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ABSTRACT

In this paper several novel methods to account for fetal move-
ments during fetal Magnetic Resonance Imaging (fetal MRI)
are explored. We show how slice-to-volume reconstruction
methods can be used to account for motion adaptively dur-
ing the scan. Three candidate methods are tested for their
feasibility and integrated into a computer simulation of fetal
MRI. The first alters the main orientation of the stacks used
for reconstruction, the second stops if too much motion oc-
curs during slice acquisition and the third steers the orienta-
tion of each slice individually. Reconstruction informed adap-
tive scanning can provide a peak signal-to-noise ratio (PSNR)
improvement of up to 2 dB after only two stacks of scanned
slices and is more efficient with respect to the uncertainty of
the final reconstruction.

1. INTRODUCTION

Fetal Magnetic Resonance Imaging (MRI) is increasingly
used as a complementary diagnostic tool to sonography. It
has been shown to be a useful tool for accurate prenatal
diagnostics and to assess fetal development because of the
increased field of view and contrast compared to ultrasound
imaging. Currently, mainly the brain and the whole fetus
appearance are qualitatively examined using MRI in clinical
practice [1, 2]. Fetal motion and its unpredictable nature put
high demand on radiologists and make an automatic evalua-
tion of the scan challenging. The resulting images are usually
corrupted by motion artifacts and often several scans have to
be performed to acquire clinically useful data.

Malamateniou et. al. [3] classified motion compensation
techniques for fetal and neonatal MRI into prospective and
retrospective methods in addition to approaches to minimize
motion artifacts by using fast imaging sequences. Prospective
methods are usually navigator-based [4] or self-navigated se-
quences [5]. Navigators have been applied in the fetal brain.
However, it increases the scanning time from < 30s to ap-
proximately seven minutes and it is not always robust against
extensive fetal movements [6]. Additionally, positioning of
the navigator requires a pilot scan and at least one test scan,
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which further increases the total scanning time. Motion-
robust spiral sequences [5] are useful for correcting in-plane
motion, however, they often fail in cases of through plane
motion [7] and many of those sequences take significantly
longer than conventional scans.

Retrospective methods are applied after highly oversam-
pled image data has been acquired. They have the disadvan-
tage that they cannot fully correct through-plane motion be-
cause of the spin history effect [3] and that each step of the
algorithms may require several hours to reconstruct the final
volume. However, because of a short scan time and their
non time critical post processing, they are currently popu-
lar for fetal image analysis. The most promising approaches
use a combination of 2D/3D registration and robust statis-
tics to exclude highly corrupted slices with regularized super-
resolution [8, 9].

2. METHOD

It is possible to reconstruct a high resolution image X from
a number of motion corrupted stacks of slice images denoted
by Ii, i ∈ 1...n using registration based super-resolution [9].
Therefore, the stacks are first roughly rigidly registered to
each other in 3D and during several motion correction iter-
ations the individual slices are continuously rigidly registered
to the current reconstruction of X and reintegrated into X
using iterative gradient decent super-resolution with robust
statistics to exclude mis-registered slices. Hence, the updat-
ing equation for the super-resolution of a point xi in volume
X can be defined similar to [9] as
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where mk
ij ∈ 1...N defines the relationship between acquired

slices and the reconstructed volume as spatially aligned dis-
cretized point spread function (PSF) for the acquisition of
a voxel yjk from volume X and enjk the error between the
acquired slices and an intensity corrected simulated slice
from the current reconstructed volume X . The regularization
term αλ ∂

∂xi
R(X) can be implemented as edge preserving

smoothing following each super-resolution step. Robust
statistics is implemented within an expectation maximization
(EM) framework, which weights or excludes each voxel in a



slice according to its registration quality and difference to an
according simulated voxel in a slice. To achieve a physical
simulation of the image acquisition and a proper integra-
tion into X , slice voxels are modeled as discretized PSFs,
which can be approximated by a full width at half maximum
Gaussian function for computational efficiency, scaled by the
dimensions of the voxels [10].
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Fig. 1. 2D illustration of (a) regular sampling with approxi-
mate psf shown (red) of reconstructed voxels (black), (b) ac-
tual occurring sampling due to fetal motion, and (c) a slice
from a real reconstruction showing the sampling density (the
brighter the more samples).

The acquisition of many stacks, the displacement and
rotation of the single slices because of fetal movements and
their registration and the sampling of the PSF lead to an
uneven quality reconstruction of X , which is illustrated in
Fig. 1. Currently, the stacks are scanned parallel and perpen-
dicular to the fetus’ main axis, hoping, that the slices will
cover all voxels of the target volume equally. However, fetal
movements make this assumption very unlikely so that it is
necessary to acquire multiple stacks of slices to ensure sam-
ples are sufficiently dense everywhere in the target anatomy.
Therefore, we propose to determine the next scan orientation
according to the current sampling density ρ(X) based on an
intermediate reconstruction forX . ρ(X) can be calculated by
ρi =

∑
jkm

k
ij , which encodes how often each voxel of X is

visited during the reconstruction process. In this work we aim
for V ar(ρ(X)) = 0. However, this is not realistic because
newly scanned slices will always add information to already
sufficiently sampled voxels. Therefore, we try to maximize
the minimally occurring sampling density, i.e., we scan until
min(ρ(X)) > t, and until we can be sure that every voxel in
the reconstructed volume has been sampled at least t times.
The main idea to achieve this is to align new scans along less
sampled areas. After each stack acquisition, the registration
of its slices, and their integration intoX , the optimal next ori-
entation can be defined by a plane that is as close as possible
to a set of 3D points (p0, ..., pn) within a region of interest
(ROI) defining the least densely sampled areas. Sorting the
coordinates according to their sampling density in ascending
order yields a vector, whose 3D coordinates of the m lowest
elements can be used to define the plane passing through the
centroid c and normal vector ~n, hence

min
c,‖~n‖=1

m∑
i=0

((pi − c)T~n)2. (2)

Solving this for c gives c = 1
m

∑m
i=0 pi and allows to define

them×3 matrixA = [p1−c, ..., pn−c] and to change Eq. 2 to
min‖~n‖=1 ‖ATn‖22. Using the singular value decomposition
A = USV T results the plane normal ~n in the third row of U
and the plane spanning vectors ~v1 and ~v2 in rows one and two,
which can be used to define the next optimal scan orientation
with the transformation matrix Tnew.

Not all scanners and scan sequences allow to apply the
above scheme in an optimal way, i.e., to determine Tnew for
each slice individually. Therefore, we propose three vari-
ations of our approach, which require gradually more inte-
gration effort into existing fetal MRI sequences. The region
of interest for the reconstruction and optimal coverage can
be defined from the first stack by using one of the currently
available automatic reconstruction methods for, e.g., the fetal
brain [11].

The ’reorient-stack’ method: This approach is the most
direct and easiest to implement application of our method and
aims for finding an optimal orientation for subsequent stacks
of slices. This means, that the basic volumetric acquisition of
parallel slices per stack can remain untouched. The difference
to the state-of-the-art scanning approach is that the acquired
stacks are unlikely to be orthogonal for optimal sampling. An
overview is given in Fig. 2.

Fig. 2. Overview over the ’reorient-stack’ approach.

This approach can be used to infuse stacks gradually
into X . Therefore, we compute for the first stack xi =∑

jkm
k
ijyjk, register the slices of the first stack to this simple

Gaussian weighted reconstruction and perform a few (usually
5–10) steps of Equation 1. Subsequently, the next stack can
be scanned according to the orientation given by Equation 2.
The new slices can then be registered to the current X and
updated accordingly. This process is repeated until a prede-
fined sampling quality threshold t has been reached, hence,
min(ρ(X)) < t.

Fig. 3. Overview over the ’stop-if-motion’ approach.

The ’stop-if-motion’ method: The idea of this approach
is to stop the scan and to calculate a new scan orientation
according to Eq. 2 as soon as a scanned and registered slice
is significantly different from an expected, simulated slice,



sampled from the so far available reconstructed volume X .
Therefore, the scan orientation is reevaluated if the similarity
s(ssim, sscan) is smaller than a predefined threshold T . We
use normalized cross correlation as similarity measure and
determined experimentally T = 0.4. An overview over this
approach is given in Fig. 3.

The ’track-slices’ method: This approach tries to adjust
the orientation of each new slice according to the motion tra-
jectory of the fetus, which can be derived from the previous
slice-to-volume registration results. We estimate the likely
present motion trajectory from the last n orientation matrices
of the most recently scanned slices and interpolate the most
likely transformation θ of the fetus for the next stack. In prac-
tice n = 3 has been shown a good trade off between elapsed
time and the accuracy of the actual fetal position. This pro-
cess is continued until as many slices have been scanned as
during the acquisition of the very first stack or if the new slice
is fully outside the region of interest (stack full condition).

Fig. 4. Overview over the ’track-slices’ approach.
However, scanning individually oriented slices means

that it is likely that the new slice will intersect the previous
scanned locations and that the signal intensity is influenced
by remaining magnetization for the overlapping voxels (cross
talk). Therefore, we take a typical T1 relaxation time for fetal
brain of 1.5s for 1.5T and 2.5s for 3.0T [12] into account
and keep track of the by new slices induced time t depen-
dent magnetization with e−t/T1 in a separate magnetization
volume. This assumes all longitudinal magnetization is de-
stroyed when a slice is excited, which is very likely to be true
for single-shot fast spin echo (ssFSE) as we use it in practice.
We then optimize and re-orient θ another time so that the
remaining magnetization values in the anticipated slice are
minimized and temporally adjacent slices overlap as little as
possible. An overview over this approach is given in Fig. 4.

3. EVALUATION AND RESULTS

Scanner simulation: Because we aim for exploring of the
potential benefits of the approaches prior to seeking ethical
approval and reprogramming the scanner and to make our
results comparable with known motion trajectories, we have
build a computer simulation of a scanner and use previously
reconstructed fetal brain scans as test data. From fetal cine se-
quences [13] we know that fetuses move their heads randomly
in any direction combined with a small omni-directional jitter
caused by the baby and by maternal movements (breathing,
digestive movements, etc.). We have simulated these random
movements and virtually move and rotate the available fetal

reconstruction according to this motion trajectory. We sample
it similarly to a real scanner (approximately 850 ms per slice).

Results: We have implemented our framework on an In-
tel Xeon E5-2643 system with 16 GB RAM. To evaluate the
candidate methods we use different motion trajectories and
compare a full reconstruction to the state-of-the-art sampling
method every time a stack of images is ready. Therefore, we
use the difference of the peak signal-to-noise ratio (∆PSNR)
between the currently in practice used scan method and the
proposed approaches. Another valuable information is to test
how many slices are required for each approach until a mini-
mum sampling density per voxel is reached and how the non
regular sampling decreases with every new slice. Therefore,
we define the sampling uncertainty as the number of vox-
els that have no direct correspondence to an actually scanned
voxel divided by the overall number of voxels within the re-
gion of interest.

We compare the three candidate methods (reorient-stack,
stop-if-motion, and track-slices) to the currently used scan-
ning approach (current-method), i.e. acquiring stacks orthog-
onal and parallel to the fetal main axis, and show their perfor-
mance in Fig. 5. We performed experiments on ten different
random motion trajectories of two different fetal brain recon-
structions of gestational age of 24 and 37 weeks. The motion
includes random small jitter and a turn (i.e. rotation) with
varying speed in a random direction for overall up to 90◦ but
not faster than 5◦ per second. A small random translation
component is added to the motion trajectory, which is overall
less than 2 cm for the whole simulation. On average we simu-
lated approximately 50 slices per stack for the current-method
and the reorient-stack method. The stop-if-motion and track-
slices methods have been evaluated every 50 slices. Fig. 5
compares the performance of the these approaches.

Runtime: This is a crucial factor for certain parts of
the methods because scan time is limited. Registration and
determining a new scan orientation are the non-neglectable
parts of the evaluated methods. One slice to volume registra-
tion needs to take less than 0.2s for a success of the track-
slices approach. Calculating a new optimal scan orientation
between subsequent stacks of images takes on average less
than 0.2s, which is together with the time for each intermedi-
ate reconstruction the main overhead for the other methods.

4. DISCUSSION AND CONCLUSION

In this paper we have explored the feasibility and potential
benefits of three different methods to improve pre-natal MRI
when fetal motion corrupts the scan. While equalizing the
sampling density leads to minor improvements of the final re-
sult, accounting for motion leads to better scan results in a
shorter time when considering a global image quality mea-
surement. It is likely that a local measure of the PSNR – i.e.,
worst PSNR over a region of interest swept over the full image
volume – reveals higher benefits of reconstruction informed
adaptive scanning. Currently, the adaptive approaches are
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Fig. 5. The tested approaches are compared in terms of im-
proving reconstruction quality per added stack PSNR (a)
and in terms of sampling uncertainty (b). While the track-
slices method allows a better reconstruction result, it also
shows a higher variance of the sampling uncertainty than min-
imizing only this uncertainty as done with the reorient-stack
method. The stop-if-motion method shows a high variance
in both graphs, which is due to the missing data if the fetus
moves too much.

limited by the speed and extent of the fetal motion and their
computational overhead. For very quick and wide movements
the investigated approaches show a similar performance as
the standard approach. It is possible to use all three methods
with a real scanner, however, the efforts for sequence adap-
tion and integration increase for each of the three. Further-
more, a fast implementation of the motion compensation and
super-resolution reconstruction is required. The in this paper
explored methods show evidence that fast adaptive scanning
approaches have great potential to improve the final scan re-
sult or to reduce the required scan time of fetal MRI in the
future.
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