Eurographics Conference on Visualization (EuroVis) 2014 Volume 33 (2014), Number 3

H. Carr, P. Rheingans, and H. Schumann
(Guest Editors)

Parallel Irradiance Caching for Interactive
Monte-Carlo Direct Volume Rendering

Rostislav Khlebnikov', Philip Voglreiterl, Markus Steinbergerl, Bernhard Kainz> and Dieter Schmalstiegl

!nstitute for Computer Graphics and Vision, Graz University of Technology, Austria
2Department of Computing, Imperial College London, UK

MCVR

MCVR Ours, MCVR gOurs MCVR § Ours

Figure 1: Three volumes with enlarged areas rendered with Irradiance Caching (left half) and normal Monte Carlo Volume
Rendering (right half) after the same time. The extracted areas show a significant reduction in noise with our approach.

Abstract

We propose a technique to build the irradiance cache for isotropic scattering simultaneously with Monte Carlo
progressive direct volume rendering on a single GPU, which allows us to achieve up to four times increased
convergence rate for complex scenes with arbitrary sources of light. We use three procedures that run concurrently
on a single GPU. The first is the main rendering procedure. The second procedure computes new cache entries,
and the third one corrects the errors that may arise after creation of new cache entries. We propose two distinct
approaches to allow massive parallelism of cache entry creation. In addition, we show a novel extrapolation
approach which outputs high quality irradiance approximations and a suitable prioritization scheme to increase
the convergence rate by dedicating more computational power to more complex rendering areas.

1. Introduction

Perception of volumetric data displayed with Direct Volume
Rendering (DVR) approaches can be greatly improved if
global illumination effects are taken into account. This in-
cludes both strong effects like global shadows, and more
subtle ones, such as scattering. One of the approaches to
compute costly global illumination effects is Monte Carlo
Volume Rendering (MCVR). MCVR uses stochastic integra-
tion to solve the Radiative Transfer Equation (RTE) [Cha60],
which describes the complex interaction of light with partic-
ipating media. The progressive nature of MCVR is an advan-
tage and allows showing intermediate results, thus enabling
interactive data exploration. However, early results are very

submitted to Eurographics Conference on Visualization (EuroVis) (2014)

noisy, which may force the user to suspend interaction until
higher levels of convergence are achieved.

Irradiance [WRC88] and radiance [KGPBO0S5] caching
techniques significantly improve the convergence rate by
storing and reusing the illumination computation results for
nearby pixels. This does not reduce the quality, because the
illumination field varies smoothly in large parts of natural
scenes. An additional advantage of such techniques is that
the cache can be built during rendering — once a not cached
position is encountered in the scene a new cache entry is
computed before rendering proceeds. For interactive DVR,
multiple problems prevent using traditional techniques.

First, the majority of modern DVR systems employ the

2 Khlebnikov et al. / Parallel Irradiance Caching for Interactive Monte-Carlo Direct Volume Rendering

GPU to achieve interactive frame rates. The massive paral-
lelism required to effectively utilize the power of the GPU
is achieved by dedicating one thread per pixel and executing
the threads in SIMD manner in thread blocks. Thus, if all the
threads within a thread block compute a similar cache en-
try at the same time, a lot of computational effort is wasted
since many redundant entries are created. Second, even if
the cache density is controlled, displaying the results for the
thread block will stall until all the necessary cache entries
are created, which affects interactivity significantly.

In this paper, we propose an integrated approach that al-
lows to build the irradiance cache for isotropically scattering
materials in parallel to rendering on a single GPU, without
leading to excessively dense caches or rendering stalls. To
achieve compatibility with most DVR applications, we for-
mulated the following goals:

e Irradiance caching should not interfere with the interac-
tion and the visualization, allowing for efficient data ex-
ploration. This includes both virtual camera motion as
well as interactive transfer function design.

e Caching should improve the convergence rate of the
MCVR without sacrificing its quality.

e Memory footprint of the cache should be minimal.

These goals are contradictory to some extent. For instance,

a very low memory footprint may be achieved at the ex-

pense of quality or interactivity. Achieving a good balance

in a GPU-friendly way is not trivial, as multiple interlocking
tasks compete for the GPU time and must be scheduled. In
this regard, we present the following contributions:

e We demonstrate object- and screen-space approaches
which allow the new cache requests to be handled in a
massively parallel MCVR system without rendering stalls
or creating an excessively dense cache on a single GPU.

e We show a prioritization scheme that allows to distribute
the available computational power between building the
irradiance cache and the actual rendering.

e We propose a modification to the exponential irradiance
extrapolation approach, which is more accurate for scenes
with high irradiance field gradients.

Overall, we show that our method improves the convergence

rate and, consequently, the visualization quality of MCVR

without reducing its interactivity.

2. Related work

In this section, we give a brief description of the core tech-
nologies building the foundation of our approach. In partic-
ular, we discuss MCVR and irradiance caching.

Global illumination in volume rendering: There are nu-
merous approaches to computing global illumination for
DVR. They differ concerning the range of effects they can
achieve as well as concerning performance and memory
requirements. An excellent overview of the existing ap-
proaches towards computing advanced volumetric illumina-
tion in interactive volume rendering is given by Jonsson et al.
[JSYR13] in their state-of-the-art report.

The radiative transfer equation [Cha60] serves as a base
for most methods, which compute global illumination in
participating media. Kajiya and Von Herzen [KVHS84] pro-
pose to use a two-pass approach to include global illumina-
tion effects for rendering of volumetric datasets. During the
first pass, the radiance is estimated for each voxel, which is
consecutively integrated along view rays during the second
pass. However, the first pass is very time consuming and
thus not applicable to interactive visualization of dynamic
scenes. Many approximations for improving performance
exist. Ambient occlusion is used for efficient shadow compu-
tation in a local neighborhood [SA07, RMSD*08,DVND10]
and summed area tables provide an approximation including
global shadowing [SMP11].

Rezk-Salama [Sal07] propose to use a Monte-Carlo ap-
proach for physically-based volume rendering. However,
displaying only a set of isosurfaces limits the quality of this
method. Kroes et al. [KPB12] demonstrated that progressive
Monte-Carlo rendering is feasible for interactive DVR. We
use their method as basis for our method (Section 3).

Photon mapping approaches [JC98] have also been ap-
plied to DVR. Jonsson et al. [JKRY12] propose History-
grams to increase the speed of photon map re-computation
for transfer function changes. However, the photon gather-
ing step is still quite time consuming, leading to low frame
rates when the camera moves. Precomputed radiance trans-
fer approaches [SKS02] allow to overcome the high runtime
cost. Zhang et al. [ZD13] propose to use precomputed pho-
ton maps for high quality interactive volume data visualiza-
tion. While the rendering performance is very high, full re-
computation of the photon mayp is still required upon a trans-
fer function change.

Global illumination can also be approximated by a diffu-
sion process [Sta95]. Zhang et al. [ZM13] propose to use
a convection-diffusion partial differential equation. While
the performance and range of effects achieved by this ap-
proach is high, it can only handle certain light types. We-
ber et al. [WKSD13] apply an approach using virtual point
lights (VPL) in interactive volume rendering. Even though
the resulting image is visually appealing, interactive visual-
ization severely restricts the VPL number.

Irradiance caching: The irradiance caching tech-
nique [WRCS8] takes advantage of the fact that the indirect
irradiance field is mostly smooth. The irradiance and
some additional quantities, such as the irradiance gradi-
ent [WHO92], are computed for a sparse set of cache points,
which are then used during rendering to interpolate the
irradiance, avoiding costly integration over all directions.
Kfivanek et al. [KGPBO0S5] propose radiance caching, which
stores and interpolates direction-dependent radiance using
spherical harmonics. Jarosz et al. [JDZJO8] extended the
radiance caching approach for use with participating media.

The shape of the influence zone of cache entries affects
the memory footprint necessary to achieve high quality re-
sults. We need to consider the total number of cache en-

submitted to Eurographics Conference on Visualization (EuroVis) (2014)

Khlebnikov et al. / Parallel Irradiance Caching for Interactive Monte-Carlo Direct Volume Rendering 3

tries and the amount of data stored for each of them. The
most widespread shape is spherical [JDZJO8]. The goal of
storing very little information for each cache entry is af-
fected, if the cache density increases significantly in the ar-
eas of high frequency illumination changes (Fig. 5). Further-
more, spherical influence zones cause excessive cache den-
sity in all directions, even if irradiance changes rapidly in
only one direction. Therefore, an adaptive shape of the in-
fluence zone is more suitable for highly inhomogeneous me-
dia, which, for instance, can be observed in direct volume
rendering of scientific data. Ribardiere et al. proposed adap-
tive records for irradiance caching methods, applied to sur-
face data [RCB11a] and volume data [RCB11b] rendering,
where the influence zones are adapted according to geomet-
rical features and irradiance changes.

There have been attempts at bringing irradiance caching
to parallel systems, mostly for multiple nodes using MPI.
Robertson et al. [RCLL99] propose distributing cache gen-
eration over several nodes and use frame-to-frame coherence
for geometric scenes to reduce the computational demand.
However, single nodes still compute entries for screen re-
gions serially, which limits the overall parallelism of the
approach. On top, cache synchronization among nodes is
problematic. More recently, Debattista et al. [DSCO06] pro-
pose separating rendering from irradiance calculations. Parts
of the locally computed cache of single nodes at particular
time intervals are shared, which leads to issues with latency
and cache misses for entries computed on a different node.
This has also been observed by Kohalka et al. [KMG99].
Gautron et al. [GKBPO0S5] propose the radiance cache splat-
ting approach to enable efficient use of the GPU. Debat-
tista et al. [DDPdSC11] propose a wait-free data structure
for populating irradiance cache on parallel systems with
shared memory. However, both methods create the cache en-
tries sequentially for the whole screen or a large tile and do
not handle participating media.

3. Background: Exposure Render

We use the Exposure Render method presented by
Kroes et al. [KPB12]. It applies the Monte Carlo approach
to solve the radiance transfer equation for interactive pro-
gressive volume rendering. In this section, we describe the
relevant techniques applied in the Exposure Render method
that we further use to build our caching approach.

In its essence, the goal of volume rendering is to
solve a radiative transfer equation for a heterogeneous
participating medium. Using the notation employed by
Jarosz et al. [JDZJO8], the radiative transfer equation for
non-emissive participating media can be written as:

L(x,®) :/OS T (X <> X/)05 (X;) Li(X;, ®)dt+ W

T (x > x5)L(xX5,0),

—

where L(x,®) is the radiance reaching x along a ray with
direction ®, which is parametrized as x; = x —t®,7 € (0,s),

submitted to Eurographics Conference on Visualization (EuroVis) (2014)

and x; is the exit point from the volume in direction —@.
L;(x,®) is the in-scattered radiance at position x in direction
®. Finally, the transmittance, T}, is computed as

To(x & x) = ¢ T %),)

where 7T is the optical thickness:

X
r@ﬁﬂzﬁmww. 3)

X
Here, o; is the extinction coefficient, which is the sum
of the scattering coefficient 6, and the absorption coefficient

G4. The solution of the radiative transfer equation may be ob-

tained using a Monte-Carlo approach. In the Exposure Ren-

der framework, it is implemented as follows:

e For each pixel on the screen, a single ray is cast into the
scene through a random position within this pixel.

e Each ray propagates through the volume to find a single
tentative collision point (scatter event).

e For this event, the illumination is estimated by casting a
ray towards a randomly selected sample located at one
of the lights. Similarly to the previous step, if a collision
point with the medium is found, the point is considered
unlit. Otherwise, this light sample in conjunction with a
phase function is used to compute the illumination and
considered in the current estimate for this pixel.

e The current estimate is incorporated into the final pixel
color using a running average approach.

In this paper, we accelerate the illumination estimation using

an irradiance cache. For isotropic phase functions, the irradi-

ance can be computed as the integral of the incident radiance
over the sphere of directions:

E(x) = /Q L(x, ®)dd)

4. Parallel irradiance cache management

The main objective of our approach is to generate an irradi-
ance cache in a massively parallel way while concurrently
performing DVR on a single GPU. As alternating between
DVR and cache management would introduce a consider-
able latency, we want to schedule all involved tasks concur-
rently. In this way, we can provide immediate feedback to
camera movements using progressive updates while build-
ing and adjusting the irradiance cache at the same time.

To enable this goal, we distinguish between three proce-
dures which are executed on the GPU in parallel (Fig. 2):
The rendering procedure implements the basic Exposure

Render approach with a modified illumination computa-

tion step. For each scattering event, we check whether

cache information is available. If so, we extrapolate the ir-
radiance and use it for shading. If not, we generate a cache
entry request and use default MCVR shading instead.

The cache creation procedure handles incoming cache
entry requests. It computes new cache entries by sampling
the irradiance field in the local neighborhood of the cache
request center.

4 Khlebnikov et al. / Parallel Irradiance Caching for Interactive Monte-Carlo Direct Volume Rendering

The cache update procedure ecliminates discontinuities in
the estimated irradiance field. This discontinuities can
arise in the areas of high frequency changes in the irradi-
ance field, which are not captured by the values computed
during cache entry creation.

Request irradiance
Insert new entry
Request irradiance

and update radii
~
Queues with priority sorting %&[—]
and time management

Figure 2: The overview over our system. Three procedures
run in parallel on a single GPU. The scheduler distributes
time slots for each of them based on the cache hit rate.
The rendering procedure is also prioritized based on screen-
space convergence information.

4.1. GPU Scheduling

Using the traditional execution model based on GPU shaders
or SIMD languages like CUDA, a dynamic concurrent exe-
cution cannot be set up easily. Even with the most recent
dynamic parallelism, which allows kernel launches from the
GPU, we were unable to implement concurrent caching and
rendering efficiently. The overhead of dynamic parallelism
itself and finding a mapping between launched threads and
actual work was too high in our experiments. Thus, we use
Softshell [SKK*12], an open-source framework, which oc-
cupies the GPU to provide custom scheduling in software.

Softshell uses a persistent megakernel built on top of
CUDA. In this approach, a single kernel continuously oc-
cupies the GPU, with each thread spinning in a loop. An
idle thread draws a new task from a queue implemented in
software. The queues support parallel insertion and removal
using a fixed-size ring buffer with atomically operated front
and back pointers with overflow/underflow protection. Indi-
vidual slots are assigned to threads with atomic additions on
these pointers. This design provides simultaneous access to
an arbitrary number of threads without waiting.

To allow for different scheduling policies, we associate an
individual queue with each procedure as shown in Figure 3.
Depending on which queue is chosen for dequeue, different
scheduling policy can be employed. For instance, different
quotas can be assigned to different procedure types. More-
over, queues can be sorted to reflect priorities within one pro-
cedure type, enabling an out-of-order execution.

The priority queues offer the possibility to influence the
execution order to, e.g., control the amount of resources in-
vested into each individual procedure or focus processing
power on more important image regions. As the persistent
threads megakernel can be controlled from outside, it is pos-
sible to interrupt the GPU execution at a certain point in
time. We use this feature to enable a frameless rendering ap-
proach aiming at a fixed refresh rate.

\
R R SN At St s Ll SRt et
! | T T B

Lododed b ‘V N

[e e I A 1
Ldohod- -1 SRR

'

Vemmpomems
r

Figure 3: Our approach consists of worker-blocks, contin-
uously drawing tasks from queues. We keep one queue per
procedure, which is essential for a divergence free execution
of tasks with different granularities.

4.2. Cache entry creation

We take the following steps to create a single cache entry:

e Compute the local coordinate frame.

e Estimate the incoming irradiance at the centre and at six
points offset along the axes of the local coordinate frame.

e Compute validity radii for each of the six axis directions.

Below, we first show how we estimate the irradiance at the

necessary positions. Next, we show how to extrapolate the

irradiance to arbitrary positions. Then, we explain how we

choose validity radii. Finally, we justify the selection of the

local coordinate frame.

Estimation of irradiance values. The incoming irradi-
ance is estimated with Monte Carlo integration using multi-
ple importance sampling with power heuristics [Vea98]. We
control the number of samples N for the Monte Carlo in-
tegration using the standard deviation based error estimate
with 95% confidence interval [HGIOS8]:

SW) _ v

1.96 N < H—IE(N), (5)
where y is the acceptable relative error. E(N) and S2(N) are
the average and the variance of irradiance estimates, which
are computed incrementally [Fin09]. Note that we use the
relative error estimate due to the fact that the human eye is
most sensitive to relative and not absolute values of illumi-
nation change according to Weber’s law of just noticeable
differences [TFCRS11, p. 37]. Therefore, larger absolute er-
rors are admissible for brighter regions.

Irradiance extrapolation and validity radius. We as-
sume that the irradiance changes exponentially in the lo-
cal neighborhood of the cache entry center ¢, similarly to
Jarosz et al. [JDZJ08]. Using the error metric shown in Eq.
(5), we estimate the irradiance values at ¢ and at positions
(c+&-A) for § € (+i,+j, k), where (i,j,k) are the unit
vectors of the local coordinate frame at ¢, and A is the com-
putation offset (see Fig. 4, left). Then, for each of six di-
rections, we fit a 1D exponential function of form E(x) =
E(c) - exp(—G:x), where &; is the tentative local extinction

submitted to Eurographics Conference on Visualization (EuroVis) (2014)

Khlebnikov et al. / Parallel Irradiance Caching for Interactive Monte-Carlo Direct Volume Rendering 5

e iseygeo-10
T Lo
£
®
[3D 5 ‘ i
RCD c-iA € cHi-A RGD €

Figure 4: (Left) We compute the tentative extinction coeffi-
cients & as well as radii R for six directions (+i,£j, £Kk).
(Right) When interpolating local extinction coefficients, the
ellipsoidal shape may be inconsistent with the actual valid-
ity radius if the ratio of irradiances at different axes is very
high (inner graph). Therefore, to avoid visual artefacts, we
discard the influence of a cache entry in areas beyond the in-
terpolated validity radius (red hatching). However, for lower
ratios (outer graph), the ellipsoidal shape is a good estimate
for the actual validity radius.

coefficient, using two computed data points {0;E(c)} and
{AE(e+E-A)}:

£ E(c+&-A)\ 1
= (M) & ©

To perform the extrapolation to an arbitrary position p, we
first compute its coordinates p’ = (p{,pj7p{() in the local
coordinate frame. Then the tentative local extinction coef-
ficient in the direction p’ is computed using barycentric co-
ordinates:

)

~ (i ~(£j ~(+£k
o P8 106 4 g -6

()
! |pil +|pj| + | i

where the sign of (+i,=£j,+k) corresponds to the sign
of (p}, pJ{, pi)- Finally, the extrapolated irradiance value is

computed as E(p’) = E(c) - exp(—@(p/) p[).

‘A A

Figure 5: Influence of the entry shape on the cache den-
sity. The white lines denote the radii corresponding to the
local coordinate frame of an entry. If the entry is represented
as a union of elliptical sections, (middle) less cache entries
are required compared to the spherical ones (left). Orienting
these shapes along the opacity gradient (right) reduces the
cache density even more because in many cases, the largest
irradiance gradient coincides with the opacity gradient. Ori-
enting the entries allows for larger validity zones, since the
radius has to be small only along one axis.

Given this extrapolation approach, we compute the valid-
ity radius for each half-axis such that the extrapolated irradi-
ance at the edge of the influence zone differs by not more
than one € relative to the estimated irradiance at position

submitted to Eurographics Conference on Visualization (EuroVis) (2014)

(c+E-4)
¢_ . In(Ee/E(c))
h KA nE e 3)/EQ@) ®
where
E _{ (1+e)E(c+&-A) ifE(c) <E(c+&-A) ©)
€7\ (1—g)E(c+E-A) ifE(e) > E(c+E-A).

We define the shape of the cache entries as a union of el-
liptical sections with distinct radius along each of half-axes
of the local coordinate frame (Fig. 4, left). While an ellipsoid
is a good estimate, the actual validity radius for the inter-
polated local tentative extinction coefficient may be smaller
than the corresponding ellipsoid radius. With our exponen-
tial extrapolation approach, this may lead to errors in case
the ratio of the estimated irradiance along the half-axes is
large (Fig. 4, right). Therefore, we discard the influence of a
cache entry if the point lies outside the validity radius of the
interpolated local tentative extinction coefficient.

If a point lies within the validity zone of multiple cache
entries, we compute the log-space weighted average of the
per-entry extrapolation results [JDZJ08]:

Y In(Ep)w(dy)

kec

Ep)mexp| —=——"—
Y widy)
kec

(10

where the weight is computed as w(d) = 3d*> — 2d° with
dy = 1—||p'i|l/Rk(p’1), P’ are the coordinates of the point
in the local coordinate frame of the cache entry &, and Ej, is
the irradiance extrapolated using the cache entry k. Since the
shape of cache entry in each octant is an ellipsoid section, the
radius is computed as:

R®) = 1911 ((pf/R0)* + (p}/R;) + (/R

Local coordinate frame. To minimize the effect of er-
rors introduced by the 3D interpolation of the local tentative
extinction coefficient, it would be preferable to orient one
of the axes of a cache entry’s local coordinate frame along
the irradiance gradient. The exact orientation would require
knowing the gradient in advance. This is a very expensive
computation, requiring to store the local coordinate frame
with each cache entry. However, we have observed that in
many cases the largest change in irradiance is related to the
variation of the extinction coefficient. Therefore, orienting
the local coordinate frame along the gradient of the extinc-
tion coefficient is a good approximation of the optimal orien-
tation. Furthermore, as the computation of extinction coeffi-
cients is deterministic and can be done using a simple central
differences approach, we can easily recompute it on demand
rather than expend additional memory for its storage.

We have compared the cache size for spherical, as well
as non-oriented and oriented pseudo-ellipsoidal influence
zones. The results have shown that spherical zones indeed
lead to very high cache densities (more than four times
larger). Oriented and non-oriented zones in many cases pro-
duce very similar cache sizes. However, we observed that the

Khlebnikov et al. / Parallel Irradiance Caching for Interactive Monte-Carlo Direct Volume Rendering

L ol

Figure 6: (left) Visible artefacts can be produced if extrapo-
lated irradiance does not capture the actual irradiance field.
(right) The update procedure removes such artefacts.

M
AR(+]) B =
4 +i .
L AR i

Figure 7: Reduction of radii in the local coordinate frame
of the cache entry to exclude point p’ from the validity area
in the corresponding octant of the cache entry. The radii
are reduced proportionally to the coordinates of point p’
in the local coordinate frame. In this case, AR(H) —

|p{l /AR,

cache size for oriented zones was 5-10% smaller than that
of the non-oriented ones for optically dense materials. Be-
cause using oriented zones does not require additional stor-
age and little computational effort, we use oriented cache
entries throughout the remainder of this paper.

4.3. Cache update

While computing the validity radius gives a good approxi-
mation for the cases where the irradiance varies smoothly,
it can still be erroneous to a certain degree (Fig. 6, left).
Deviations result from considering global illumination in-
formation only partially during the estimation of incoming
irradiance in the local neighborhood of the cache entry cen-
tre. To avoid the resulting artefacts, we incorporate a cache
update procedure into our system. The cache update is done
in a similar way as proposed by Kfivdnek et al. [KBPvO08].
The update procedure searches for scatter events in the same
way as the main rendering procedure. Whenever the predic-
tions of overlapping cache entries conflict at the scatter event
position, the contribution of the cache entry with the low-
est weight is removed from the computation by reducing its
radii in the corresponding octant. The radii are reduced pro-
portionally to the event’s coordinates in the local coordinate
frame (see Fig. 7), i.e. |pi|/AR; = |pj|/AR} = | pi| /ARy We
repeat this process, until all conflicts are resolved, with the
special case of only one remaining influence.

4.4. Cache entry storage

‘We store the cache entries in a multi-reference octree, sim-
ilarly to Kfivanek and Gautron [KG09]. Even though the
multi-reference octree requires additional storage space, its
performance is significantly higher than that of its single-
reference counterpart [Karl1]. Since we only need to store

C

Figure 8: Neighboring rays may issue cache entry creation
requests at very similar positions. We avoid redundant cache
entries by allowing only one cache entry to be created per
octree node. Once a cache entry C is created, creation re-
quests within the influence of C will be ignored.

additional references rather than full entries, the impact on
the memory footprint is small.

We use oriented bounding boxes enclosing the cache en-
tries to find the nodes for which to store a reference. Addi-
tionally, as the update procedure may change the extent of
a cache entry influence zone and reduce the number of in-
fluenced octree nodes, we rebuild the octree from scratch at
particular time intervals (Table 1). This overall reduces the
total number of references (Section 7).

5. Parallelization of cache entry computations
Neighboring rays are likely to issue a scattering event at sim-
ilar positions, especially if they encounter optically dense
material (Fig. 8). This may lead to too dense and redundant
cache regions despite low frequency irradiance variation.
To solve this issue, we evaluated two different approaches.
Method 1 forbids simultaneous creation of more than one
entry per octree node. Since the octree resides in the object-
space of the volume, we call this approach object-space
locking. Method 2 is based on the fact that the creation of
new cache entries is driven by image-based ray generation.
Hence, locking parts of the screen in form of superpixels is
an alternative. We call this scheme screen-space locking.
For both versions, upon requesting a new entry, we first
try to lock the corresponding primitive (node or super-
pixel) using atomic operations, similar to Debattista et al.
[DDPASC11]. Upon success, we issue the request for cre-
ating a new cache entry, and, as soon as its estimation has
finished, we insert it into the octree and release the lock. Re-
quests for already locked primitives are discarded and the
sample of the scattering event is shaded with MCVR.

5.1. Object-space locking
In this technique, each octree node can be separately locked.
If we cannot extrapolate the irradiance from the cache, we
check whether we can lock the node furthest down in the
branch enclosing the event position. Improving over the
method of Debattista et al. [DDPdSC11], however, our ap-
proach also allows parallel, asynchronous determination of
the positions where new cache entries need to be created.
The effects of this approach are twofold. First, it allows
parallel creation of multiple cache entries in distant parts

submitted to Eurographics Conference on Visualization (EuroVis) (2014)

Khlebnikov et al. / Parallel Irradiance Caching for Interactive Monte-Carlo Direct Volume Rendering 7

Figure 9: As the octree nodes are small in the areas of high
cache density, more cache entries can be created in these
areas in parallel. This does not lead to the creation of re-
dundant cache entries, because the new entries are likely
to have small radii as a high cache density suggests high
frequency of irradiance change in this area. In this illustra-
tion, the simultaneous creation of two entries, shown in red,
will be allowed, while it will be forbidden for the two yellow
ones, even though the distance between them is the same.

along a single ray. Second, the octree adapts its local res-
olution to cache density. (Fig. 9).

5.2. Screen-space locking
In contrast to the aforementioned method, screen-space
locking operates on rectangular regions of the screen (su-
perpixels). For an optimal distribution of requests, we use
two restrictions. First, each superpixel may only issue one
request at a time. We limit the total number of cache entry
requests throughout the whole screen to balance workload.
Only a fraction of all rays in a superpixel are actually in
need of a new entry, since some may have encountered avail-
able cache information in a particular iteration. The ratio
of requests to total rays bears information on the projected
cache distribution in the current region. We only issue cre-
ation of a new cache entry, if a randomized rejection test
based on the ratio passes. This method allows for accessing
the same node of the octree from different superpixels on
the screen. Consecutively, for preventing conflicts, we use
atomic operations on the reference list per node.

6. Priorization

To control the assignment of available processing power to
procedures, we use a two-level priorization. First, we dy-
namically adjust the ratio of processing time spent on each
of the three procedures based on the cache hit rate. Second,
we use different priorities for the individual image regions
during the rendering procedure to direct processing power
towards parts further from convergence.

Cache status directed scheduling. If the number of
cache entries ensures that the majority of lighting compu-
tation requests can be extrapolated from the cache, it is not
necessary to allocate time for creating additional cache en-
tries. To achieve this goal, we dynamically adjust the time
frame assigned to the individual procedures based on the
cache hit rate (h). We estimate & over a small time interval
to consider multiple depths for each pixel. The time frames
are then computed as: fe = ¢ in + (1 — %) - (fe max — te,min)»

submitted to Eurographics Conference on Visualization (EuroVis) (2014)

where 7. corresponds to the relative time frame assigned to
the cache creation procedure, #. jin and fc max are the mini-
mum and maximum time that should be used for cache cre-
ation, respectively. e. allows to control a non-linear trans-
lation from hit rate to assigned time. Based on the intuition
that the number of required cache updates should be pro-
portional to the number of newly created cache entries, we
use the same formula with different minimum and maximum
times for the cache update procedure. The relative time spent
on rendering simply corresponds to the remaining time (pa-
rameters given in Table 1).

Rendering image priorities. Based on the geometric re-
lations of the scene and lighting, the convergence rate of in-
dividual parts of the image may differ strongly. For instance,
aregion completely in shadow may converge to black within
a single iteration, while complex light interactions from mul-
tiple light sources will result in very slow convergence rates.
Thus, we want to provide a more uniform convergence rate
across the entire image. We do that by estimating the ex-
pected gain from running another iteration per region. If we
assume that the sample variance does not change after an ad-
ditional iteration, then the error estimate will be reduced by

_ [S?(N) _ [S2(N)
AE =196 |\ 5= =[5 (1

Using AE, we compute the average expected error reduction
for each block and use it directly rendering priority.

7. Implementation

As mentioned in section 4, an essential part of our approach
is the concurrent execution of cache creation, cache update
and rendering. Using the Softshell [SKK*12] scheduling
framework, we generate and manage work descriptors for
all three procedures on the GPU. Each procedure is run in
blocks of 128 threads.

The rendering procedure divides the screen into blocks of
16 x 8 pixels and performs ray casting with one pixel per
thread. A sufficient number of blocks are created initially to
cover the entire screen. For each scattering event, we query
information from the irradiance cache. In case no entry exists
we use either of the locking methods described in Section 5.
In case a new request should be generated, we generate a
work descriptor for the cache creation procedure and hand
it over to the scheduling framework. After all threads of the
rendering procedure have added their contribution to each
pixel estimate, we hand the work descriptor for this screen
block back to the scheduling framework. In this way, rays for
the same screen region will again be traced at a later point in
time, implementing the progressive rendering method.

All 128 threads in the cache creation procedure work on a
single cache entry. Each thread casts seven rays towards ran-
domly selected lights — one ray for the central position and
one for each of the six positions offset in both directions of
the axes of local coordinate frame. Then, the results are com-

8 Khlebnikov et al. / Parallel Irradiance Caching for Interactive Monte-Carlo Direct Volume Rendering

Table 1: The parameter values used in our experiments.

Cache entry creation and update

Estimation accuracy Y 0.1
Validity radius threshold € 0.1
Position offset A 2 voxel
Minimum influence zone radius 0.01 voxel
Maximum influence zone radius - 16 voxel
Cache entry update threshold - 0.1
Procedure time distribution

Max. creation procedure fraction te.max 15%
Min. creation procedure fraction te,min 5%
Max. update procedure fraction tumax 2%
Min. update procedure fraction by min 1%
Exponent for fractions update ec 3
Screen-space locking

Max.# simult. created cache entries - 1000
Max.# simult. created entries/superpixel - 1
Miscellaneous

Octree rebuild interval - 1000 ms
Cache hit rate update interval - 100 ms

bined using shared memory. If the stopping criterion is met
(Eq. (5)), the newly created cache entry is inserted into the
octree, which uses atomic operations to avoid potential race
conditions. Otherwise, the process is repeated. The work de-
scriptor is simply removed after execution.

Similar to the rendering procedure, the cache update pro-
cedure also starts with thread blocks covering the entire
screen. Each thread randomly selects one of the covered pix-
els and casts a ray into the scene. At the scatter event, it
checks whether cache entries conflict with each other and
reduces radii if necessary. The random selection of a pixel
avoids updating the cache in neighboring object-space po-
sitions. When the entire block has finished, the block is re-
emitted for scheduling. In this way, cache entries for the en-
tire image are consistently checked and improved.

To incorporate execution time into the priority scheduling
process, we measure the number of cycles of each individual
procedure execution using the clock cycle counter provided
by CUDA. We then update the current estimate of the overall
time spent on each of the three procedures using atomic ad-
dition. Using these measurements we update the procedure
priorities, and steer the scheduling in such a way that they
receive predefined portions of the overall available process-
ing time. For instance, we could use 20% for cache creation
and 80% for rendering.

8. Results

We evaluate several conditions of our proposed method
in comparison to plain MCVR. In the following, we dis-
cuss cache creation in static scenes and during interac-
tion, and also evaluate convergence rates for a fully built

10

/1ALo]

[aL,|
oON B O

D
5 50 150 300 450

Figure 10: The ratio of average relative error of extrap-
olated radiance values computed using the approach pre-
sented in [JDZJO8] (|ALy|) to the ones computed with our
method (|ALg|) for scene with a single light source (blue)
and with additional background illumination (orange). The
red line shows the value of 1 which means no difference in
average errors of two methods. The horizontal axis shows
the global density factor D which is used to convert trans-
fer function values in range [0, 1] to the density of partici-
pating medium. Our method is significantly more accurate
for higher gradient magnitudes, which are caused by larger
global volume density factor D or by the light setup. Lower
estimation errors for our method lead to the lower number
of cache entries required to represent the irradiance field.

cache. Furthermore, we provide measurements for compar-
ing the behavior of object- vs. screen-space locking. For
our experiments, we used the following datasets: Bonsai
(512 x 512 x 182), Manix (512 x 512 x 460), Macoessix
(512 x 512 x 460) in full, half and quarter resolution each.

In Table 3, we list both the total number of cache entries
for our three tested volumes, as well as the total number
of references stored in the multi-reference octree for object-
space locking. During all our experiments, we measured an
average of six to seven references for each cache entry. In
fact, these additional five to six references per entry, stored
as indices, are a good trade-off memory-wise. Single refer-
encing induces the necessity of searching through neighbor
nodes on each level along an octree branch leading to sig-
nificantly higher number of costly global memory accesses,
decreasing the performance.

Extrapolation accuracy for single cache entries. We
compared the radiance extrapolation accuracy computed us-
ing the method by Jarosz et al. [JDZJ08] with our method
(Section 4.2). The radiance for our method is obtained by
multiplying the irradiance value by the isotropic phase func-
tion value and scattering coefficient. Fig. 10 shows that with
increasing global density, i. e., growing gradient magnitudes,
the Jarosz method, which is relying on only a single gra-
dient value, becomes insufficient to capture the high fre-
quency changes in the irradiance field. By comparison, our
method produces drastically lower error, quickly amortizing
the memory and computation overhead (a factor of 2-4x)
required for the more complex cache entry creation. Higher
gradients induced by the lack of background illumination
cause similar effects.

Behavior during and after interaction. During interac-
tion, new regions of the dataset may appear which are not
covered by the cache yet. However, we implicitly exploit

submitted to Eurographics Conference on Visualization (EuroVis) (2014)

Khlebnikov et al. / Parallel Irradiance Caching for Interactive Monte-Carlo Direct Volume Rendering 9

Table 2: Comparison of plain MCVR error estimates with our irradiance caching method. The numbers express the ratio of
plain MCVR error over irradiance caching error, averaged over 200 frames. The higher the number, the faster our approach
converges. The values in bold show the ratio with “expected gain” priorities enabled.

512x512x* ; 1280x720

Lights Bonsai Manix Macoessix Bonsai
1 1.581.62 149155 1.651.70 | 1.421.65
3 1.381.34 1.231.28 2.672.56 | 1.281.38
4 1.201.29 123125 256246 | 1.231.34

512x512x* ; 1920x1080

256x256x* ; 1920x1080

Manix Macoessix Bonsai Manix Macoessix
1.441.57 1.641.74 1.94199 1.89229 1.421.58
124131 272278 | 3.363.51 171240 2.552.76
1.121.22 242257 | 4033.89 2.032.05 2.862.95

Average error (static)
0.02 0.03

Average error (rotating)

——No Cache —No Cache
— No Priorities 0.025 f| —With Cache

— Expected Gain

0.015

0.02

0.01 0.015

0.01
0.005

0 0
0 1000 2000 3000 4000 5000 [
time (ms)

error
error

0.005

1000 2000 3000 4000 5000
time (ms)

Figure 11: (Left) Average error progression observed for the
static Bonsai with initially empty cache. Both rendering with
(red) and without priorities (green) achieve faster conver-
gence than plain MCVR (blue). (Right) Average error ob-
served during rotating Bonsai by 360 degrees. Even during
interaction, our method (green) has lower error compared
to plain MCVR (blue). Stopping interaction (3300 ms) leads
to rapid convergence due to present cache information.

frame-to-frame coherence, since previous regions rarely
vanish instantly, and we generate new entries on-the-fly. As
expected, stopping interaction leads to quickly and drastic
decrease in error, whereas plain MCVR starts from scratch.
The right panel of Figure 11 shows the average error rates for
the Bonsai during 360 rotation and then stopping interaction.

Convergence rates in static scenes. Static scenes start-
ing with an empty cache and without user interaction are a
hard case for a cache-based algorithm, since a lot of noise
is accumulated initially. We consider three different lighting
setups. First, we use a single small, distant area light. Sec-
ond, we use a setup with three very intense, large area lights
close to the volume. Third, we use four rather dim, large area
lights surrounding the volume.

For each of these light setups, we have measured the con-
vergence rate of our approach compared to plain MCVR
using the error estimate shown on the left side of Eq. (5).
This definition of the error per pixel in screen-space allows
us to locally estimate the difference to an optimal solution.
Since we observed very similar outcomes for all scene ex-
periments, we provide the average ratio of plain MCVR ver-
sus our irradiance cache error over 200 frames in Table 2 and
left panel of Figure 11 (plots in supplemental material). Note
that despite the difficult setting, our method consistently out-
performs plain MCVR event without priorities.

Object-space vs screen-space locking. As discussed in

submitted to Eurographics Conference on Visualization (EuroVis) (2014)

Section 5, we evaluate two different methods for prevent-
ing creation of excessive amount of redundant cache entries
at once. In our first measurement, we rotate the volume by
360 degrees and record the number of cache entries and
tree references. We show the results for the detailed struc-
tures of the Bonsai dataset. In a second, more extensive test,
we focus on static scenes showing Manix and Bonsai with
varying parameters. These include volume resolution (5123,
256°, 128%), screen resolution (1920 x 1080, 1280 x 720,
640 x 480) as well as background illumination (on, off),
while the viewpoint is fixed. Our tests show very marginal
differences in convergence rates. For low screen resolutions,
screen-space locking seems to create entries in more bene-
ficial locations and achieves the desired cache hit rates and
convergence values slightly faster. For high screen resolu-
tions, object-space locking creates less redundant entries and
achieves high cache hit rates faster with comparable cache
sizes. For detailed outcomes of all parameter combinations,
please refer to the supplemental material.

Table 3: Cache sizes for object-space locking. The “Refer-
ences” column shows the total number of references to the
cache entries in the multi-reference octree.

Volume Cache Entries References
Bonsai 32421 193939
Manix 30755 206807
Macoessix 24774 150660

9. Conclusion and future work

We have presented a method for DVR irradiance caching in
parallel, concurrently to MCVR. Two techniques have been
proposed to keep the memory footprint small by preventing
the creation of redundant cache entries. We have discussed
a new irradiance extrapolation method, which outperforms
previous approaches. Our experiments illustrate even for the
most difficult situations a drastic increase in convergence
rate compared to standard MCVR. Especially during and af-
ter interaction, our method achieves a significant improve-
ment, outperforming MCVR by up to four times.

In future work, we will incorporate multiple scattering, as
well as spherical harmonics to remove the current limitation
to isotropic phase functions. We will also investigate alter-
native data structures for the cache for further performance.

10 Khlebnikov et al. / Parallel Irradiance Caching for Interactive Monte-Carlo Direct Volume Rendering

References

[Cha60] CHANDRASEKHAR S.: Radiative Transfer. Books on
Intermediate and Advanced Mathematics. Dover Publications,
1960. 1,2

[DDPdSC11] DEBATTISTA K., DUBLA P., PEIXOTO DOS SAN-
TOS L., CHALMERS A.: Wait-free shared-memory irradiance
caching. IEEE Comput. Graph. Appl. 31,5 (2011), 66-78. 3,6

[DSC06] DEBATTISTA K., SANTOS L. P., CHALMERS A.: Ac-
celerating the Irradiance Cache through Parallel Component-
Based Rendering . Heirich A., Raffin B., dos Santos L. P, (Eds.),
Eurographics Association, pp. 27-34. 3

[DVND10] DIAZ J., VAZQUEZ P.-P., NavAzO 1., DUGUET F.:
Real-time ambient occlusion and halos with summed area tables.
Computers and Graphics 34,4 (2010), 337 — 350. 2

[Fin09] FINCH T.: Incremental calculation of weighted mean and
variance. University of Cambridge (2009). 4

[GKBP05] GAUTRON P., KRIVANEK J., BOUATOUCH K., PAT-
TANAIK S.: Radiance cache splatting: A GPU-friendly global
illumination algorithm. In Proceedings of the Sixteenth Eu-
rographics Conference on Rendering Techniques (Aire-la-Ville,
Switzerland, Switzerland, 2005), EGSR’05, Eurographics Asso-
ciation, pp. 55-64. 3

[HGIO8] HOLMES M., GRAY A., ISBELL C.: Ultrafast monte
carlo for statistical summations. In Advances in Neural Informa-
tion Processing Systems 20, Platt J., Koller D., Singer Y., Roweis
S., (Eds.). MIT Press, Cambridge, MA, 2008, pp. 673-680. 4

[JC98] JENSEN H. W., CHRISTENSEN P. H.: Efficient simula-
tion of light transport in scences with participating media using
photon maps. In Proceedings of SIGGRAPH '98 (New York, NY,
USA, 1998), ACM, pp. 311-320. 2

[JDZJO8] JAROSZ W., DONNER C., ZWICKER M., JENSEN
H. W.: Radiance caching for participating media. ACM Trans.
Graph. 27, 1 (Mar. 2008), 7:1-7:11. 2,3,4,5,8

[JKRY12] JONSSON D., KRONANDER J., ROPINSKI T., YN-
NERMAN A.: Historygrams: Enabling interactive global illumi-
nation in direct volume rendering using photon mapping. /EEE
TVCG 18,12 (2012), 2364-2371. 2

[JSYR13] JONSSON D., SUNDEN E., YNNERMAN A., ROPIN-
SKI T.: A survey of volumetric illumination techniques for inter-
active volume rendering. Computer Graphics Forum (condition-
ally accepted) (2013). 2

[Karl1l] KARLIK O.: Data Structures for Interpolation of Illumi-
nation with Radiance and Irradiance Caching. Master’s thesis,
Czech Technical University in Prague, 2011. 6

[KBPvO8] KRIVANEK J., BOUATOUCH K., PATTANAIK S.,
ZARA J.: Making radiance and irradiance caching practical:
adaptive caching and neighbor clamping. In ACM SIGGRAPH
2008 classes (New York, NY, USA, 2008), ACM, pp. 77:1-
77:12. 6

[KG09] KRIVANEK J., GAUTRON P.: Practical global illumina-
tion with irradiance caching. Synthesis Lectures on Computer
Graphics and Animation 4, 1 (2009), 1-148. 6

[KGPB05] KRIVANEK J., GAUTRON P., PATTANAIK S., BOUA-
TOUCH K.: Radiance caching for efficient global illumination
computation. /EEE TVCG 11,5 (2005), 550-561. 1,2

[KMG99] KOHOLKA R., MAYER H., GOLLER A.: Mpi-
parallelized radiance on sgi cow and smp. In Parallel Compu-
tation, Zinterhof P., VajterAEAgic M., Uhl A., (Eds.), vol. 1557
of Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 1999, pp. 549-558. 3

[KPB12] KROES T., PosT F. H., BOTHA C. P.: Exposure ren-
der: An interactive photo-realistic volume rendering framework.
PLoS ONE 7,7 (07 2012), €38586. 2, 3

[KVH84] KAJiYAJ. T., VON HERZEN B. P.: Ray tracing volume
densities. SIGGRAPH Comput. Graph. 18, 3 (Jan. 1984), 165—
174. 2

[RCB1la] RIBARDIERE M., CARRE S., BOUATOUCH K.: Adap-
tive records for irradiance caching. Comput. Graph. Forum 30, 6
(2011), 1603-1616. 3

[RCB11b] RIBARDIERE M., CARRE S., BOUATOUCH K.: Adap-
tive records for volume irradiance caching. The Visual Computer
27, 6-8 (2011), 655-664. 3

[RCLL99] ROBERTSON D., CAMPBELL K., LAU S., LIGOCKI
T.: Parallelization of radiance for real time interactive lighting vi-
sualization walkthroughs. In Supercomputing, ACM/IEEE 1999
Conference (1999), p. 61. 3

[RMSD*08] ROPINSKI T., MEYER-SPRADOW J., DIEPEN-
BROCK S., MENSMANN J., HINRICHS K. H.: Interactive vol-
ume rendering with dynamic ambient occlusion and color bleed-
ing. Computer Graphics Forum (Eurographics 2008) 27, 2
(2008), 567-576. 2

[SAO7] SHANMUGAM P., ARIKAN O.: Hardware accelerated
ambient occlusion techniques on GPUs. In Proceedings of the
13D, ACM (2007). 2

[Sal07] SALAMA C. R.: GPU-based Monte-Carlo volume ray-
casting. In Proceedings of Pacific Vis (Washington, DC, USA,
2007), IEEE Computer Society, pp. 411-414. 2

[SKK*12] STEINBERGER M., KAINZ B., KERBL B,
HAUSWIESNER S., KENZEL M., SCHMALSTIEG D.: Softshell:
dynamic scheduling on GPUs. ACM Trans. Graph. 31, 6 (Nov.
2012), 161:1-161:11. 4,7

[SKS02] SLOAN P.-P., KAUTZ J., SNYDER J.: Precomputed
radiance transfer for real-time rendering in dynamic, low-
frequency lighting environments. ACM Trans. Graph. 21,3 (July
2002), 527-536. 2

[SMP11] SCHLEGEL P., MAKHINYA M., PAJAROLA R.:
Extinction-based shading and illumination in GPU volume ray-
casting. IEEE TVCG 17,12 (2011), 1795-1802. 2

[Sta95] STAM J.: Multiple scattering as a diffusion process. In
Rendering Techniques 1995, Hanrahan P. M., Purgathofer W.,
(Eds.), Eurographics. Springer Vienna, 1995, pp. 41-50. 2

[TFCRS11] THOMPSON W., FLEMING R., CREEM-REGEHR S.,
STEFANUCCI J. K.: Visual Perception from a Computer Graph-
ics Perspective. A K Peters/CRC Press, 2011. 4

[Vea98] VEACH E.: Robust monte carlo methods for light trans-
port simulation. PhD thesis, Stanford University, Stanford, CA,
USA, 1998. AAI9837162. 4

[WH92] WARD G. J., HECKBERT P. S.: Irradiance Gradients.
1992 Eurographics Workshop on Rendering (1992), 85-98. 2

[WKSD13] WEBER C., KAPLANYAN A. S., STAMMINGER M.,
DACHSBACHER C.: Interactive direct volume rendering with
many-light methods and transmittance caching. Proceedings of
the Vision, Modeling, and Visualization Workshop (2013). 2

[WRC88] WARD G.J., RUBINSTEIN F. M., CLEAR R. D.: Aray
tracing solution for diffuse interreflection. SIGGRAPH Comput.
Graph. 22, 4 (June 1988), 85-92. 1,2

[ZD13] ZHANG Y., DONG ZHAO MA K.-L.: Real-time volume
rendering in dynamic lighting environments using precomputed
photon mapping. IEEE TVCG 19, 8 (aug 2013), 1317-1330. 2

[ZM13] ZHANG Y., MA K.-L.: Fast global illumination for in-
teractive volume visualization. In Proceedings I3D, ACM (New
York, NY, USA, 2013), ACM, pp. 55-62. 2

submitted to Eurographics Conference on Visualization (EuroVis) (2014)

