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Abstract. In this paper we present a semi-automatic method for anal-
ysis of the fetal thorax in genuine three-dimensional volumes. After one
initial click we localize the spine and accurately determine the volume
of the fetal lung from high resolution volumetric images reconstructed
from motion corrupted prenatal Magnetic Resonance Imaging (MRI).
We compare the current state-of-the-art method of segmenting the lung
in a slice-by-slice manner with the most recent multi-scan reconstruc-
tion methods. We use fast rotation invariant spherical harmonics image
descriptors with Classification Forest ensemble learning methods to ex-
tract the spinal cord and show an efficient way to generate a segmentation
prior for the fetal lung from this information for two different MRI field
strengths. The spinal cord can be segmented with a DICE coefficient of
0.89 and the automatic lung segmentation has been evaluated with a
DICE coefficient of 0.87. We evaluate our method on 29 fetuses with a
gestational age (GA) between 20 and 38 weeks and show that our com-
puted segmentations and the manual ground truth correlate well with
the recorded values in literature.

1 Introduction

Evaluation of the fetal thorax and especially fetal lung volumetry is an important
diagnostic tool during prenatal screening and is considered to be an indicator for
fetal health after birth. The respiratory function of the newborn highly depends
on the overall alveolar surface, which in turn correlates with the lung volume [12].
To date, in the clinical practice, fetal lung volumetry is assessed only visually or
by manually segmenting individual ultrasound slices. Usually only the lung main
axes or a very rough manual segmentation is used to draw conclusions about fetal
development [14]. Recently, fetal Magnetic Resonance Imaging (MRI) has been
developed and allows to acquire high resolution slices from the fetus at a large
field of view and with good tissue contrast [13]. However, the fetus is not sedated
during these scans and may move freely inside the uterus. Because of a scan time
of up to one second per slice, motion artifacts are likely to corrupt volumetric
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scans. Several orthogonal stacks of slices can be acquired and combined to one
high resolution volume using approaches based on slice to volume registration
(SVR). This way we obtain an artifact free, high resolution volume of a fetal
target region [11, 15]. So far, this process has been applied only to large, rigid
and well structured fetal brain regions.

In this paper we aim to reconstruct high resolution 3D images of the fe-
tal thorax and use them to automatically assess two key structures: lung and
spine. Furthermore, we propose a method to evaluate these reconstructions fully
automatically. The arbitrarily oriented spine is segmented using rotation invari-
ant spherical harmonics image descriptors with a Classification Forest ensemble
learning method. Lung tissue is subsequently identified by learning a graphical
model of the distances between heart, left and right lung and the fetal main axis,
which is defined by the orientation of the spinal cord.

Related Work: So far, fetal lung volumetry has been performed post
mortem by weighing the inflated lungs in water and air [12] or in-vivo using
either ultrasound [14] or manual segmentation of individual motion corrupted
slices from MRI, taking only into account the thickness of the individual slices [9,
8]. An overview over the variability of these methods is given in [4]. Recently,
significant advances for the automatic correction of fetal head movements and re-
construction to a high resolution volume have been achieved. Orthogonal stacks
of misaligned 2D slices are processed using slice-to-volume registration and it-
erative super resolution, i.e., slices are registered to an improving estimation
of the reconstructed 3D volume [11, 15]. We have tested two publicly available
frameworks with their default parameters and decided to adapt the framework
in [11] for fetal thoracic reconstruction after a visual comparison of the results as
shown in Fig. 1. This approach, using our datasets, shows clearer edges and less
intensity inhomogeneities. Besides reconstruction methods, also semi-automatic
and fully automatic approaches are available to identify fetal structures. So far,
automatic localization and segmentation methods have only been applied to
the fetal brain, using either multi stage localization via the eyes [1] or machine
learning techniques applied to image feature descriptors [6, 10].

(a) (b) (c) (d) (e) (f)

Fig. 1. Comparison of fetal thoracic super-resolution images with an isotropic recon-
struction voxel size of 0.75mm. (a): originally acquired slice, (b): 10 iterations of edge
preserving total variation (TV) minimizing denoising [16] of (a) in 3D, (c): reconstruc-
tion method proposed by [15], (d): TV denoising of (c), (e) reconstruction framework
from [11], (f) TV denoising of (e). In this work we use a framework similar to [11] be-
cause it preserves more structure and has shown clearer edges during our experiments.
We smooth and denoise the data after reconstruction using TV.
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2 Method

Overview: Our datasets are acquired on a Philips Achieva 1.5T (24 datasets)
and 3T scanner (5 datasets), the mother lying 20◦ tilt on the left side to avoid
pressure on the inferior vena cava. All scans have been ethically approved. A
typical acquisition begins with a localizer scan, which is used to align the scan
main axis approximately parallel to the fetus, and the selection of a region of
interest. Single-shot fast spin echo (ssFSE) T2-weighted sequences are used to
acquire a stack of images of the mother’s womb. Each acquisition of a 2D image
takes approximately 0.5–1.0s, which is fast enough to freeze fetal motion in
each image, but generally results in inconsistent anatomical positioning between
slices. The datasets show small to medium motion of the fetus. Several of these
image stacks are acquired parallel and perpendicular to the fetus’ main axis, i.e.,
axial, coronal and sagittal w.r.t. the fetus. The 3D resolution of each stack is
approximately 288×288×90 voxels with 1.2mm×1.2mm×1.25mm voxel size for
both used field strengths. An overview over our approach is given in Fig. 2. Our
method requires a single click to define the center of the heart. Subsequently, we
crop the motion corrupted stacks with a bounding box that is a third larger than
expected for the size of the thorax at this age. In our experiments, this approach
included the full fetal lung in all 2-6 stacks of images of the same subject.

Volume Reconstruction: It is possible to reconstruct a high resolution
image X from a number of motion corrupted stacks of 2D slice images Ii, i ∈ 1...n
using registration based super-resolution [11, 15]. Therefore, the stacks are first
rigidly registered to each other in 3D and during several motion correction it-
erations the individual slices are continuously rigidly registered to the current
reconstruction of X and reintegrated into X using iterative gradient descent
super-resolution with robust statistics to exclude mis-registered slices. Hence,
the update equation for the super-resolution of a point xi in volume X can

be defined similar to [11] as x
(n+1)
i = xni + α

∑
jkm

k
ije

n
jk + αλ ∂

∂xi
R(X) (1),

where mk
ij ∈ 1...N defines the relationship between acquired slices and the re-

constructed volume as spatially aligned discretized Point Spread Function (PSF)
for the acquisition of a voxel yjk from volume X and enjk the error between the
acquired slices and an intensity corrected simulated slice from the current recon-
structed volume X. The regularization term αλ ∂

∂xi
R(X) can be implemented as

edge preserving smoothing following each super-resolution step. Robust statis-
tics is implemented within an expectation maximization (EM) framework, which
weights each voxel in a slice according to its registration quality and difference
to it’s simulated position within the reconstructed volume. To achieve a physical
simulation of the image acquisition and a proper integration into X, slice voxels
are modeled as discretized PSFs in [11], which can be approximated by a full
width at half maximum Gaussian function for computational efficiency, scaled
by the dimensions of the voxels [7].

While denoising of images is not very popular amongst physicians for diag-
nostics, we use TV minimizing denoising [16] to homogenize structures and to
ease further post processing as shown in Fig. 1.
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Fig. 2. An overview over our approach: From several motion corrupted image stacks
(a) we reconstruct a high resolution volume (b) using Eq. 1, classify spinal cord voxels
(c), Eq. 2, combine the spinal cord probability map with a tubular structure filter (d)
and select the largest remaining region to determine the fetal main axis (e), Eq. 3,
define foreground (white) and background (grey) constraints according to Eq. 4 in (f),
and use them for a final segmentation utilizing constrained geodesic active contours [2].
(g) shows an example result from our approach and (h) shows the according manual
3D ground truth segmentation. (inside the images: a – axial, s – sagittal, c – coronal)

Spinal Cord Localization: The localization of any structure in the fetus
is especially hard because of an unpredictable orientation of the fetus within the
womb. To determine the orientation of the fetus, an automatic detection could
try to register the scan to a known reference coordinate frame. This, however,
is infeasible due to the influence of maternal tissues and the non-rigid nature
of the fetus as a whole. A different approach is to derive image descriptors that
are similar in any orientation of the image. Descriptors with such properties
are called rotation invariant. Here, we propose a novel way to apply rotation
invariant feature descriptors based on spherical harmonics to medical volume
images from fetal MRI to localize the spine.

We define rotation invariant feature vectors with the angular power spectrum
||a′l||2 of the expansion coefficients al of spherical harmonics functions similar
to [17]. For the expansion of the power spectrum we use spherical 3D Gabor basis
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functions, represented by a superposition of Bessel functions Bls(k). Therefore,
our feature vector coefficients are at each voxel at an expansion l, scale t and

frequency k: akl (x) = (
√
t
−k )l∇l

(I ? B0s(k))(x) (2).

The transformation into the Gabor domain can be realized with one single
initial cross correlation of the image and the basis function I ?B0s(k) followed by

an iterative application of the spherical up-derivative operator ∇l
, which defines

the spherical counterpart of a gradient operator in conventional calculus [17].
We found the optimal expansion bandwidth to be around 20 derivatives and
obtained the best results with descriptor sizes between 6− 11mm. We combine
features at the minimum and the maximum of this range to form a feature vector
consisting of coefficients for a smaller and a larger spherical neighborhood to
gain additional descriptive power. Our final feature vector covers three different
frequencies to represent the local image structure at each scale. We use k = 0, π,
and 2π. Consequently, each vector has a length of 63 elements per voxel.

We subsample the reconstructed volumes four times and learn every descrip-
tor at every voxel position of a manually generated ground truth of the spinal
cord from all high resolution reconstructions of our test datasets and use every
third background descriptor for training a Classification Forest with 64 decision
trees and a maximum depth of 128 [3]. The resulting probability map PMs(X)
may show significant (non-tubular) outliers in regions where amniotic fluid and
darker tissues form spine like patterns. Therefore, we filter the denoised volume
using a 3D multi-scale vessel enhancement filter [5] for tubular structures be-
tween 3 to 6 mm and obtain an additional volume V(X) with a strong response
for the spinal cord. However, this volume also shows responses in areas, where
the fetus, the womb and the amniotic fluid form thick tube like structures. Ro-
bust detection with few false positives (false positive rate < 10%) is achieved by
a point-wise combination of the two detector methods, morphological opening
and selection of the largest region of S(X) = PMs(X) · V(X) (3).

Lung Segmentation: The core of our method is the identification of lung
tissue in X. Unfortunately, the method described for spine localization cannot be
applied directly to the lungs because of its more complex and partitioned shape.
Because we know already the center position of the heart and the voxels of the
spinal cord we can generate a probability map for lung voxels based on a graph-
ical model of the thoracic organs. We use logistic regression to learn and predict
the gestational age (GA) specific distances between the center of the heart cH ,
and the centers of the left cLul and the right lung cLur from our datasets. The
learned distances are the length of the vectors v1 = (cLul−cH), v2 = (cLur−cH),
v3 = (cLul − cLur), hence dLu

H = (||v1|| + ||v2||)/2 (we assume symmetry) and
dLur
Lul = ||v3||. Typical values for the linear prediction model a · x + b from our

test datasets can be found in Fig. 3 (for specific gestational age (GA) the exact
parameters are: dLu

H = 0.145 · GA − 5.966 and dLur
Lul = 0.1747 · GA − 1.141).

Furthermore, we use the spinal cord segmentation to define a line s through
the main axis of the spine using RANSAC and the normal vector ns

H to this
line going through cH . All voxels, which are in an expected lung intensity range
[li1, li2], manually measured from the ground truth segmentation independently
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for 1.5T and 3T data, and within the age specific predicted distances dLur
Lul and

dLu
H and in between cH and s are subsequently defined as conservative estima-

tion of lung voxels. All voxels that have been identified as neither belonging to
a tubular structure nor likely to be a spine voxel nor being within the expected
lung intensity range, hence S(X) ≡ 0, are defined to be background. Therefore,
we obtain a trinary volume for lung foreground 1, background −1, and uncertain
regions 0 for all voxels {vxyz ∈ X | li1 ≤ vxyz ≤ li2} and vectors u = vxyz − cH ,

U(X) =


1 if S(X) ≡ 0 ∧ −ns

H · u > α ∧
(dLu

H − (dLu
H ∗ γ) ≤ ||u|| ≤ (dLu

H + (dLu
H ∗ γ)

−1 if S(X) 6= 0 ∨ li1 ≥ vxyz ≥ li2
0 else.

(4)

α = 0.5 and γ = 0.1 revealed to be good choices during our experiments.
Subsequently, we use U(X) as initial foreground/background constraints for our
implementation of geodesic active contours segmentation [2]. Finally, the lung

volume V results for all N classified lung voxels by V =
∑N

i=0 s3

1000 [ml], with s as
the reconstructed isotropic voxel size in mm (0.75mm during our experiments).

3 Evaluation and Results

Ground truth segmentations for the reconstructed datasets have been generated
in 3D using a few voxels wide manual brush strokes to find larger homogeneous
regions quickly with geodesic active contours segmentation [2]. This initial seg-
mentation is subsequently manually refined by an expert using one voxel wide
foreground and background constraints. As a baseline we have also generated
manual slice-by-slice segmentations of the lungs from a single stack per dataset
similar to the current state of the art [8]. Fig. 3 compares the exponential growth
regression curves of post mortem measurements, slice-by-slice evaluation with
multiplication by the slice thickness from literature, our slice-by-slice ground
truth, the ground truth acquired from manual 3D segmentation of the recon-
structions and the results from our semi-automatic approach.

Our method has been evaluated on an Intel Xeon E5-2643 system with 16 GB
RAM and a Nvidia Titan Graphics card (GPU). The reconstruction to a high
resolution volume takes ∼ 10±5min – depending on the number of input stacks
and the size of the region of interest – with our own GPU accelerated (CUDA)
implementation of [11]. This is ∼ 25× faster than the original CPU implemen-
tation. The transformation to feature space (GPU) and the voxel classification
(CPU) takes on average 3.4s. The segmentation refinement (CPU) takes 15s.
Therefore, our approach can be executed within approximately 15 minutes.

We used 10-fold cross-validation for the spinal cord localization training and
generated a manual ground truth of the spine similar to the 3D lung ground
truth. On average the automatic spinal cord segmentation reached a DICE co-
efficient of 0.89 (σ2 = 0.001) compared to the manual ground truth during
our experiments. The automatic segmentation of the lung volume achieves a
similarly high DICE coefficient of 0.87 (σ2 = 0.002).
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Fig. 3. (a) compares the results from post mortem measurements [12] (dotted, black),
slice wise measurements from MRI literature [8] (line, black), our manual segmenta-
tion from 3D reconstructions (blue o) with its exponential regression curve (blue dashed
line), manual slice wise segmentation (green *) with its exponential regression curve
(green dashed line), and our automatic method (red +) with its its exponential regres-
sion curve (red line). (b) shows the learned distances between the selected heart center
point and the center of the lungs. (exp. = exponential, lin. = linear, reg. = regression)

4 Discussion and Conclusion

We have shown motion corrected reconstruction and almost fully automatic anal-
ysis of the fetal thorax in a genuine volumetric approach. Our method works well
for cases of small to medium motion. If all scanned input stacks are corrupted
by strong motion we have observed that the results for the lung volume become
more similar to the manual slice-by-slice approach. We have shown that the
evaluated methods produce measurements within the clinically known natural
variation of the fetal growth. While the state-of-the-art approach requires time
consuming slice-by-slice segmentation, our method requires only a single click,
which can be done when the radiographer defines the scan region. Our results
show that when performing lung volumetry on motion corrected high resolution
reconstructions, the values appear to be closer to post mortem measurements.

With minor changes (different definition of the expected lung intensity) the
presented approach is applicable to two different MRI field strengths and reliably
localizes healthy lung tissues in the fetal thorax. The higher signal-to-noise ratio
of 3T input is likely to improve our results if only 3T datasets are used for
training. We will evaluate the segmentation performance w.r.t. the field strength
in future work as soon as we have acquired more 3T data. The localization of
the fetal spine and the resulting automatic estimation of the fetal main axis can
also be used as basis for further diagnostics and automated image analysis.
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