment at Technische Universität Graz.

REQUIREMENT FOR VOLUME GRAPHICS

Information fusion from more than one medical imaging
source introduces a new set of problems for the visualiza-
tion. Firstly, multi-volume visualization required registra-
tion of the multiple data sets, which is mainly a computer
vision problem and not dealt with in this paper. Secondly,
data in the different volumes to be visualized together may
origin in the same data acquisition procedure, but will often
be acquired using multiple imaging technologies and conse-
quently require a multi-modal data approach.

Data might be taken at different points in time. Time re-
solved medical datasets are for example flow examinations

of the human vascular system or any kind of simulation.
The visualization technique must be able to handle higher
dimensional datasets with at least 4 dimensions.

The raycaster also has to visualize diverse quantities
which differ in their meaning as well as in their data format.
These multi-variate datasets are not limited to one scalar
attribute in their representation. Vector fields and tensor
fields obtained for example in diffusion tensor MRI are
common examples.

Variations in data acquisition parameters and data
sources lead to variations in resolution as well. Future chal-
lenges in medical applications proceed into the direction of
multi-scale approaches. The corresponding computer graph-
ics challenge is a multi-resolution approach for the multiple
volumes envisioned for the raycaster. Furthermore, polygo-
nal non volumetric objects have to be considered during a
volumetric representation if an interactive volume manipu-
lation is desired.

Finally, the images to be processed are often large data-
sets. Previously discussed requirements, especially the ne-
cessity to show multiple overlapping volumes at the same
time, increase the memory demand beyond any reasonable
borders. Approaches to deal with the arising problems con-
cern out-of-core rendering techniques and real-time decom-
pression of data.

CHALLENGES IN DESIGN AND
IMPLEMENTATION

While widely used GPU raycasting using pixel shaders
maps well onto the conventional graphics pipeline with pro-
grammable fragment processing, its flexibility is restricted
due to limitations of the underlying computation frame-
work. Multi-volume rendering or combination with polygo-
nal geometry can be implemented by means of depth peel-
ing [Eve01], but only at the cost of significant memory
bandwidth consumption. However, technological progress
in graphics hardware over the past years increasingly favors
compute-intensive over memory-intensive applications.
Since the raycaster kernel (transfer function and accumula-
tion) is relatively simple, the bus traffic will become the
bottleneck when aiming at more complex scenes composed
from multiple volumes and polygonal objects.

Real-time raycating using CUDA

We investigate the use of CUDA [NVI08] for advanced
volume rendering. A CUDA application consists of large
number of concurrent threads (typically more than 1000),
which are grouped into tightly coupled thread blocks.

CUDA offers several benefits which are relevant in our con-
text:
• Within each thread block, data can be cached and ex-

changed with other threads with extremely high band-
width (over 1 terabyte/second) and low latency (few nano-
seconds). If an application with an existing memory bus
bottleneck can be rewritten to utilize these resources, per-
formance can be improved significantly.

• The programmer has detailed control over the execu-
tion configuration (number of threads, size of thread
blocks, synchronisation mechanisms) and can optimize
these parameters for a particular application.

• The CUDA memory model is more sophisticated than
its counterpart available in shader languages. The pro-
grammer can choose between different memory access
units (e.g., texture and linear memory) and select the unit
which is best suited for a particular task. Moreover, arbi-
trary write operations (scattering) are supported. This al-
lows to overcome the rather bizarre algorithms developed
in the past to compensate for the lack of the scatter opera-
tion in shader languages.

Figure 1: Illustration of the depth peeling step and the

subsequent ray casting. Every time a ray leaves a vol-
ume the corresponding id of that volume is combined
with a logical OR to the currently valid ID. The current
ID is then used during the traversal of each ray to de-
termine in which volume the values have to be searched.

Multi-volume raycasting

Unlike earlier multi-volume approaches, which resampled
all volumes into a common grid, we support true multi vol-
ume in order to avoid double interpolations and save mem-
ory in the case of mixed resolution volumes. Our preferred
way to cope with overlapping volumes is to extend the
commonly known raycasting integral

by piecewise homogenous ray segments through the vol-
umes. Then the integral can be calculated within these vol-
ume segments with improvements like early ray termination

or empty space skipping. To correctly include arbitrary ge-
ometry and get homogenous regions, intersection calcula-
tions would have to be performed. This is computationally
not feasible for real-time applications. Therefore we pro-
pose an algorithm performed in several passes to identify
unique volume and shape regions. The depth peeling step
for multi-volumes is outlined in Figure 1.

The remaining step for our approach is to determine
which homogenous volumetric region belongs to which
three dimensional volume texture. This is done by a sepa-
rate assignment of orthogonal coordinates for the volumet-
ric objects and geometry. An intersection of two objects is
represented as logical OR of the object’s coordinates. A
simple example for that coordinate scheme is also outlined
in Figure 1. With these assumptions also geometry can be
handled. If a ray hits the next volumetric region, and it is a
polygonal object, it only has to accumulate the object prop-
erties like color to the current ray’s value.

The flow chart in Figure 2 outlines the essential parts of
the resulting multi-volume rendering approach.

Figure 2: A schematic overview of the core components
of our multi volume ray casting algorithm.

Handling multi-variate data

Multi-variate datasets can be visualized using a variety of
techniques. Buerger et al. [BuHa08] give a good overview.
Possible visualization techniques typically employ render-
ing of geometry, glyph and direct volume rendering.

In the proposed rendering framework rendering multi va-
riate datasets will be handled in a way similar to multi-
volume datasets. Each attribute of the dataset will be as-
signed a separate ID bit, thus the depth peeling stage de-
scribed in Figure 1 except for the fact that multiple bits are
inverted when entering/exiting the dataset volume, since the
attribute images are congruent.

Multi-Resolution

Multiresolution (or level of detail) is a well established con-
cept in computer graphics to deal with data at different
scales [LRC+03]. This is relevant in our context for at least
two reasons.

Firstly, we want to be able to investigate the data at vari-
ous degrees of detail. Both a coarse overview and a highly
detailed rendering of small features should be obtained from
the same data structure. One way to accomplish this goal is
by means of the wavelet transform [GLDH97]. More related
issues are discussed below.

Secondly, data acquired by different techniques can
largely differ in scale (e.g., the geometric resolution of a
histogolical image is several orders of magnitude higher
than of an MRI dataset). Despite this significant mismatch,
we want to display those data sets concurrently to provide
focus and context style interaction [HMBG00].

Multi-Dimension

Multidimensional data mainly comes from time-resolved
sources. The most obvious way is to update a multidimen-
sional volume at a certain time. Time steps can be derived
from the real temporal distance in which the data was
generated or real temporal distance multiplied by a consta,
if the frame rate does not fulfill the sampling theorem oth-
erwise. The latter will result in a slow motion representation
of the dataset.

Most of the multidimensional visualization methods are
straight forward. However, the challenge with multidimen-
sional datasets is the huge amount of data that should be
handled interactivily. Since these datasets are much larger
than conventional three dimensional datasets we have to
either provide a fast out of core transfer of the data to the
GPU when needed, or an adequate compressed/sub-sampled
representation of the data.

Out of core rendering

Massive data requires effective external memory methods,
e. g., storage layouts based on space filling curves in order
to maximize locality, as described in [Joy06]. Glatter et al.
use M-ary balanced search trees and an attribute space Hil-
bert curve to distribute large multivariate datasets to a num-
ber of servers and to efficiently query portions required for
rendering based on a particular multidimensional transfer
function [GMHG06].

Realtime volume rendering requires all data necessary to
render a single image to be present in (graphics-)memory,
which can be achieved by emplotying LOD techniques and
dynamically manage the active levels and corresponding
representations, as done in [LWPL07] in the context of vir-

tual autopsies. There a multi-resolution representation of the
dataset is created based on a flat blocking scheme. LOD
selection is done based on a screen space error measure cal-
culated after transfer function application. Higher resolution
blocks are loaded for those dataset regions with the greatest
impact on the output image until no more core memory is
available.

CONCLUSIONS

In this paper we have outlined a design for the next-
generation direct volume rendering engine. It will use
CUDA to overcome the limitations of current shader based
raycasting schemes, in particular by reducing the memory
bandwith introduced by the purely texture based storage
schemes. The new approach will handle several advanced
requirements simultaneously, among them support for mul-
tiple volumes, multi-modal, multi-variate and time-
dependent data sets, We have finished an early provide of
concept, but the solution is not optimized, so it is too early
to give performance results.

ACKNOWLEDGMENT

The presented work is a joint research activity funded by
the Austrian Science Fund FWF under contract Y193, the
EU under contract number ICT-223877 and the Ludwig Boltz-
mann Instistute for Clinical Forensic Image Processing and
Graphics.

REFERENCES

[Lev88] Marc Levoy. Display of surfaces from volume data. IEEE

Computer Graphics and Applications, 1988.
[CN94] Timothy J. Cullip and Ulrich Neumann. Accelerating volume

reconstruction with 3d texture hardware. Technical report,
Chapel Hill, NC, USA, 1994.

[LHJ99] Eric LaMar, Bernd Hamann, and Kenneth I. Joy.
Multiresolution techniques for interactive texture-based
volume visualization. In VIS '99: Proceedings of the
conference on Visualization '99, pages 355{361, Los
Alamitos, CA, USA, 1999. IEEE Computer Society Press

[KW03] J. Kruger and R. Westermann. Acceleration techniques for
gpu-based volume rendering. In VIS '03: Proceedings of the
14th IEEE Visualization 2003 (VIS'03), Washington, DC,
USA, 2003. IEEE Computer Society.

[SSKE05] S. Stegmaier, M. Strengert, T. Klein, and T. Ertl. A simple
and volume rendering framework for graphics-hardware-
based raycasting. International Workshop on Volume
Graphics, 0:187-241, 2005.

[BPVR08] R. Brecheisen, B. Platel, A. Vilanova, B.M. ter Haar
Romeny, Flexible GPU-Based Multi-Volume Ray-Casting,
in Proceedings of Vision, Modelling and Visualization
2008, 13th International Fall Workshop, Konstanz (2008)

[Eve01] C. Everitt. Interactive Order-Independent Transparency.
Technical report NVIDIA OpenGL applications
engineering, 2001.

[BUHA07] R. Bürger, H. Hauser, Visualization of Multi-variate
Scientific Data, Eurographics 2007 Star of the Art Reports
(STARs), pages 117-134

[NVI08] NVIDIA Corporation. Compute Unified
 Device Architecture programming guide
 version 2.0, August 2008.
[WKZ04] A. Wenger, D. F. Keefe, and S. Zhang, Interactive volume

rendering of thin thread structures within multivalued
scientific data sets, IEEE Transactions on Visualization and
Computer Graphics 10, 6 (2004), pages 664-672.

[HMBG00] H. Hauser, L. Mroz, G.-I. Bischi, and E. Groeller, Two-
level volume rendering – fusing MIP and DVR, in
Proceedings IEEE Visualization 2000 (2000), pages 211-
218.

[KNKI02] J. Kniss, J. Kindlmann, and G. Hansen, Multidimensional
Transfer Functions for Interactive Volume Rendering, IEEE
Transactions on Visualization and Computer Graphics 8, 3
(2002), pages 270-285.

[GMHG06] M. Glatter, C. Mollenhour, J. Huang, J. Gao, IEEE
Transactions on Visualization and Computer Graphics 12, 5
(2006), pages 1291-1298.

[LWPL07] P. Ljung, C. Winskog, A. Persson, C. Lundstroem, and A.
Ynnerman, Forensic Virtual Autopsies by Direct Volume
Rendering, IEEE Signal Processing Magazine, November
(2007), pages 112-116.

[Joy06] K. Joy, Massive Data Visualization: A Survey, in
Mathematical Foundations of Scientific Visualization,
Computer Graphics, and Massive Data Exploration, T.
Moeller, B, Hamann, and R.D. Russel eds, Springer Verlag,
Heidelberg, Germany.

[LRC+03] David P. Luebke, Martin Reddy, Jonathan D. Cohen,
Amitabh Varshney, Benjamin Watson, and Robert Huebner.
Level of Detail for 3D Graphics. Morgan Kaufman
Publishers, San Francisco, 2003. ISBN 1-55860-838-9.

[GLDH97] M. H. Gross, L. Lippert, R. Dittrich, and S. Häring. Two
methods for wavelet-based volume rendering. Computers
and Graphics, 21(2):237–252, 1997

Author: Dieter Schmalstieg
Institute: Institute for Computer Graphics and Vision
Street: Inffeldgasse 16
City: 8010 Graz
Country: Austria
Email: schmalstieg@tugraz.at

