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Abstract. Fetal MRI is emerging as an effective, non-invasive tool in
prenatal diagnosis and pregnancy follow-up. However, there is a signif-
icant variability of the position and orientation of the fetus in the MR
images. This makes these images more difficult to analyze and interpret
compared to standard adult MR imaging, which standardized anatomical
imaging aligned planes. We address this issue by automatic localization
of the fetal anatomy, in particular, the brain which is a structure of in-
terest for many fetal MRI studies. We first extract superpixels followed
by the computation of a histogram of features for each superpixel using
bag of words based on dense scale invariant feature transform (DSIFT)
descriptors. We construct a graph of superpixels and train a random for-
est classifier to distinguish between brain and non-brain superpixels. The
localization framework has been tested on 55 MR datasets at gestational
ages between 20–38 weeks. The proposed method was evaluated using
5-fold cross validation achieving a 94.55% brain detection accuracy rate.

1 Introduction

Fetal magnetic resonance imaging (MRI) has significantly improved in the last
two decades, and is emerging as a novel, non-invasive tool for diagnosis and
planing of surgical interventions. It provides higher contrast and larger field-
of-view than ultrasound. Thus, it provides better structural information of the
different fetal organs such as the brain, spine and body. Fetal brain localiza-
tion is important for assessing the fetal brain development and maturation. It
is also the primary step for most of the current automatic motion correction
techniques for fetal MRI [11]. Recently, fetal brain detection has been used as a
landmark to extract the other fetal organs [13]. Problems that hinder the design
of automated image analysis tools for fetal MRI usually arise from: a) the high
variability in shape, size, orientation, and anatomical configuration of the fetus;
b) intensity non-uniformities (bias artifacts); c) partial volume effects; and d)
motion artifacts caused by the unconstrained fetal motion (see Fig. 1).
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(a) axial (b) coronal (c) sagittal

Fig. 1. Three orthogonal cutting planes through a stack of fetal MRI images. The
quality of the in-plane (coronal) slices is not affected by motion, however, there are
inter-slice artifacts appear in the out-of-plane views (axial and sagittal).

Related work: Fetal MRI is an emerging field of research, with little work
focused on fully automatic processing of these datasets. In [2], 3D template
matching is used to detect the eyes, enabling a subsequent 2D/3D graph-cut
segmentation that extracts the brain. This approach is based on 3D templates
and lacks the flexibility necessary to deal with motion artifacts as well as fetal
abnormalities. The methods proposed in [9] and [12] address the variability of
fetal MRI through machine learning. In [9], a Random Forest (RF) classifier
first distinguishes between maternal and fetal tissues before classifying different
tissues of the fetal head, while [12] combines prior knowledge of the fetal size
with maximally stable extremal regions (MSER) detection and a bag-of-words
model.

Contribution: In this paper we propose a fully-automated framework for
localizing the fetal brain in fetal MRI scans. Rather then working on individ-
ual pixels we make use of superpixels for a faster and more efficient detection
algorithm. Because of the nature of superpixels that most likely represents the
rigid regions in the image, using superpixels neighbors instead of pixel neighbors
can reduce the effect of motion artifacts. Therefore, we have developed a new
superpixel graphical model based on both spatial and intensity distances in 3D.
The proposed localization framework achieves 94.55% accuracy for the brain de-
tection and 98.18% prediction accuracy of the center of the brain. The proposed
approach does not require landmarks as in [10] or prior information such as the
gestational age of the fetus as in [14].

2 Method

The proposed approach for the automatic localization of the fetal brain consists
of four main steps as shown in Fig. 2. The input data of our system are 3D fetal
MRI datasets. The first step is to decompose each 2D slice into {N1, ..., Ns}
superpixels in order to minimize the local redundancy in the input data. By
clustering and constructing a single descriptor for each superpixel we reduce the
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impact of noise on each descriptor whilst preserving homogeneous regions that
are likely belong to the same anatomical region. The second step is to calculate
image descriptors for each pixel and then aggregate them into one histogram
hi for each i-superpixel. The third step is to build superpixel graphs based on
each superpixel’s neighbors. Then each superpixel’s histogram is normalized with
its neighbors in the graphical model. During the fourth step, we use a random
forest to generate a probability map of the brain for every superpixel. Finally,
this probability map is refined using another auto-context classifier followed by
selecting the largest 3D component.

Fig. 2. The automatic localization of the fetal brain framework.

Superpixels: Superpixels are a popular unsupervised image segmentation
technique that clusters image pixels into groups of pixels based on the correla-
tion between each pixel and its neighbors. In the literature [1], many superpixel
techniques have been shown to produce ‘good’ segmentation results. However,
which properties of superpixels are important depends on the application. Med-
ical image analysis can be computationally expensive when compared to normal
image analysis due to the size of the data, namely because MRI scans are 3D
volumes as opposed to 2D images. Most of the current superpixel segmentation
techniques have been proposed for 2D images. In our work, we have chosen the
simple linear iterative clustering (SLIC) technique [1], which is fast to compute
while achieving a good segmentation quality (as shown in Fig. 3) with lower
computational cost so that the method scales well when processing the many
slices of a volume. SLIC segments pixels into compact and nearly uniform su-
perpixels. Superpixels are applied in 2D (not 3D) because of the fetal motion
that results in 2D misaligned slices. Choosing the right number of superpixels
for each 2D slice is challenging. Thus, we have modified the ad-hoc heuristics
proposed by [8] to optimize superpixels for fetal MRI. We have weighted the rule
with a constant factor k, where k ∈ R>0 and is chosen depending on n, the total
number of pixels in the 2D input image. Thus, the total number of superpixels
s = |{N1, ..., Ns}| in a 2D slice has been calculated:

s ≈ k ·
√

(n/2). (1)
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(a) s ≈ 25 (b) s ≈ 50 (c) s ≈ 100

Fig. 3. A cropped image of a 2D fetal MRI scan segmented at a) 25-, b) 50-, and d)
100-superpixels.

Image descriptors: We build a bag of features using dense scale invariant
feature transform (DSIFT) [18] descriptors. This is done by first computing
SIFT [15] descriptors for each pixel in every 2D image in the training set at
a fixed scale and orientation. A k-means clustering is then performed on these
descriptors and their centers are used to form a dictionary of k words. When
collecting DSIFT descriptors from pixels we can then find their closest matching
word from this dictionary, aggregating the frequency of words in each superpixel
Ni into one histogram hi with k-bins. The k-dimensional histogram acts as the
feature descriptor for each superpixel. However, the descriptor is constructed in
such a way that only contains local information about the superpixel itself. This
leads to a loss of the large-scale image context. Also, due to the nature of the
superpixels, their histograms of features tend to be sparse. Most of the DSIFT
descriptors within a superpixel are likely to be mapped to the same word.

Superpixel graphs: To overcome the problem of sparse descriptors for su-
perpixels, we construct superpixel graphs using the distance between the cen-
troids of superpixels as edges [7]. These edges are weighted based on both spatial
and geodesic distances. We first compute the centroid ci for each Ni superpixel.
Then we identify r neighbors based on the similarity score between two superpix-
els Ni and No with centroids ci and co. The similarity between two superpixels
is defined:

fr(Ni, No) = 1− d(ci, co)

D
, (2)

Here d(·, ·) is the Euclidean distance, and D is the length of the diagonal of the 2D
image. This normalizes the score to be between [0, 1]. The closer fr(ci, co) is to 1,
the smaller is the distance between these two centroids. We next assign weights
wj for the extracted r neighbors candidates based on the geodesic distances
between their centroids. The geodesic distance is estimated using:

dr(Ni, No) =

m∑
j=1

|I(pj)− I(pj−1)| , (3)
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Here I(pj) is the intensity of the pixel pj , and m equals to the number of pixels
located on the straight line between ci and co. Next, the weights wj are calculated
by normalizing dr, so that wj = 1 when dr is the lowest and wj = 0 when dr is
the highest. Finally, the histograms of features for the extracted r superpixels
are aggregated based on the calculated weights, and normalized using:

h̃i =

r∑
j=0

wjhj∥∥∥∥∥ r∑
j=0

wjhj

∥∥∥∥∥
`1

(4)

Here h0 = hi or the histogram of the current superpixel in consideration. Using
graphs of superpixels enables the proposed localization method to overcome the
motion artifacts between the 2D slices by extracting the superpixel neighbors
in 3D, which would be more difficult using graphs of individual pixels. This is
because of the nature of superpixels that most likely represent rigid regions, see
Fig. 4. By selecting both spatial and intensity neighbors, we increase the features
for each extracted histogram instead of using sparse features. Consequently, we
extend the features used in the machine learning to include the image context
instead of using only the local information. Figure 4 shows the proposed graphical
model in both 2D and 3D.

Fig. 4. The proposed superpixel graphical model in 2D and 3D. The red superpixel
represents the current superpixel in consideration, the r-spatial neighbors are colored
in blue, and the neighbors with higher weights (wj) are colored in green.

Classification: We use the normalized feature vectors to train a two class
random forest (RF) [4] to classify each superpixel as brain or non-brain. Our
dataset has pixel-wise labels so we assign each superpixel Ni the class label li that
corresponds to the label with the highest frequency inside the superpixel. After
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the initial classification we obtain a probability map and use this to train another
second random forest along with 10% of the most important features used for
training the first classifier. This produces an auto-context classifier [17] that can
increase the classification accuracy. The output volume is then filtered by finding
the largest 3D component, which is the brain mask in this case, followed by a
convex-hull extraction [3] to obtain a clean homogeneous segmentation.

3 Evaluation and Results

Data: The proposed framework has been tested on 55 fetal scans at gestational
age between 20–38 weeks. Thirty subjects of these datasets are from normal
fetuses and 25 datasets are from fetuses with intrauterine fetal growth restriction
(IUGR). The data was acquired with a 1.5T Philips MRI system using single shot
fast spin echo (ssFSE) sequences with voxel size 0.8398×0.8398×4mm3. Ground
truth labels were obtained by manual segmentation of the brain performed by
expert observers.

Implementation: We perform mean and standard deviation normalization
on the input scan intensities as a preprocessing stage for our proposed approach.
We have adjusted the SLIC superpixel extraction used in [1] for generating su-
perpixels that are optimized for fetal MRI data. The vlfeat library [18] was used
for generating DSIFT features and the scikit-learn library [16] was used for the
random forest classifier. The code was implemented using python and MatLab
with the mex-c environment. We use k = 5 to determine the number of super-
pixels s. The number of neighbors selected for superpixel graphs r were set to
25 calculated for each xy−plane in three slices. In order to balance the positive
and negative training samples for the classifier, we choose to restrict training to
superpixels generated from a cropped volume around the brain by adding 25% of
the maximum brain diameter in the xy-plane. The prior knowledge that brains
appear brighter in T2-scans allowed us to suppress some of the background pix-
els by thresholding any pixel less than 10% of the maximum intensity value of
the whole subject. All these parameters are chosen by experiment on a smaller
test dataset.

Results: A 5-fold cross validation was used for evaluating our approach (11
test patients 44 training patients per fold). The random forest classifier achieved
an average accuracy score of 96.17% per a superpixel basis. We defined the de-
tection accuracy, the extracted mask covering at least 70% of the brain, similar
to the definition presented in [10] but calculated for the whole 3D brain for
simplification. The prediction accuracy of the centers of the segmented brains
are measured by calculating the percentage of centers that lie inside the ground
truth of the manually labeled brains. Brain coverage is measured by the percent-
age of the manually-labeled brain that are covered by the segmented boundary
box. We have also used the dice coefficient [6] in order to measure the segmen-
tation accuracy of the proposed approach. Table 1 shows the accuracy of our
localization approach at different dictionary sizes k = 50, k = 100, k = 400 and
k = 800. These results shows that increasing the dictionary size or the histogram
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bins (sparsity) increases the dice accuracy. However, it also increases significantly
the processing time of training and testing. These experiments were done using
parallel processing on a CPU with 32-cores and 128GB RAM.

Table 1. The accuracy of the proposed localization approach at different dictionary
sizes k = 50, k = 100, k = 400 and k = 800.

k = 50 k = 100 k = 400 k = 800

Brain detection (% subjects) 87.27 89.09 94.55 90.91

Center in brain (% subjects) 80 81.82 98.18 98.18

Brain coverage (µ± σ%) 85.59±30.51 85.9±28.2 90.03±16.63 90.54±15.17

Dice coefficient (µ± σ%) 61.07±26.94 63.22±25.47 71.96±19 73.62±15.9

Average train time (minutes) 31.55 50.25 256.09 424.93

Average test time (minutes) 4.63 4.85 6.31 8.36

Fig. 5. The accuracy of the proposed localization approach at different dictionary sizes
k = 50, k = 100, k = 400 and k = 800.

Our brain localization approach have achieved a 94.55% detection accuracy.
It also could detect the center of the brain with prediction accuracy 98.18% of the
test subjects while in [10] they achieved only 81%, 78% and 60% using coronal,
axial and sagittal training data. In addition, the proposed approach does not
depend on the orientation of the acquired data and it does not use any previous
landmarks as in [10]. [14] achieved 100% detection accuracy of the brain; their
method, however, requires previous information about the gestational age of the
fetus to find the expected size of the brain. This information is later used to
remove the outliers of the detected brain mask. Our proposed method has an
advantage to be generic and does not require any prior information. Figure 6
shows the segmented brain at different cross sections for three test subjects with
different dice accuracy.
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(a) S1-axial (b) S1-coronal (c) S1-sagittal

(d) S2-axial (e) S2-coronal (f) S2-sagittal

(g) S3-axial (h) S3-coronal (i) S3-sagittal

Fig. 6. The segmented brain at different cross sections (axial, coronal, sagittal) for three
different test subjects S1, S2 and S3. The dice coefficient of S1=91.22%, S2=70.01%,
and S3=56.79%.
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4 Discussion and Conclusion

We have developed an automatic framework for localizing the brain in fetal MRI
scans using superpixel graphical models. Superpixels have enabled the proposed
detection algorithm to be faster and more efficient than using pixels for classi-
fication. Also, extending the extracted features from the individual superpixels
to include features from the neighbors using superpixel graphical models, have
provided more information about the image context instead of using only the
local information. The evaluation results achieved 94.55% accuracy for the brain
detection, which shows the potential of extending the proposed approach using
superpixel graphs to segment other fetal organs such as the heart, lung, and pla-
centa. According to the recent studies [5], the placental functions affect the birth
weight as the placenta controls the nutrients transmissions from the maternal to
the fetal circulation. Moreover, the extracted brain can be be used for developing
automatic motion correction and registration techniques for fetal MRI.
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