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Abstract. We present a method to correct motion in fetal in-utero scan
sequences. The proposed approach avoids previously necessary manual
segmentation of a region of interest. We solve the problem of non-rigid
motion by splitting motion corrupted slices into overlapping patches of
finite size. In these patches the assumption of rigid motion approxi-
mately holds and they can thus be used to perform a slice-to-volume-
based (SVR) reconstruction during which their consistency with the
other patches is learned. The learned information is used to reject patches
that are not conform with the motion corrected reconstruction in their
local areas. We evaluate rectangular and evenly distributed patches for
the reconstruction as well as patches that have been derived from super-
pixels. Both approaches achieve on 29 subjects aged between 22–37 weeks
a sufficient reconstruction quality and facilitate following 3D segmenta-
tion of fetal organs and the placenta.

1 Introduction

Evaluation of fetal organs and the placenta is an important diagnostic tool during
prenatal screening and is considered to be an indicator for fetal health after birth.
Fetal Magnetic Resonance Imaging (MRI) allows to acquire high resolution slices
from the fetus at a large field of view and with good tissue contrast [9]. However,
the fetus is not sedated during these scans and may move freely inside the uterus.
Because of a scan time of up to 500 ms per slice, motion artefacts are likely to
corrupt volumetric scans. Therefore, several (usually 3–12) orthogonal stacks of
slices are acquired and reconstructed using approaches based on slice-to-volume
registration (SVR) to obtain an artefact free, high resolution volume of a fetal
target region [8, 5]. So far, this process has been applied only to small regions and
organs with rigid body characteristic such as the fetal brain. Usually, these areas
have to be identified by manual labor intensive segmentation methods. Such
approaches cannot be applied to the whole fetal body and uterus because of the
assumption of rigid motion in the 2D to 3D registration step of SVR methods.
Different areas in each slice that are likely to move in different directions will
break this assumption. Because an extension of 2D-3D registration to non-rigid
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deformations is not well-constrained, current SVR approaches will fail for non-
rigid deformations and movements.

Contribution: We solve the motion compensation problem for large field
of views in stacks of 2D slices. We split the input into small overlapping areas
and find these, which contain rigid components. This allows to iteratively learn
their consistency compared to a global reconstruction volume and to exclude
corrupted data automatically. This approach paves the way to fully automati-
cally reconstruct whole collections of motion corrupted stacks without the need
for manually segmented input. The method also finds rigidly connected areas au-
tomatically, which can be used for further refinement or as segmentation prior.

Related work: Fetal MRI is increasingly used as a complementary diag-
nostic tool to ultrasound sonography. Currently, the brain [8], thorax [6], and the
appearance of the whole fetus [10] are qualitatively examined using MRI in the
clinical practice. Fetal motion and its unpredictable nature make the acquisition
of 3D MR sequences very challenging. Fast MR sequences such as single shot
fast spin echo (ssFSE) [9] are often used in order to freeze motion within a single
2D image. Using several overlapping stacks of 2D images provides coverage of a
3D volume of a target region of interest. However, the resulting stacks are usu-
ally corrupted by relative motion between individual slices. Often six to twelve
stacks need to be acquired to sufficiently oversample a 3D volume. Segmenta-
tion and localization of selected organs can be automated, however, the available
approaches provide either a very rough segmentation of the central slices of a
stack [7] or require less motion corrupted stacks [4]. Furthermore, they are only
applicable to a specificity trained region, e.g., the fetal brain.

2 Method

The proposed method is based on the fact that certain regions of a scanned
anatomy are rigid and can be reconstructed with SVR super-resolution algo-
rithms. These methods usually use manually defined rigid regions of the 2D
input images (slices) and register them to an iteratively improving global 3D
reconstruction volume. Robust statistics can be used to identify mis-registered
or heavily corrupted data [8, 11]. Data consistency is reached by oversampling

Fig. 1. An overview over our approach. Bold parts are extensions to SVR.

a region of interest with different scan orientations. We propose to reduce the
granularity of the input data by using 2D data patches of arbitrary shape in-
stead of whole slices for SVR reconstruction. That way, multiple, large motion



Flexible correction of unpredictable motion from stacks of 2D images 3

state-of-the art: one manually 
defined sub- region

proposed: full field of view 
super-pixel based patches

proposed: full field of view 
equally sized patches

sub-region

sl
ic

es
 in

 o
rt

ho
go

na
l 

pr
oj

e
ct

io
n

Fig. 2. Comparison of the proposed reconstruction methods to the state-of-the-art.

corrupted field of views can be reconstructed and regions with rigid motion can
be found automatically. Fig. 1 gives a schematic overview over our approach
and Fig. 2 shows a high level overviews over the current state-of-the-art man-
ual segmentation-based reconstruction paradigm compared to the here presented
fully automatic, full field of view reconstruction method.

The input data can be represented as stacks of 2D images consisting of Y =
{ys|s ∈ S}, where ys is a 2D patch indexed by the location s and S is the set of all
locations in all p stacks, S = {s1, s2, ...sM}. ys can have arbitrary (2D) shape. In
this work we explore using overlapping square patches as a general application of
our novel reconstruction method and Simple Linear Iterative Clustering (SLIC)
super-pixels [1] as a method to reduce the required data redundancy.

SVR: We can reconstruct a high resolution imageX from a number of motion
corrupted ys using 2D-3D registration-based super-resolution [8, 5]. After initial
3D-3D alignment a gradually improving approximation of X (super-resolution
with the measured point spread function of the used MRI sequence) is used
to initialize and perform 2D-3D registration and robust statistics. To provide
enough structural information for rigid registration of ys to X we dilate each ys
by γ pixels using a flat structuring element b with a fixed (26 in our case) pixels
neighbourhood, hence ȳs = ys ⊕ b.

Patch generation: The shape of ys can be square with similar edge sizes in
the simplest näıve case. These patches can be defined by their edge length a and
stride ω. While this definition is likely to be generally applicable to any kind of
oversampled motion corrupted data, it does not assume any knowledge about
the data and a and ω are likely to depend on for example the gestational age.
Ideally, each ys corresponds to a subregion of the volume in which the motion
can be characterized as rigid. A good trade-off between the size of the patch
region and the likelihood of rigid motion has to be found. The larger the cho-
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sen patch regions are the less likely they will cover rigidly moving areas. An
alternative to näıve shape definitions of ys is to use correlation between each
pixel and its neighbors. Such correlations can be found by popular unsupervised
image segmentation techniques like super-pixels. Super-pixels clusters the image
into areas of pixels with local correlations. Correlated regions may define rigidly
connected areas, which can support the image reconstruction step with less but
more useful data blocks. In the literature, there are different techniques for gen-
erating super-pixels. We aim for clinical applicability of our method. Therefore,
we selected a super-pixel algorithm, which is fast to compute, i.e., we use Simple
Linear Iterative Clustering (SLIC) [1]. SLIC allows to segment 2D image slices
into compact and uniform super-pixels as shown in Fig. 2. This approach is
also computationally more efficient for image reconstruction because larger rigid
areas require less redundant image registration and super-resolution effort, in-
dependent from data parameters like gestational age. To determine the number
of super-pixels Nsp for each 2D slice, we use the rule of thumb proposed by [3],
which is based on the total number of pixels n. To handle the high variability
of the size and shape of our data, we have weighted this generation rule with a
constant factor k, where k ∈ R>0 and is chosen depending on the resolution of
the input data and thus Nsp ≈ k ·

√
(n/2).

EM evaluation: We aim to use only voxels from ȳs that can be well regis-
tered and that have a minimal error e when compared to the originally scanned
data. To achieve this we propose to classify ȳs and the included pixels into
an inlier and an outlier class using an expectation maximization (EM) frame-
work. Inspired by [2, 8], we use a zero-mean Gaussian distribution Gσ(e) with
variance σ2 for the inliers and a uniform distribution with constant density
m = 1

max(e)−min(e) for the outliers. This allows us to use redundant informa-

tion, i.e., overlapping ȳs, to find partly matching patches and to depreciate or
fully reject erroneous voxels of each ȳs. For these regions we try to maximize
the log-likelihood for each patch ys|logP (Y, Φ) =

∑
logP (e|σ, c) to be part of

an area that undergoes rigid motion. Φ contains the current estimate of the re-
constructed volume X, the variance σ2 of the errors e, and the proportion of
correctly matched voxels c. The posterior probability for a pixel ∈ ȳs being iden-

tified as inlier is p = Gσ(e)c
Gσ(e)c+m(1−c) . We perform the updates of c and σ2 similar

to [8]. Using p̄ =
√

(
∑
ȳs
p2)/N (with N the number of pixels in ȳs) we can also

define an inlier and outlier probability for each patch ȳs and stop processing this
patch if it gets classified as outlier.

Identification of rigid regions: Keeping track of the probability p of each
pixel of every ȳs allows to identify areas that best fit the rigid 2D-3D registra-
tion constraint of SVR methods. Integrating p and p̄ into a separate probability
volume P using the same slice to volume integration scheme as used by SVR
can be used to identify candidate regions, which contain only rigid motion com-
ponents. This can be useful to apply the classic SVR reconstruction approach
at a higher level of detail only in these regions. As shown by [7], tight region of
interest masks can lead to a higher reconstruction quality for rigid regions like
the fetal brain. In practice we can identify such rigid regions by blurring P using
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a 3D Gaussian filter with σ related to the size of the desired regions followed
by blob detection. These regions can subsequently be reconstructed and motion
corrected in the high-resolution volume and used for automatic classification,
e.g., in organ classes with machine learning. Fig. 5(g) shows cross section views
through P , which was generated using super-pixels at k = 0.2.

3 Evaluation and Results
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Fig. 3. PSNR comparison in the brain region of 29 subjects between using the slices
of the input stacks directly for full field of view SVR reconstruction (baseline, most
left whisker-box) to different regular patch sizes a with varying stride ω. The last four
whisker-box plots are using super pixels with varying k and an overlap γ = 16 pixels,
which yielded good results during our experiments. A PSNR above 30 dB shows that all
the proposed configurations produce a result, which is very similar to a reconstruction
when using a tight manually defined mask. Small square patches with a = 32, ω = 16
and super pixels with k = 0.2, γ = 16 produced the best results during this experiment.

We evaluate our method with experiments using 29 data sets from fetuses
with gestational ages between 22–37 weeks. To the best of our knowledge our
method provides the first approach to reconstruct other areas than the brain
or the lung, hence there is no ground truth for the full fetal body to compare
with. However, we can compare the reconstruction quality with a well researched
organ: the fetal brain. Our hypothesis is that our method provides similar recon-
struction and motion correction quality for the brain as it would be the case if a
tight mask [7] for a region of interest would have been used for SVR. We expect
the quality of our results to be close to the results from the state-of-the-art SVR
approach [5] for rigid regions. Fig. 3 shows peak signal-to-noise ratio (PSNR)
comparisons with a defined region in the fetal brain for different patch sizes (a)
and super-pixel sizes (b) with different strides and overlaps compared to a full
field of view reconstruction using the slices directly without masking or splitting
into patches (baseline). Fig. 5 shows an expert quality assessment of the results
from different image parcellations applied to a full fetal body 3T ssFSE dataset.
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(a) original (b) reconstruction

Fig. 4. Three viewing planes through the originally scanned (a) and the reconstruction
(b) of a motion corrupted scan from moving twins with a gestational age of 28 weeks
using super-pixels k = 0.2 γ = 16. For this dataset we used a mask of the uterus so save
unnecessary computation time in areas containing maternal tissue. The white arrow
points at a unilateral multicystic kidney of one of the twins.

Our method allows for the first time the reconstruction and motion correction
of scans of the whole uterus with more than one fetus. Up to now only selected
regions could be reconstructed and malformations in multiple births as shown
in the kidney of one twin in Fig. 4 were difficult to examine.

Runtime: Super-pixels can be generated for all slices of motion corrupted
stacks within a few seconds (∼ 800 2D images/examination). Our approach
becomes slower the more patches/super-pixels and the more overlap is used
(approx. quadratically). We use a parallelized and hardware accelerated SVR
reconstruction method based on [5]. A full field of view reconstruction of 8 input
stacks at 288× 288× 100 voxels takes up to 1 – 2 hours using a small patch size
(e.g., a = 32, ω = 16) on a multi GPU System (Intel Xeon E5-2630 2.60GHz
system with 16 GB RAM, an Nvidia Tesla K40 and a Geforce 780). Using large
(k = 0.1) overlapping super-pixels reduces this time to approximately 45min for
a full field-of-view volume, while maintaining a comparable result to the best
configuration of overlapping square patches.

4 Discussion and Conclusion

We have presented a method to fully automatically reconstruct the full overlap-
ping field of view of multiple motion corrupted stacks of 2D slices. This method
is generally applicable to motion corrupted scan protocols and especially useful
for fetal MRI. We discuss how data patches can be used to tackle the problem
of locally rigid body movements between different body parts. The presented
method can be used to provide a segmentation prior for rigid and stable regions
like the fetal brain and the thorax and provides a motion corrected overview over
the whole uterus in 3D including multiple births and the placenta. For certain
configurations our method might produce a slightly less accurate reconstruc-
tion of specific body parts as it would be the case when using tight masks of
these regions. However, this can be solved by using standard slice-based SVR
reconstruction as a subsequent step, applied only to the automatically detected
rigid areas or an automatically derived mask. In fact our method provides an
excellent starting point to apply state-of-the-art but motion sensitive 3D volume
analysis and segmentation methods directly to the motion corrected result. We
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Fig. 5. Visual comparison between the input data (a) and different configurations for
full fetal body reconstruction of a motion corrupted 3T MRI dataset with gestational
age of 33 weeks. The categorization into best and worst has been made by an expert.
(b): reconstruction with full slices and [8]; (c): best: s = 32 × 16, ω = 16; (d): worst
s = 64× 64, ω = 64; (e): best: super-pixels k = 0.2 γ = 16, (f): worst: k = 0.05 super-
pixels/slice γ = 16. (g) indicates which regions move as a rigid body as a function of
P (σ = 15 with super-pixels k = 0.2, γ = 16) for subsequent automatic identification
of rigid regions.
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introduce the use of super-pixels as an alternative to näıve overlapping square
patches. While the parameter configuration for näıve patches is likely to be data
dependent (e.g., gestational age), super-pixels provide a framework, which is in-
variant towards such variations in the data. In future work we will investigate
potential improvements of the super-resolution step in SVR methods by using
consistent patches for dictionary learning methods to provide a sparse represen-
tation of the desired high-resolution volume.
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